
Type-Based Safe Resource Deallocation

for Shared-Memory Concurrency

Kohei Suenaga

Kyoto University

ksuenaga@kuis.kyoto-u.ac.jp

Ryota Fukuda

Kyoto University

rfukuda@kuis.kyoto-u.ac.jp

Atsushi Igarashi

Kyoto University

igarashi@kuis.kyoto-u.ac.jp

Abstract

We propose a type system to guarantee safe resource deal-

location for shared-memory concurrent programs by extend-

ing the previous type system based on fractional ownerships.

Here, safe resource deallocation means that memory cells,

locks, or threads are not left allocated when a program ter-

minates. Our framework supports (1) fork/join parallelism,

(2) synchronization with locks, and (3) dynamically allo-

cated memory cells and locks. The type system is proved

to be sound. We also provide a type inference algorithm for

the type system and a prototype implementation of the algo-

rithm.

Categories and Subject Descriptors D.2.4 [Software Engi-

neering]: Software/Program Verification—Formal methods;

D.3.2 [Programming Languages]: Language Classifications—

Concurrent, distributed, and parallel languages; F.3.1 [Log-

ics and Meanings of Programs]: Specifying and Verifying

and Reasoning about Programs—Mechanical verifications;

F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-

gramming Languages—Program analysis

General Terms Theory, Verification

Keywords fork/join parallelism, fractional ownerships,

memory leak, race freedom, safe resource deallocation,

shared-memory concurrency, SMT solver, type inference,

type systems

1. Introduction

Safe resource deallocation is a crucial matter in program-

ming languages with manual resource (e.g., memory and

files) management such as C and C++. Failing to dispose a

created resource, or accessing an already disposed resource

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

could lead to fatal errors1. For example, in the C language,

a memory leak occurs if a programmer forgets to deallo-

cate a memory cell allocated by malloc. In order to ad-

dress this problem, various formal verification methodolo-

gies [8, 13, 14, 16, 18] have been proposed. Most of them

are, however, for sequential programs.

Our goal is to establish a technique to statically check safe

resource deallocation for concurrent programs written in the

C language. Not only is it harder to reason about concurrent

programs, but also there are more kinds of resources to

be considered in concurrent programming languages than

sequential languages. For example, IEEE standards describe

pthread join(), a function for joining a spawned thread,

and pthread mutex destroy(), a function for destroying

a mutex, as follows [9]:

The pthread join() . . . should eventually be

called for every thread that is created [emphasis

added] . . . so that storage associated with the thread

may be reclaimed.

The pthread mutex destroy() function shall

destroy the mutex object referenced by mutex; the

mutex object becomes, in effect, uninitialized. . . . the

results of . . . referencing the object after it has been

destroyed are undefined [emphasis added].

It shall be safe to destroy an initialized mutex

that is unlocked. Attempting to destroy a locked mutex

results in undefined behavior [emphasis added].

As a first step towards our goal, we will investigate

three basic types of resources—memory cells, locks, and

threads—in this paper, though there are other kinds of re-

sources than threads and locks (e.g., barriers and reader/writer

locks). The following example written in a C-like language

describes the language features we will deal with.

EXAMPLE 1. The main function in Figure 1 allocates two

memory cells on heap, sets the pointers to the cells to p and

1 Some of the modern operating systems automatically reclaim resources

that have not been not deallocated appropriately. However, we believe that

safe resource deallocation is an important issue because not all operating

systems have such advanced feature.

main() { loop(p, q, l) {

p = malloc(); n = 10;

q = malloc(); while (n > 0) {

l = newlock(); acquire(l);

child = *p = 0;

fork(loop(p,q,l)); release(l);

loop(p, q, l); printf("*q=%d",*q);

wait(child); --n;

freelock(l); }

free(p); }

free(q);

}

Figure 1. An example of shared-memory concurrent pro-

grams.

q, and creates a lock l. Then the program spawns a new

thread that executes the body of loop inside. The parent

and the child threads both write to *p and read from *q

repeatedly. In order to avoid race, they use the lock l, which

is shared by them. Accesses to *q are not guarded because

they only read from *q. After the child thread terminates,

the parent thread reclaims the thread ID (wait(child)),

deallocates the lock (freelock(l)), and then the memory

cells (free(p) and free(q)).

This program includes (1) dynamically spawned threads,

(2) dynamically allocated locks and memory cells, (3) syn-

chronization using locks, and (4) deallocation of threads,

locks, and memory cells.

Our approach is to extend the previous flow-sensitive type

system of Suenaga and Kobayashi [13] to concurrency. The

basic idea of their previous type system is to assign a frac-

tional ownership to each pointer-type constructor. A frac-

tional ownership is a rational number that represents capa-

bility/obligation on the usage of the pointers. For example,

type int ref1 is the type for pointers to an integer that can be

used for reading/writing and should be used for deallocation

before termination. Type int ref0 is for pointers that cannot

be used at all and type int ref0.5 is for read-only pointers

that should be used for deallocation. By checking that no

ownership is left after the execution of a program, the type

system guarantees safe memory deallocation for sequential

programs.

Our contribution is summarized as follows.

• We propose a type system for safe resource dealloca-

tion for a programming language in which a program-

mer has to manually deallocate resources (i.e., memory

cells, locks, and threads). Our type system supports (1)

dynamic creation of threads, locks, and memory cells and

(2) synchronization using locks.

• We prove that the type system is sound—the execution of

a well-typed program indeed leaves no resources when it

terminates.

• We provide a type inference algorithm for the type sys-

tem, and an implementation of the algorithm. Readers

can try the implementation from http://www.fos.

kuis.kyoto-u.ac.jp/~rfukuda/freesafety-con/.

Our type system also guarantees race-freedom and that,

for each operation to acquire a lock, there is exactly one

corresponding release operation before termination. Race-

freedom is naturally achieved by the property inherited from

the previous type system that there is at most one pointer that

a program can use for writing to each memory cell. Though

it is not our main purpose to guarantee these properties,

they are interesting on their own because they are important

in deadlock-freedom analysis of concurrent languages with

non-block-structured lock primitives [12].

The rest of the paper is organized as follows. We first re-

view the previous type system for a sequential language in

Section 2 and present an overview of our extension in Sec-

tion 3. Then, Section 4 defines the language L, a concur-

rent language with manual resource management, and the

safety properties we are to guarantee by the type system.

Section 5 introduces the type system and sketches a proof of

type soundness, which is followed by a type inference algo-

rithm described in Section 6. After discussing related work

in Section 7, Section 8 concludes the paper. For readability,

we defer several definitions and detailed proofs to Appendix.

2. Review of Fractional Ownerships

This section briefly reviews the type system of Suenaga and

Kobayashi [13]. As mentioned in Section 1, the basic idea of

Suenaga and Kobayashi’s type system is to assign a frac-

tional ownership f (represented by a rational number in

[0, 1]) to each pointer type constructor τ reff . An owner-

ship represents capability about how the pointer is used in a

program: f = 1 means full access capability—capability for

reading from, writing to, and deallocate the memory cell that

the pointer points to; f = 0 means no access capabilities;

and other rational numbers between 0 and 1 mean capability

only to read. It also represents obligation: a non-zero owner-

ship means obligation for deallocation. (A rational number

less than 1 does not give capability to deallocate, however.

So, ownerships held by aliases have to be merged to recover

the full ownership 1 before deallocation.)

EXAMPLE 2. For the following heap structure, where a ref-

erence x points to the first cell,

x

if x has type τ ref0 ref1, the program can read from/write

to and has to deallocate the first cell through x, while the

program cannot access the second cell through x. The type

system also ensures that an alias of the pointer to the second

cell exists and the second cell will be deallocated through it.

A type judgment in this type system is of the form Θ;Γ ⊢
s ⇒ Γ′, where s is a command, Θ records types of top-

level functions, and Γ and Γ′ record types of variables. The

judgment Θ;Γ ⊢ s ⇒ Γ′ intuitively means “under the

assumption that (1) each function has the type described in

Θ and that (2) each variable has the type described in Γ, the

ownerships left after s terminates are described as in Γ′.”

We call Γ the pre type environment and Γ′ the post type

environment of the judgment.

For example, consider a command let x = ∗y in skip,

which binds x to the value stored in the memory cell that

y points to (and does nothing). Then, Θ; y : int ref0.5 ⊢
let x = ∗y in skip⇒ y :int ref0.5 is a valid type judgment

because y is given a non-zero ownership to read through. Un-

like reading, however, the full ownership is required for writ-

ing operation into a memory cell. So, Θ;x:int reff , y:int ⊢
∗x ← y ⇒ x : int reff , y : int (where ∗x ← y is a com-

mand to store the value of y to the memory cell that x points

to) is valid only if f = 1. Similarly, deallocation also re-

quires the full ownership; moreover, the ownership becomes

zero after deallocation, because the pointer becomes dan-

gling. So, Θ;x : int ref1 ⊢ free(x)⇒ x : int ref0 is valid,

whereas neither Θ;x : int ref1 ⊢ free(x) ⇒ x : int ref1
nor Θ;x : int ref0.5 ⊢ free(x)⇒ x : int ref0 is.

One interesting feature of the type system is that own-

erships can be transferred to aliases of the same pointer.

For example, Θ;x : int ref1 ⊢ let y = x in free(y) ⇒
x : int ref0 is a valid type judgment. In fact, the pre type en-

vironment for free(y) is x : int ref0, y : int ref1 due to the

transfer of the ownership from x to y at let x = y in. Al-

though this example shows transfer of the whole ownership

that x holds to y, the typing rule for let y = x in s allows

also partial transfer—that is, the original ownership of x can

be “split” into two fractions for x and y in s. For example,

int ref1 can be split into int ref0.5 and int ref0.5, which

makes the following type judgment valid:

Θ;x : int ref1 ⊢
let y = x in let z = ∗x in

let w = ∗y in . . .
⇒ Γ′

Here, the pre type environment for let z = ∗x in . . . is

x : int ref0.5, y : int ref0.5, making it possible to read from

both x and y.2

For a program, which consists of a set of top-level func-

tions and a command (which is considered as the body of

the main function), the type system requires the main com-

mand to be typed under the empty pre and post type envi-

ronments. The empty post type environment means that no

ownerships are left—or, all obligations of deallocation are

fulfilled—after the execution of the main command. This

way, safe memory deallocation is guaranteed.

2 In order to deallocate the memory cell pointed to by x, the split ownerships

have to be “merged” to recover the full ownership. The type system uses

must-alias information to merge ownerships. See Section 5 for more details.

3. Extension to Concurrency

The discussion in Section 1 and the program in Example 1

lead us to the following observations.

1. We need to guarantee safe deallocation not only of mem-

ory cells but also of locks and threads.

2. The type system should be able to allow different threads

to access shared memory cells when locks are properly

used to avoid racy accesses. For example, in the program

in Example 1, two threads use the lock l to control write

accesses to *p.

We address the first observation by ownerships on locks

and thread IDs, and the second by ownership transfer via

procurable type environments, as described below.

Ownerships on locks and thread IDs: In order to deal with

locks and threads as resources that have to be deallocated,

our type system introduces two new types: lock and tid. As

we have pointed out above, the type system also needs to

ensure that they are safely deallocated. To this end, the type

system assigns ownerships to lock types and thread types as

well as pointer types. The type system will guarantee safe

deallocation of these kinds of resources by the same idea as

before: by ensuring that there is no ownership left at the end

of a program.

In order to avoid a lock to be deallocated while it is held

(see the quotation from [9] in Section 1), we also use own-

erships to express obligation to release locks. Thus, a lock

type comes with two ownerships. One is lock ownership,

which expresses capability to access the lock and obligation

to deallocate the lock. The other is release ownership, which

expresses obligation to release the lock. On the one hand,

a lock can be acquired when the ownership of the lock is

non-zero and the release ownership is 0; after the acquire op-

eration, the release ownership becomes 1, which means the

lock has to be released afterwards. On the other hand, a lock

can be released when the ownership for the lock is non-zero

and the release ownership is 1; after the release operation,

the release ownership becomes 0. The type system will use

release ownership also to prevent a thread from acquiring

(or releasing) a lock twice without releasing (or acquiring,

respectively).

Ownership transfer via procurable type environments:

In order to handle ownership transfer, we further extend

lock types with what we call procurable type environment.

A procurable type environment describes the ownerships

granted to a thread while it holds the lock. As a result, a

lock type is written (Γ, f1) lockf2 , where Γ is a (procur-

able) type environment, f1 is release ownership, and f2 is

the ownership of the lock itself.

For example, if a lock l is given type ((x:int ref1), 0) lock1,

then a thread gets the ownership int ref1 on x as it acquires

l, allowing read from and write to x. After the acquire oper-

ation, the type of l becomes ((x : int ref1), 1) lock1, where

the release ownership is set to 1. When the release owner-

ship is fulfilled by releasing l, the thread will lose the same

amount of ownership as it obtained, thus accesses to x will

be prohibited. After the release of l, the type of l becomes

((x : int ref1), 0) lock1.

We also extend thread ID types with procurable type en-

vironments (written Γ tidf) to handle reclamation of own-

erships that have been split for a spawned thread. Con-

sider the program in Example 1 again. The two threads

read from q without using locks, so the ownerships on q

held by these threads are in (0, 1) (more precisely, the two

ownerships f1 and f2 satisfy f1 > 0, f2 > 0 and f1 +
f2 = 1). In order to perform free(q), however, the main

thread, which has f1 on q, has to reclaim the other owner-

ship f2 held by the spawned thread. Our type system consid-

ers this is done by waiting child—that is, when child

is given type (q : int reff2) tid1 in the pre type envi-

ronment of wait(child), the typing rule for wait ensures

q : int reff1+f2 in the post type environment. In general,

the procurable type environment in a thread ID type de-

scribes the post type environment of the thread, that is, the

ownerships left after the thread terminates.

Having these intuitions in mind, we proceed to the formal

definitions of our target language and type system.

4. Target Language L

4.1 Syntax

Let Var be a countably infinite set of variables. The syntax

of L is given in Figure 2. A value, denoted by v, is either

a variable or null; the former represent memory addresses,

while the latter the null pointer. A thread ID, denoted by t,
is a variable or a special symbol ⋆, which is not a member

of Var. The former are IDs of dynamically created threads,

while the latter is that of the main thread. Commands, ranged

over by s, consist of

• sequential commands, including do-nothing (skip), se-

quential composition (s1; s2), local binding (let x =
v in s), procedure call (f(x1, . . . , xn)), allocation of a

new memory cell (let x = malloc() in s), dealloca-

tion of a memory cell (free(x)), dereferencing a pointer

(let x = ∗y in s), destructive update of a memory cell

through a pointer (∗x1 ← x2), testing whether a value is

null (ifnull(x) then s1 else s2),

• must-alias annotations (assert(x1 = x2) and assert(x1 =
∗x2)), which programmers can use as hints to the type

system,

• lock-related primitives, including creation of a lock

(let x = newlock() in s), deallocation of a lock

(freelock(x)), acquiring a lock (acq(x)), and releasing

a lock (rel(x)), and

• thread management primitives, including let x =
fork(s1) in s2 for spawning a thread that executes s1,

binding x to the fresh ID of the new thread and executing

s2, and wait(x) for waiting for the thread with ID x to

terminate and deallocating the thread ID.

A few words about the must-alias annotations above: they

could be inserted manually or by using static must-alias ana-

lyzers. In the current implementation, programmers are re-

quired to insert them manually. The type system believes

correctness of those annotations and uses them for owner-

ship transfer. If an annotation turns out to be incorrect, the

program terminates with an exception—see the operational

semantics later.

A meta-variable d denotes a function definition and D a

set of function definitions, where the names of functions are

pairwise distinct. A program is a pair of the form (D, s). We

write [v/x]s for capture-avoiding substitution of v for x in s.

The notion of bound/free variables are defined in a standard

manner. We assume, without loss of generality, that each

bound variable is different from each other. We also require

that the actual arguments ỹ of function-call command f(ỹ)
to be pairwise distinct for a technical reason; if one would

like to pass one value as different arguments, let has to be

used beforehand to make aliases .

REMARK 3. We do not incorporate primitive values such as

integers in the current language because such extension is

quite straightforward. One of the non-trivial extensions that

are not discussed in this paper is C-like structures. Though

extension with structures in the sequential setting has been

discussed in the previous work [13], we leave it as future

work to investigate whether the same extension is possible

in the concurrent setting.

EXAMPLE 4. The following L command expresses the body

of main function in Example 1. We assume that loop is

defined elsewhere.

let p = malloc() in let q = malloc() in
let l = newlock() in let c = fork(loop(p, q, l)) in

loop(p, q, l);wait(c); freelock(l); free(p); free(q)

In the rest of this section, we assume that D is fixed if not

explicitly specified to make the notations less cumbersome.

4.2 Operational semantics

The operational semantics is defined by small-step reduction

of configurations which represent execution states.

DEFINITION 5 (Configurations). A configuration is a quadru-

ple (P,H,L,R) where P ∈ (Var ∪ {⋆})
fin
→ Cmd,

H ∈ Var
fin
→ Val, L ∈ Var

fin
→ {⊤,⊥}, R ∈ Var

fin
→ Val,

where X
fin
→ Y is the set of partial functions from X to Y

whose domain is finite, and the domains of P , H , L and

R are pairwise disjoint. We use the meta-variable Conf

for configurations. We write P (Conf),R(Conf), H(Conf)
and L(Conf) for P,R, H and L in Conf , respectively.

P (Conf) is called thread pool of Conf , H(Conf) heap

and L(Conf) lock environment.

x, f, l, h, . . . (Variables) ∈ Var

v (Values) ∈ Val ::= x | null
t (Thread IDs) ::= x | ⋆
s (Commands) ∈ Cmd ::= skip | s1; s2 | let x = v in s | f(x1, . . . , xn)

| let x = malloc() in s | free(x) | let x = ∗y in s | ∗x1 ← x2

| ifnull(x) then s1 else s2 | assert(x1 = x2) | assert(x1 = ∗x2)
| let x = newlock() in s | freelock(x) | acq(x) | rel(x)
| let x = fork(s1) in s2 | wait(x)

d (Function definitions) ∈ Def ::= f(x1, . . . , xn) = s
E (Evaluation contexts) ::= [] | E; s

Figure 2. Syntax of L.

A thread pool P records the thread IDs and the statements

currently being executed. Recall that the symbol ⋆ stands for

a special thread ID for the main thread. A heap H represents

the current state of memory. It is essentially a directed graph

whose vertices are memory locations. L records the states of

locks: L(x) = ⊤ means that x is being held by a thread and

L(x) = ⊥ not being held. R represents a register file, which

maps a register name to its value. Note that we use variables

for thread IDs (other than ⋆), locations, lock IDs and register

names.

Notations. Let X be a map. We write dom(X) for the

domain of X . By abuse of notation, we write dom(D) for

the set of the function names defined in D. We write X[x 7→
a] for the map defined by dom(X[x 7→ a]) = dom(X)∪{x}
and X[x 7→ a](x) = a and X[x 7→ a](y) = X(y) when

x 6= y. We use a tilde (̃·) to denote a sequence and write

X\ {x̃} for the map whose domain is dom(X)\ {x̃} and

defined by (X\ {x̃})(z) = X(z).

DEFINITION 6 (Small-Step Reduction). The relations

(s,H,L,R) ❀ (s′, H ′, L′, R′) (s,H,L,R) ❀ E

(P,H,L,R) ❀ (P ′, H ′, L′, R′) (P,H,L,R) ❀ E,

where E ∈ {NullEx,AssertFail,Error}, are the least

relations that satisfy the rules in Figures 3, 4 and 5. (We use

a single symbol ❀ for all the relations by abuse of notation.)

We write ❀
∗ for the reflexive transitive closure of ❀.

The relation (s,H,L,R) ❀ (s′, H ′, L′, R′) represents

small-step reduction inside a thread. The rules are mostly

straightforward. In E-FREE, location R(x) is removed from

the heap if R(x) is a valid location. If R(x) = null, nothing

happens; here, we follow the convention of the C language.

E-MALLOC creates a memory cell allocated at a fresh lo-

cation h and assigns it to a (fresh) register z and extends R

with z 7→ h and H with h 7→ v where v is an arbitrary

value3. E-ASSERTEQ and E-ASSERTDEREF represent the

cases where the assertions actually hold—an assertion is no-

op when it holds. E-NEWLOCK creates a new lock l and

3 Following the convention of the C language, we assume nothing on the

value contained in the newly allocated memory cell.

assigns it to a new register z and extends L with l 7→ ⊥ and

R with z 7→ l. E-FREELOCK removes the lock R(x) from L
if the lock is still alive and not held by any threads.

The relation (P,H,L,R) ❀ (P ′, H ′, L′, R′) repre-

sents reduction that pertains to the thread-related primitives.

E-FORK generates a fresh thread ID z′′ and assigns it to a

fresh register z′; a thread pool is extended with z′′ 7→ s1.

E-WAIT removes R(x) from P if R(x) is a valid thread

ID and P (R(x)) has already finished its execution. Note

that R(x) cannot be ⋆. E-ACQ confirms that R(x) is a valid

lock and no thread currently holds this lock, and turns its

lockstate to ⊤. E-REL is the converse of E-ACQ. E-PROC

arbitrarily chooses one thread in P and conducts one-step

reduction.

The relation (P,H,L,R) ❀ E where E ∈
{NullEx,AssertFail,Error} represents reduction to an

exceptional state. Here, NullEx represents null-pointer ac-

cesses, AssertFail assertion errors and Error accesses

to dangling resources. As we see below, we do not treat

NullEx nor AssertFail as erroneous states; our type sys-

tem does not exclude the possibility of null-pointer accesses

and assertion errors. It means that safe deallocation is guar-

anteed only when assertions, which could be inserted by

must-alias analysis, are correct and the program does not

perform null-pointer accesses.

4.3 Safety property

We formalize the safety property to be satisfied by a well-

typed program below. Informally, a well-typed program does

not cause Error or race-condition; or does not leak re-

sources, either. A program is said to leak resources when

its execution terminates but the heap, the lock environment,

or the thread pool at termination is not empty (except for the

main thread). We first define race condition.

DEFINITION 7 (Reading from / Writing to). Thread t in con-

figuration Conf such that t ∈ dom(P (Conf)) is said to

be reading from h if P (Conf)(t) is syntactically equal to

E[let y = ∗x in s] and R(Conf)(x) = h for some E, x, y
and s. Thread t in configuration Conf is said to be writing

(s,H,L,R) ❀ (s′, H ′, L′,R′)

(skip; s,H,L,R) ❀ (s,H,L,R) (E-SKIP)
(∗x← y,H[R(x) 7→ v], L,R) ❀
(skip, H[R(x) 7→ R(y)], L,R)

(E-ASSIGN)

R(x) ∈ dom(H) ∪ {null}

(free(x), H, L,R) ❀ (skip, H\R(x), L,R)
(E-FREE)

z and h are fresh v ∈ Var ∪ {null}

(let x = malloc() in s,H,L,R) ❀
([z/x]s,H[h 7→ v], L,R[z 7→ l])

(E-MALLOC)

z is fresh

(let x = v in s,H,L,R) ❀ ([z/x]s,H,L,R[z 7→ v])
(E-LET)

z is fresh

(let x = ∗y in s,H[R(y) 7→ v], L,R) ❀
([z/x]s,H[R(y) 7→ v], L,R[z 7→ v])

(E-DEREF)

R(x) = null

(ifnull(x) then s1 else s2, H, L,R) ❀ (s1, H, L,R)
(E-IFNULLTRUE)

(ifnull(x) then s1 else s2, H, L,R[x 7→ y]) ❀ (s2, H, L,R[x 7→ y]) (E-IFNULLFALSE)

f(x̃) = s ∈ D

(f(ỹ), H, L,R) ❀ ([ỹ/x̃]s,H,L,R)
(E-APP)

R(x1) = R(x2)

(assert(x1 = x2), H, L,R) ❀ (skip, H, L,R)
(E-ASSERTEQ)

(assert(x1 = ∗x2), H[R(x2) 7→ v], L,R[x1 7→ v]) ❀
(skip,R[x1 7→ v], H[R(x2) 7→ v], L,R[x1 7→ v])

(E-ASSERTDEREF)

z and l are fresh

(let x = newlock() in s,H,L,R) ❀
([z/x]s,H,L[l 7→ ⊥],R[z 7→ l])

(E-NEWLOCK) (freelock(x), H, L[R(x) 7→ ⊥],R) ❀
(skip, H, L\R(x),R)

(E-FREELOCK)

Figure 3. Semantics of L (1).

(P,H,L,R) ❀ (P ′, H ′, L′,R′)

z′ and z′′ are fresh

(P [t 7→ E[let x = fork(s1) in s2]], H, L,R) ❀ (P [t 7→ E[[z′/x]s2], z
′′ 7→ s1], H, L,R[z′ 7→ z′′])

(E-FORK)

(P [t 7→ E[wait(x)], x′ 7→ skip], H, L,R[x 7→ x′]) ❀ (P [t 7→ E[skip]]\ {x′} , H, L,R[x 7→ x′]) (E-WAIT)

(P [t 7→ E[acq(x)]], H, L[R(x) 7→ ⊥],R) ❀ (P [t 7→ E[skip]], H, L[R(x) 7→ ⊤],R) (E-ACQ)

(P [t 7→ E[rel(x)]], H, L[R(x) 7→ ⊤],R) ❀ (P [t 7→ E[skip]], H, L[R(x) 7→ ⊥],R) (E-REL)

(s,H,L,R) ❀ (s′, H ′, L′,R′)

(P [t 7→ E[s]], H, L,R) ❀ (P [t 7→ E[s′]], H ′, L′,R′)
(E-PROC)

Figure 4. Semantics of L (2).

to h if P (Conf)(t) is syntactically equal to E[∗x← v] and

R(Conf)(x) = h for some E, v and x.

DEFINITION 8 (Race Condition). A configuration Conf is

in race if there are h ∈ dom(H(Conf)) and t1, t2 ∈
dom(P (Conf)) such that t1 6= t2 and either (1) t1 and t2

are writing to h or (2) t1 is writing to h and t2 is reading

from h.

This definition intuitively means that Conf is in race if

there are two or more threads that are accessing the same

location, and at least one of them is conducting write oper-

(s,H,L,R) ❀ E, (P,H,L,R) ❀ E

R(y) = null s is ∗y ← x, or let x = ∗y in s′, or assert(x = ∗y)

(s,H,L,R) ❀ NullEx
(E-NULL)

R(x1) 6= R(x2)

(assert(x1 = x2), H, L,R) ❀ AssertFail
(E-ASSERTEQERR)

R(y) /∈ dom(H) ∪ {null}

(assert(x = ∗y), H, L,R) ❀ AssertFail
(E-ASSERTDEREFERR1)

R(x) 6= v

(assert(x = ∗y), H[R(y) 7→ v], L,R) ❀ AssertFail
(E-ASSERTDEREFERR2)

s = ∗x← y, or let x = ∗y in s, or free(x), or assert(x = ∗y)
R(x) /∈ dom(H) R(x) 6= null

(s,H,L,R) ❀ Error
(E-DANGPTRACCERR)

s = acq(x), or rel(x), or freelock(x)
R(x) /∈ dom(L)

(s,H,L,R) ❀ Error
(E-DANGLOCKACCERR)

R(x) /∈ dom(P)

(wait(x), H, L,R) ❀ Error
(E-DANGPROCACCERR)

(s,H,L,R) ❀ E

(P [t 7→ E[s]], H, L,R) ❀ E
(E-PROCERR)

Figure 5. Semantics of L (3).

ation. This definition has been widely used in race-freedom

analysis (e.g.,[1]).

Then, we define termination of a configuration and then

the notion of program safety, which the type system will

guarantee.

DEFINITION 9 (Termination). A configuration Conf is in

termination if and only if P (Conf)(t) = skip for any

t ∈ dom(P (Conf)). We write End(Conf) if Conf is in

termination.

DEFINITION 10 (Safe Configuration). A configuration Conf

is safe (written Safe(Conf)) if and only if (1) Conf 6❀
Error; (2) Conf is not in race; and (3) End(Conf) im-

plies Conf = ({⋆ 7→ skip} , ∅, ∅, R) for some R. We say

Conf leaks resources if (3) does not hold.

DEFINITION 11 (Program Safety). A program (D, s) is safe

if ({⋆ 7→ s} , ∅, ∅, ∅) ❀
∗ Conf implies Safe(Conf). We

write Safe(D, s) if (D, s) is safe.

REMARK 12. A deadlocking configuration is not considered

in termination. For example,

End




{⋆ 7→ wait(x), t1 7→ acq(y)} ,
∅,
{l 7→ ⊤} ,
{x 7→ t1, y 7→ l}




does not hold, though the configuration is stuck.

5. Type System

5.1 Types and type environments

The set of ownerships, ranged over by f , is the subset [0, 1]
of rational numbers Q. We define types and type environ-

ments as follows:

κ (reference types) ∈ {0}∗ → [0, 1]
τ (value types) ∈ VTyp ::= κ | (Γ, f1) lockf2 | Γ tidf

Γ (type environments) ∈ Var
fin
→ VTyp

A reference type κ is a map from {0}∗ to the set of owner-

ships. Here, {0}∗ is the set of finite sequences, ranged over

by π, of the (only) alphabet 0. We assume that every ref-

erence type κ satisfies κ(π) = 0 implies κ(π0) = 0 for

any π. (This restriction is needed for soundness [13].) A

sequence π intuitively represents the memory cell reached

by dereferencing a pointer |π| times; if x has type κ and

κ(π) = f , it means that a programmer has to respect the

ownership f of the value obtained by |π|-time dereferenc-

ing of x following the chain of the pointers, where |π| is the

length of π4. For example, the type of x in Example 2 is

{ǫ 7→ 1, 0 7→ 0, 00 7→ 0, . . .}.
We write 0 for the reference type that is defined by

0(π) = 0 for any π. Given a reference type κ, we write

κ reff for the reference type defined by (κ reff)(ǫ) = f
and (κ reff)(0π) = κ(π).

REMARK 13. In Suenaga and Kobayashi [13], they intro-

duce a recursive type constructor µα.κ, interpret a recursive

type as an element in {0}∗ → [0, 1] (by infinite expansion),

and define operations on types in terms of infinite expan-

sions. Our choice of directly using {0}∗ → [0, 1] simplifies

the presentation of the type system. The type inference algo-

rithm in Section 6 uses the recursive type notation as a finite

representation of reference types.

A value type, often called type for short, is either a ref-

erence type, a lock type (Γ, f1) lockf2 , or a thread ID type

Γ tidf ; we have already explained the syntax and intuition

of lock and thread ID types in Section 3. We call f1 in

(Γ, f1) lockf2 release ownership and f2 lock ownership.

REMARK 14. We currently syntactically separate reference

types from value types. However, this separation obviously

prevents a lock and a thread ID from being stored in heap

because this requires a type like ((Γ, 0) lock1) ref1, which

does not conform the grammar. Relaxing this restriction is

left as future work.

Before explaining typing rules, we need several auxiliary

definitions and operations on types and type environments.

DEFINITION 15. The sets FV(τ) and FV(Γ) of free vari-

ables of a type τ and a type environment Γ, respectively, are

defined by:

FV(κ) = ∅ FV((Γ, f1) lockf2) = FV(Γ)
FV(Γ tidf) = FV(Γ)

FV(Γ) =
⋃

x∈dom(Γ)(FV(Γ(x)) ∪ {x}).

DEFINITION 16. We write Γ, x : τ for the type environment

Γ[x 7→ τ] if x /∈ FV(Γ) and FV(τ) ⊆ dom(Γ). We say

Γ is well-formed (written wf(Γ)) if Γ can be written as

x1 : τ1, . . . , xn : τn for some x̃ and τ̃ .

4 Though using the set of natural numbers in place of {0}∗ could also work,

we adopt the current definition for a future extension to multi-word cells.

For example, when cells consist of two words, we can use {0, 1} as the

alphabet.

The condition “x /∈ FV(Γ) and FV(τ) ⊆ dom(Γ)”
means that, in order to add a new type declaration to a

type environment, the variable has to be fresh and, if the

newly added type is a lock/tid type, then its procurable

type environment can mention only preceding variables. So,

intuitively, well-formedness of a type environment means

that bindings can be sorted so that the type of a variable

mentions only preceding variables. We assume that every

type environment is well formed in what follows.

We next define emptiness of types and type environments.

Intuitively, a value of an empty type can be discarded imme-

diately because there is no obligation to deallocate.

DEFINITION 17 (Empty Types/Type Environments). A type

τ is empty, written empty(τ), if τ is either (Γ, 0) lock0

for some Γ, or Γ tid0 for some Γ, or a reference type

0. A type environment Γ is empty, written empty(Γ), if

empty(Γ(x)) for any x ∈ dom(Γ).

We also define summation on types and type environ-

ments to formalize splitting and merging ownerships.

DEFINITION 18 (Summation of Types/Type Environments).

Value type τ1 + τ2 is defined by:

κ1 + κ2 = κ
where κ(π) = κ1(π) + κ2(π) for any π

(Γ, f1) lockf2 + (Γ, f3) lockf4 = (Γ, f1 + f3) lockf2+f4

Γ tidf1 + Γ tidf2 = Γ tidf1+f2

Type environment Γ1 + Γ2 is defined by:

dom(Γ1 + Γ2) = dom(Γ1) ∪ dom(Γ2)
(Γ1 + Γ2)(x) =



Γ1(x) + Γ2(x) (x ∈ dom(Γ1) ∩ dom(Γ2))
Γ1(x) (x ∈ dom(Γ1)\dom(Γ2))
Γ2(x) (x ∈ dom(Γ2)\dom(Γ1)) .

Note that the sum τ1 + τ2 is defined only if τ1 and τ2
are the same kind of types; moreover, when a summand is a

lock or thread ID type, their procurable type environments

have to be identical. For example ({x 7→ 0}, 0) lock1 +
({x 7→ 0}, 1) lock0 = ({x 7→ 0}, 1) lock1. How-

ever, none of ({x 7→ 0}, 0) lock1 + ({x 7→ 1}, 0) lock1,

({x 7→ 0}, 0) lock1 + ({x 7→ 0, y 7→ 1}, 0) lock1, or 0 +
({x 7→ 0}, 0) lock1 is defined.

5.2 Typing

Let Θ be a function type environment, which is a finite

mapping from variables to function types of the form (x1 :
τ1, . . . , xn : τn) → (τ ′1, . . . , τ

′
n). A function type is de-

pendent so that a parameter type can mention a preceding

parameter in its procurable type environment. Although it

returns no value in our target language, a function (im-

plicitly) returns some ownership held by parameters back

to the caller. For example, a function type (x : κ ref0, y :
((x : κ ref1), 0) lock1)→ (κ ref0, ((x : κ ref1), 0) lock1)

Γ ⊢ v : τ

empty(Γ)

Γ ⊢ null : κ
(T-NULL)

empty(Γ)

Γ, x : τ ⊢ x : τ
(T-VAR)

Θ;Γ ⊢ s⇒ Γ′

Θ;Γ ⊢ skip⇒ Γ (T-SKIP) Θ;Γ1 ⊢ s1 ⇒ Γ3 Θ;Γ3 ⊢ s2 ⇒ Γ2

Θ;Γ1 ⊢ s1; s2 ⇒ Γ2

(T-SEQ)

Γ1 ⊢ v : τ1 Θ;Γ2, x : τ1 ⊢ s⇒ Γ3, x : τ ′ empty(τ ′) x /∈ FV(Γ1)

Θ; Γ1 + Γ2 ⊢ let x = v in s⇒ Γ3

(T-LET)

dom(Γ) = dom(Γ′) = {y1, . . . , yn}
Γ(yi) = [y1, . . . , yi−1/x1, . . . , xi−1]τi for each i Γ′(yi) = [y1, . . . , yi−1/x1, . . . , xi−1]τ

′
i for each i

Θ; f : (x̃ : τ̃)→ (τ̃ ′); Γ + Γ′′ ⊢ f(ỹ)⇒ Γ′ + Γ′′
(T-APP)

Θ;Γ1, x : 0 ref1 ⊢ s⇒ Γ2, x : 0

Θ;Γ1 ⊢ let x = malloc() in s⇒ Γ2

(T-MALLOC)
Θ;Γ, x : 0 ref1 ⊢ free(x)⇒ Γ, x : 0 (T-FREE)

Θ;Γ1, y : κ1 reff , x : κ2 ⊢ s⇒ Γ2, x : 0 f > 0

Θ; Γ1, y : (κ1 + κ2) reff ⊢ let x = ∗y in s⇒ Γ2

(T-DEREF)

Θ;Γ, y : 0 ref1, x : κ1 + κ2 ⊢ ∗y ← x⇒ Γ, y : κ1 ref1, x : κ2 (T-ASSIGN)

Γ1(x) = κ reff Θ;Γ1[x 7→ κ1] ⊢ s1 ⇒ Γ2 Θ;Γ1 ⊢ s2 ⇒ Γ2

Θ;Γ1 ⊢ ifnull(x) then s1 else s2 ⇒ Γ2

(T-IFNULL)

τ1 + τ2 = τ ′1 + τ ′2
Θ;Γ, x1 : τ1, x2 : τ2 ⊢ assert(x1 = x2)⇒ Γ, x1 : τ

′
1, x2 : τ

′
2

(T-ASSERTEQ)

κ1 + κ2 = κ′
1 + κ′

2 f > 0

Θ; Γ, x1 : κ1, x2 : κ2 reff ⊢ assert(x1 = ∗x2)⇒ Γ, x1 : κ
′
1, x2 : κ

′
2 reff

(T-ASSERTEQDEREF)

Figure 6. Typing rules for sequential commands.

describes a function that takes a pointer x and a lock to ob-

tain ownership to access x; when it returns the same owner-

ship will be returned to the caller.

As explained in Section 2, a type judgment is of the form

Θ;Γ ⊢ s⇒ Γ′, whose intuition has already been given.

DEFINITION 19 (Typing for Commands). The judgment

Θ;Γ ⊢ s ⇒ Γ′ is the least relation that is closed under the

rules in Figures 6 and 7.

Typing rules for sequential commands. The typing rules

in Figure 6 are rules for values and sequential commands.

Rule T-NULL means that a null pointer can be given any

reference type. Rules T-NULL and T-VAR require Γ to be

empty since variables in it are not used here.

Rules T-SKIP and T-SEQ are straightforward. In T-LET,

the type of x in the post type environment has to be empty

since ownerships on x should not be left after the scope of x

ends here. Similar emptiness conditions are found in typing

rules for commands involving variable binding. Rule T-APP

expresses standard dependent function application.

In rule T-MALLOC, x is given type 0 ref1 in the pre type

environment of the body s. Recall the intuition of ownership

1 explained in Section 3 that, when a new cell is allocated,

(1) exclusive access through x is granted and (2) obligation

to deallocate the cell through x in future is imposed. Since

the content of the newly-created cell should not be used until

initialization has been done, the type of a value pointed to by

x is 0. Rule T-FREE is basically the converse of T-MALLOC.

The type of x becomes 0 in the post type environment to

prevent accesses to the deallocated cell.

Rules T-DEREF and T-ASSIGN check if there is enough

ownership on the type κ reff of y in the pre type en-

vironment of the conclusion, in order to perform reading

(f > 0) and writing (f = 1), respectively. When a pointer

Θ;Γ ⊢ s⇒ Γ′ (cont’d.)

Θ;Γ1, x : (Γ2, 0) lock1 ⊢ s⇒ Γ3, x : τ empty(τ)

Θ; Γ1 + Γ2 ⊢ let x = newlock() in s⇒ Γ3

(T-NEWLOCK)

Θ;Γ1, x : (Γ2, 0) lock1 ⊢ freelock(x)⇒ (Γ1, x : (Γ2, 0) lock0) + Γ2 (T-FREELOCK)

f > 0

Θ; Γ1, x : (Γ2, 0) lockf ⊢ acq(x)⇒ (Γ1, x 7→ (Γ2, 1) lockf) + Γ2

(T-ACQ)

f > 0

Θ; (Γ1, x : (Γ2, 1) lockf) + Γ2 ⊢ rel(x)⇒ Γ1, x : (Γ2, 0) lockf

(T-REL)

Θ;Γ1 ⊢ s1 ⇒ Γ′
1 Θ;Γ2, x : Γ′

1 tid1 ⊢ s2 ⇒ Γ′
2, x : τ empty(τ) x /∈ FV(Γ1)

Θ; Γ1 + Γ2 ⊢ let x = fork(s1) in s2 ⇒ Γ′
2

(T-FORK)

Θ;Γ1, x : Γ2 tid1 ⊢ wait(x)⇒ (Γ1, x : Γ2 tid0) + Γ2 (T-WAIT)

Figure 7. Typing rules for concurrency-related commands.

Θ;x1 : τ1, . . . , xn : τn ⊢ s⇒ x1 : τ ′1, . . . , xn : τ ′n
Θ ⊢ f(x̃) = s : (x1 : τ1, . . . , xn : τn)→ (τ ′1, . . . , τ

′
n)

(T-FUNDEF)

Θ ⊢ f(x̃) = s : Θ(f) for each f(x̃) = s ∈ D dom(Θ) = dom(D)

⊢ D : Θ
(T-FUNENV)

⊢ D : Θ Θ; ∅ ⊢ s⇒ ∅

⊢ (D, s) ok
(T-PROG)

Figure 8. Typing rules for programs.

is derefeneced, the content of the memory cell pointed to

by y is copied to x, and so the original ownership of the

pointer stored in the memory cell is (partially) transferred to

x. The type κ1 + κ2 expresses the original ownership and it

is split for x. Conversely, in assignment, the assigned value

x is copied to the memory cell that y points to, so the own-

ership on x is split. Moreover, the pointer that y points to

should have the empty (pointer) type, because no obligation

should be left for the old content before assignment. Owner-

ship splittings at these rules are kept non-deterministic. The

implementation in Section 6.4 chooses one of the possible

splittings with an SMT solver.

Rule T-IFNULL ensures that the post type environment of

the two clauses are the same. The rule also allows the then

clause to use x as any type because x is null in this clause

(c.f. T-NULL).

Rules T-ASSERTEQ and T-ASSERTEQDEREF describe

how the type system exploits must-alias annotations. For

example, in T-ASSERTEQ, the condition τ1 + τ2 = τ ′1 + τ ′2
makes it possible to shuffle ownerships between x1 and

x2, and thus enables the type system to transfer a part of

ownership from one to the other. The following command

(written in slightly changed syntax to save space) shows how

this rule works:

let x = malloc() in let y = x in

f(∗y); f(∗x);assert(x = y); free(x).

Without the assertion, this example would not typecheck,

because both x and y have a positive ownership and thus

the ownership of x is not 1, required to free. However,

thanks to assert(x = y), which lets the type system transfer

the ownership of y to x, the type of x before free(x) is

0 ref1, which allows free. Note that it is not a responsibility

of this type system to ensure the correctness of must-alias

assertions. If an incorrect assertion is inserted, a program

may reduce to AssertFail and the type system guarantees

nothing.

Typing rules for concurrency-related commands. Fig-

ure 7 shows the typing rules for concurrency-related com-

mands.

The first four rules concern lock manipulation. Rule

T-NEWLOCK splits the ownerships of the current thread

into two (Γ1 and Γ2), and “deposit” one of them (Γ2) in

the newly-created lock type as its procurable type environ-

ment (x : (Γ2, 0) lock1). The release ownership part of the

lock type is 0 because the lock is initially in the state ⊥.

The lock ownership part is 1, which means that only this

thread is currently allowed to access this lock and the lock

has to be deallocated in future. Rule T-FREELOCK is sim-

ilar to T-FREE; it also requires the release ownership of

x to be 0 because, after executing freelock(x), the pro-

gram cannot release the lock. As its post type environment

shows, the current thread acquires the procurable type en-

vironment that has been deposited to the type of x. Rules

T-ACQ and T-REL are straightforward once the meaning of

procurable type environments and release ownership is un-

derstood. Acquiring a lock borrows ownerships deposited in

the lock; the procurable type environment Γ2 added to the

post type environment expresses this. Releasing a lock re-

turns the borrowed ownership back to the lock. To express

this, the procurable type environment Γ2 at the pre type envi-

ronment is removed at the post type environment. Note also

that the release ownerships at these rules are set according to

the intuition explained in Section 3: The release ownership

of x is 1 at the post type environment of T-ACQ, while it is

0 at T-REL.

The next two rules concern thread manipulation. Rule

T-FORK means that the ownerships the current thread holds

are split into two (Γ1 and Γ2) and one of them (Γ1) is given to

the spawned thread (as its pre type environment). The type

of x in the pre type environment of s2 is Γ′
1 tid1, where

Γ′
1 is the post type environment of s1. It expresses that the

ID of the child thread has to be passed to wait afterwards,

and that the thread that waits the spawned thread will be

granted Γ′
1—the ownerships left after the execution of the

spawned thread s1—as expressed by rule T-WAIT. Note that

we do not force a spawned thread to use up or preserve the

ownerships initially given.

Example. We show a typing example using the command

in Example 4. First, let

Θ = loop:(p : 0, q : 0 ref0.5, l : ((p : 0 ref1), 0) lock0.5)
→ (0,0 ref0.5, ((p : 0 ref1), 0) lock0.5).

The type of loop means that the function loop takes two

references p, which cannot be accessed at first, and q, which

is read-only, and one lock l. This lock type means that (1)

the lock is not acquired yet; and (2) it gives a full ownership

on p, once the lock is acquired. At the end of loop, the

ownership of these resources are returned unchanged.

The command (we call it s) is typed under the empty pre

and post type environments:

Θ; ∅ ⊢ s⇒ ∅.

Now, let’s take a look at main parts of its derivation tree. The

first two steps (counted from the root) are as follows:

Θ; p : 0 ref1, q : 0 ref1 ⊢
let l = newlock() in · · · ⇒ p : 0, q : 0

Θ; p : 0 ref1 ⊢
let q = malloc() in · · · ⇒ p : 0 ref0

T-MALLOC

Θ; ∅ ⊢ let p = malloc() in
let q = malloc() in
let l = newlock() in · · · ⇒ ∅

T-MALLOC

In the pre type environment for let l = newlock() in · · ·,
full ownership (i.e., 1) is assigned to p and q, while no

ownership is assigned in the post.

The next rule is T-NEWLOCK. Here l is supposed to

guard any access to p, the procurable type environment in

the type of l should include p :0 ref1 whereas no ownership

is left for p in the pre type environment (called Γ) for the

continuation (that is, let c = fork(loop(p, q, l)) in · · ·):

Θ;

Γ︷ ︸︸ ︷
p : 0 ref0 , q : 0 ref1, l : ((p : 0 ref1), 0) lock1 ⊢

let c = fork(loop(p, q, l)) in · · ·
⇒ p : 0, q : 0, l : ((p : 0 ref1), 0) lock0

Θ; p : 0 ref1 , q : 0 ref1 ⊢ T-NEWLOCK

let l = newlock() in
let c = fork(loop(p, q, l)) in · · · ⇒ p : 0, q : 0

Let Γl = p : 0 ref1 in what follows.

The next rule is T-FORK. Here, the pre type environment

Γ is split into two: one for the continuation of the main

thread and one for the spawned thread. In both threads, q is

used for reading (without using locks) and l is used for lock-

ing, so the ownerships of q and l in both type enviroments

must be greater than 0. In the following derivation step we

use Γ 1
2
= p :0, q :0 ref0.5, l : (Γl, 0) lock0.5, which satisfies

Γ = Γ 1
2
+ Γ 1

2
:

Θ;Γ 1
2
, c : Γ 1

2
tid1 ⊢ loop(p, q, l); · · ·

⇒ p : 0, q : 0, l : (Γl, 0) lock0, c : Γ 1
2
tid0

Θ;Γ 1
2
⊢ loop(p, q, l)⇒ Γ 1

2

Θ;Γ ⊢ let c = fork(loop(p, q, l)) in · · · T-FORK

⇒ p : 0, q : 0, l : (Γl, 0) lock0

Also it is important to notice that the post type environment

for the new thread body and the procurable type environment

for the thread ID c agree, as shaded boxes show.

Figure 9 shows the pre type environment for each sub-

command as comments. We can observe that

1. after wait(c), the procurable type environment Γ 1
2

in c’s
type is merged and so q’s ownership is 1 in the post type

environment;

2. similarly, after freelock(l), the procurable type environ-

ment Γl in l’s type is merged and so p’s ownership is 1 in

the post type environment.

(Note that when two commands s1 and s2 are combined with

‘;’, the pre type environment for s2 is the post for s1.)

Typing rules for programs. A type judgment for a pro-

gram is of the form ⊢ (D, s) ok, which means that, if a

program starts its execution from the main command s, the

program respects types and ownerships in any scheduling. It

is defined via typing for functions.

DEFINITION 20 (Typing for Programs). ⊢ (D, s) ok is the

least relation that satisfies the rules in Figure 8.

Rule T-FUNDEF is straightforward. The condition that a

parameter can depend on preceding parameters is guaranteed

by the formation of type environments (recall that Γ, x : τ is

defined only when x 6∈ FV(Γ) ∪FV(τ)). Rule T-FUNENV

is essentially a standard typing rule for mutually recursive

functions.

Rule T-PROG checks that (1) the functions defined in D
are well-typed and the types of those functions are described

by some Θ, and (2) the main command s is well-typed under

Θ and the empty pre and post type environments.

5.3 Soundness of the type system

The type soundness theorem is stated as expected:

THEOREM 21 (Type Soundness). If ⊢ (D, s) ok, then

Safe(D, s).

This theorem is proved in the standard manner: subject

reduction and lack of immediate errors. For subject reduc-

tion, we define typing for configurations by using an auxil-

iary definition.

DEFINITION 22. The function PTE takes a process type

and returns its PTE part; it is defined by PTE(Γ tidf) = Γ.

DEFINITION 23 (Typing for Configurations). The typing re-

lation for configurations Θ;Γ ⊢D Conf ok is defined by the

rule in Figure 10.

Rule T-CONFIG basically imposes that each thread re-

spects the function type environment Θ and its pre type en-

vironment. The highlights of the rule are as follows.

• The post type environment of the main thread ⋆ has to be

empty, which is crucial for resource-leak-freedom.

• The condition ConOwn(Conf ,Γ), which essentially

means that, for each thread ID, lock, and pointer, the sum

of ownerships held by the threads is exactly 1, so that ev-

ery resource is eventually deallocated before termination.

• The condition acyclic(t̃, Γ̃′, R) imposes that there is

no “circular dependency” among the threads in Conf .

We need this condition to ensure that the thread pool

becomes {⋆ 7→ skip} leaving no other threads when the

program terminates.

• The last conditions means that, for each binding of the

form x : Γ′ tidf in Γ, where the value of x is the ID of

i-th thread, Γ′ is equal to the post type environment Γ′
i of

si modulo empty types. This condition is necessary for

a thread not to die without returning all the non-empty

ownerships.

The precise definitions of ConOwn and acyclic are given

in Appendix .

Theorem 21 is proved by showing (1) the initial configu-

ration is well-typed (Lemma 24), (2) well-typedness is pre-

served by reduction (Lemma 25) and (3) a well-typed con-

figuration is safe (Lemma 26). Then, the theorem is easily

proved.

LEMMA 24 (Initial Configuration is Well Typed). If ⊢ D :
Θ and Θ; ∅ ⊢ s⇒ ∅, then Θ; ∅ ⊢D ({⋆ 7→ s} , ∅, ∅, ∅) ok.

LEMMA 25 (Subject Reduction for Configurations). If

Θ;Γ ⊢D Conf ok and Conf ❀ Conf ′, then there exists Γ′

such that Θ;Γ′ ⊢D Conf ′ ok.

LEMMA 26 (Immediate Safety). If Θ;Γ ⊢D Conf ok, then

Safe(Conf).

6. Type inference

We present a constraint-based type inference algorithm for

the type system. The algorithm takes a simply typed pro-

gram, generates a set of constraints for the program to be

well-typed, and then tries to solve it.

The idea of the type inference algorithm is basically the

same as the previous one presented in [13]; reducing con-

straints on types into a system of linear inequalities. How-

ever, in the current type system, a challenge consists in how

to infer an appropriate PTE for each lock and thread ID type.

To this end, we designate type environment variables, which

represent unknowns on PTEs, and use them for building con-

straints on (procurable) type environments.

In the rest of this section, we assume that input to the

type inference algorithm is a simply typed program, and

each bound variable and assert command is annotated with

its simple type; Figure 11 shows the syntax of commands,

function definitions and simple types with those annotations.

Those simple types can be inferred by straightforwardly

adapting standard techniques [11] to our language. We also

assume that bound variables are different from each other.

We write stype(x) for the simple type assigned to x.

6.1 Syntax and semantics of constraints

Figure 12 shows the syntax of constraint language. In or-

der to distinguish the constructors of expressions in the con-

/ ∗ ∅ ∗ / let p = malloc() in
/ ∗ p : 0 ref1 ∗ / let q = malloc()) in

/ ∗ p : 0 ref1, q : 0 ref1 ∗ / let l = newlock() in
/ ∗ p : 0, q : 0 ref1, l : (Γl, 0) lock1 ∗ / let c = fork(loop(p, q, l)) in

/ ∗ p : 0, q : 0 ref0.5, l : (Γl, 0) lock0.5, c : Γ 1
2
tid1 ∗ / loop(p, q, l);

/ ∗ p : 0, q : 0 ref0.5, l : (Γl, 0) lock0.5, c : Γ 1
2
tid1 ∗ / wait(c);

/ ∗ p : 0, q : 0 ref1, l : (Γl, 0) lock1 , c : Γ 1
2
tid0 ∗ / freelock(l);

/ ∗ p : 0 ref1 , q : 0 ref1, l : (Γl, 0) lock0 , c : Γ 1
2
tid0 ∗ / free(p);

/ ∗ p : 0 , q : 0 ref1, l : (Γl, 0) lock0, c : Γ 1
2
tid0 ∗ / free(q)

/ ∗ p : 0, q : 0 , l : (Γl, 0) lock0, c : Γ 1
2
tid0 ∗ /

Figure 9. Typing example.

⊢ D : Θ P (Conf) = {t1 7→ s1, . . . , tn 7→ sn} Θ;Γi ⊢ si ⇒ Γ′
i for each i ∈ {1, . . . , n}

ti = ⋆ implies empty(Γ′
i) Γ = Γ1 + · · ·+ Γn ConOwn(Conf ,Γ) acyclic(t̃, Γ̃′, R)

For any x ∈ dom(R(Conf)) such that R(Conf)(x) = ti,
Γ′
i = PTE(Γ(x)) + Γ′′ and empty(Γ′′) for some Γ′′

Θ;Γ ⊢D Conf ok
(T-CONFIG)

Figure 10. Typing rule for configurations.

s ::= . . . | let x : a = y in s
| let x = null in s
| asserta(x = y)

d ::= f(x̃ : ã) = s
a (Simple types) ::= ref | lock | tid

Figure 11. Revised syntax for type inference. (Only ex-

tended or overridden parts are presented.)

straint language from the predicates and the operators in-

troduced in the previous section, we put ·̂ on the constraint

language constructors.

q ranges over ownership expressions. ϕ represents an un-

known for an ownership, which is a member of a countably

infinite set OVar. q1 +̂ q2 represents summation of owner-

ships.

τ is the meta-variable for type expressions and represents

a value type that may contain unknowns for ownerships or

type environments. Expressions (ΓΓ, q1) lockq2 , ΓΓ tidq and

(µα.α ref q2) refq1 represent lock types, thread ID types

and reference types respectively. Here, ΓΓ is a type environ-

ment expression (see below). In order to simplify the type

inference algorithm, we fix the shape of reference types;

we deal with only reference types that can be expressed by

recursive type expression (µα.α refq2) refq1 . More con-

cretely, the type expression (µα.α refq2) refq1 represents

a recursive type κ that satisfies κ(ǫ) = q1 and κ(π) = q2
for π ∈ {0}+. We can enhance the power of the type in-

ference algorithm by using more expressive type expression

q ::= f | ϕ | q1 +̂ q2
τ ::= (µα.α refq2) ref q1 | (ΓΓ, q1) lockq2

| ΓΓ tidq

Γ ::= x̃ : τ̃

ΓΓ ::= Γ | γ | [̂ỹ/x̃] γ

c ::= êmpty(τ) | êmpty(Γ \̂ d̂om(γ))
| γ1 =̂ γ2 | q1 =̂ q2 | q1 >̂ q2
| Γ1 =̂ Γ2 +̂ γ | d̂om(γ) ⊆̂ {x̃}

| {x̃} ⊆̂ d̂om(γ)

| d̂om(γ) ⊆̂ d̂om(γ′)

| d̂om(γ) ⊆̂ [̂ỹ/x̃] d̂om(γ′)

Θ ::= f̃ :
˜

(x̃ : τ̃)→ (τ̃ ′)
ϕ ∈ OVar

γ ∈ EVar

Figure 12. Syntax of constraint language.

such as (µα.α refq1)ref q2 . . . refqn for a fixed n, and the

type inference algorithm can be easily adapted for those ex-

pressions.

The meta-variable ΓΓ ranges over the set of type environ-

ment expressions. γ ranges over the countably infinite set

EVar of type environment variables and denotes an un-

known (procurable) type environment. [̂ỹ/x̃] γ represents re-

naming of (procurable) type environment denoted by γ. We

require that both x̃ and ỹ are pairwise distinct sequences.

The meta-variable c represents a constraint. The con-

straint syntax is designed carefully so that it is sufficient for

a reasonably simple type inference. êmpty(τ) expresses

emptiness of τ . γ1 =̂ γ2 expresses equality of γ1 and γ2.

q1 =̂ q2 and q1 >̂ q2 are constraints on ownerships. Note

that the ownership constraints expressible in the constraint

language consist of only linear inequalities on ownership

variables. The constraint Γ1 =̂ Γ2 +̂ γ represents equality

between the type environment denoted by Γ1 and the sum of

Γ2 and γ. êmpty(Γ \̂ d̂om(γ)) expresses that the type envi-

ronment denoted by Γ \̂ d̂om(γ) is empty. d̂om(γ) ⊆̂ {x̃},

d̂om(γ) ⊆̂ d̂om(γ′) and d̂om(γ) ⊆̂ [̂ỹ/x̃] d̂om(γ′) are set-

inclusion constraints among the domains of type environ-

ments. We use a meta-variable C for sets of constraints.

θ, a valuation, ranges over (OVar
fin
→ Q≥0)∪ (EVar

fin
→

TEnv). Here, TEnv is the set of type environments.

Denotational semantics of ownership expressions, type

expressions and type environment expressions are defined

in Figure 13. We write |= C if there is a valuation θ such

that θ |= C.

6.2 Constraint generation

The first step of the type inference algorithm is constraint

generation. Given a program, this phase generates a set of

constraints that make the program well-typed. Before elabo-

rating this phase, we introduce several auxiliary definitions.

DEFINITION 27. rename ovars is a function that takes

an exprssion X and returns a pair X ′, C, where X ′ is

an expression that is obtained by replacing every own-

ership in X with a fresh ownership variable and C is{
ϕi ≥̂ ϕ′

i | (µα.α refϕ′

i
) refϕi

appears in X ′
}

.

The constraint set that rename ovars returns guarantees

the restriction on reference types that κ(π) = 0 implies

κ(π0) = 0 mentioned in Section 5.1.

DEFINITION 28. (x̃:τ̃)|{ỹ} is defined to be xi1 :τi1 , . . . , xin :
τin where {xi1 , . . . , xin} = {x̃} ∩ {ỹ}.

DEFINITION 29. The operator 〈ỹ/x̃〉 is defined as follows.

〈ỹ/x̃〉(µα.α ref q2) refq1 = (µα.α ref q2) ref q1
〈ỹ/x̃〉(Γ, q1) lockq2 = ((〈ỹ/x̃〉Γ), q1) lockq2

〈ỹ/x̃〉Γ tidq = (〈ỹ/x̃〉Γ) tidq

〈ỹ/x̃〉(x1 : τ1, . . . , xn : τn) =
(x1 : 〈ỹ/x̃〉τ1, . . . , xn : 〈ỹ/x̃〉τn)

〈ỹ/x̃〉(τ1, . . . , τn) =


y1 : τ1,
y2 : 〈y1/x1〉τ2,
y3 : 〈y1, y2/x1, x2〉τ3,
. . . ,
yn : 〈y1, . . . , yn−1/x1, . . . , xn−1〉τn




〈ỹ/x̃〉γ = [̂ỹ/x̃] γ

〈ỹ/x̃〉 [̂ỹ′/x̃′] γ = ([̂ỹ/x̃] ◦ [̂ỹ′/x̃′])γ.

Here, [̂ỹ/x̃] ◦ [̂ỹ′/x̃′] represents the renaming constructor

that corresponds to the composition of [ỹ/x̃] and [ỹ′/x̃′].

The operator 〈ỹ/x̃〉 “pushes” the constructor [̂ỹ/x̃] as inward

as possible. It also serves for creating pre/post type envi-

ronments of a function call from a sequence of the types

of function arguments; observe the correspondence between

the definition of 〈ỹ/x̃〉(τ1, . . . , τn) above and the second and

the third premises of T-APP in Figure 6.

τ1
.
= τ2 (and ΓΓ1

.
= ΓΓ2), a set of constraints that make

τ1 equal to τ2 (and ΓΓ1 equal to ΓΓ2, respectively) are defined

in Figure 14. The constraints also include those on domains

of type environment expressions. Γ1
.
= Γ2 + Γ3 is a set of

constraints that make Γ1 equal to Γ2 + Γ3, which is defined

below.

Note that, in the cases of γ1
.
= [̂ỹ/x̃] γ2, [̂ỹ/x̃] γ1

.
= ΓΓ

and Γ
.
= [̂ỹ/x̃] γ, creating 〈x̃/ỹ〉 is legitimate because x̃

and ỹ are both pairwise distinct sequences. Note also that

the definition of γ
.
= Γ and Γ

.
= γ are a little compli-

cated so that the generated conforms the syntax of the con-

straint language; we generate a type environment Γ′ from

Γ, generate constraints that guarantee empty(Γ′) and gen-

erate Γ =̂ Γ′ + γ that effectively expresses Γ = γ given

empty(Γ′).
τ1 + τ2 (N.B., no ·̂ on +) is a pair (τ, C) where τ is the

sum of τ1 and τ2, and C is constraints for the sum to be

well-defined. Γ1 + Γ2 is also defined accordingly.

DEFINITION 30. τ1+τ2 and Γ1+Γ2 are defined as follows.

(µα.α ref q2) refq1 + (µα.α refq′
2
) ref q′

1
=

((µα.α refq′
1
+̂q′

2
) refq1+̂q2

, ∅)

(ΓΓ, q1) lockq2 + (ΓΓ′, q′1) lockq′
2
=

((Γ, q1 +̂ q′1) lockq2+̂q′
2
, (ΓΓ

.
= ΓΓ′))

ΓΓ tidq + ΓΓ′ tidq′ =
(Γ tidq1+̂q′

1
, (ΓΓ

.
= ΓΓ′))

(x̃ : τ̃ (1), ỹ : τ̃ (2)) + (ỹ : τ̃ (3), z̃ : τ̃ (4)) =

((x̃ : τ̃ (1), ỹ : τ̃ ′, z̃ : τ̃ (3)),
⋃

C̃) where

x̃ ∩ ỹ = ỹ ∩ z̃ = z̃ ∩ x̃ = ∅

τ̃ ′, C̃ = τ̃ (2) + τ̃ (3).

templatex(a) is a value type whose ownership and PTE

part are left unknown.

DEFINITION 31. Define templatex(a) as follows:

templatex(ref) = (µα.α refϕ2
) refϕ1

where ϕ1 and ϕ2 are fresh.

templatex(lock) = (γx, ϕ1) lockϕ2

where ϕ1 and ϕ2 are fresh.

templatex(tid) = γx tidϕ

where ϕ is fresh.

In the definition above, γx is the type environment variable

designated for the variable x. (See Remark 35 below.)

domtyp(τ) returns the expression that corresponds to the

domain of PTE inside τ if exists.

[[f]]θ = f [[ϕ]]θ = θ(ϕ) [[q1 +̂ q2]]θ = [[q1]]θ + [[q2]]θ [[q1 −̂ q2]]θ = [[q1]]θ − [[q2]]θ

[[(ΓΓ, q1) lockq2]]θ = ([[ΓΓ]]θ, [[q1]]θ) lock[[q2]]θ
[[ΓΓ tidq]]θ = [[ΓΓ]]θ tid[[q]]θ

[[(µα.α refq2) ref q1]]θ = κ where κ(ε) = [[q1]]θ and κ(0π) = [[q2]]θ for any π

[[(x̃ : τ̃)]]θ = (x̃ : [̃[τ]]θ) [[γ]]θ = θ(γ) [[[̂ỹ/x̃] γ]]θ = [ỹ/x̃][[γ]]θ

[[(x̃ : τ̃)→ (τ̃ ′)]]θ = (x̃ : [[τ̃]]θ)→ ([[τ̃ ′]]θ)
[[Θ]]θ = {f 7→ [[Θ(f)]]θ}f∈dom(Θ)

θ |= êmpty(τ) iff. empty([[τ]]θ)

θ |= êmpty(Γ \̂ d̂om(γ)) iff. empty([[Γ]]θ\dom([[γ]]θ))

θ |= Γ1 =̂ Γ2 +̂ γ iff.
[[Γ1]]θ = [[Γ2]]θ + [[γ]]θ and

dom([[Γ1]]θ) = dom([[Γ2]]θ)
θ |= γ1 =̂ γ2 iff. [[γ1]]θ = [[γ2]]θ
θ |= q1 =̂ q2 iff. [[q1]]θ = [[q2]]θ
θ |= q1 ≥̂ q2 iff. [[q1]]θ > [[q2]]θ

θ |= d̂om(γ) ⊆̂ {x̃} iff. dom([[γ]]θ) ⊆ {x̃}

θ |= {x̃} ⊆̂ d̂om(γ) iff. {x̃} ⊆ dom([[γ]]θ)

θ |= d̂om(γ) ⊆̂ d̂om(γ′) iff. dom([[γ]]θ) ⊆ dom([[γ′]]θ)

θ |= d̂om(γ) ⊆̂ [̂ỹ/x̃] d̂om(γ′) iff. dom([[γ]]θ) ⊆ dom([[[̂ỹ/x̃] γ′]]θ)
θ |= C iff. θ |= c for every c ∈ C

Figure 13. Denotation of constraint language expressions.

((µα.α refq2) refq1
.
= (µα.α ref q′

2
) refq′

1
) = {q1 =̂ q′1, q2 =̂ q′2}

((ΓΓ, q1) lockq2

.
= (ΓΓ′, q′1) lockq′

2
) = (ΓΓ

.
= ΓΓ′) ∪ {q1 =̂ q′1, q2 =̂ q′2}

(ΓΓ tidq
.
= ΓΓ′ tidq′) = (ΓΓ

.
= ΓΓ′) ∪ {q =̂ q′}

((x̃ : τ̃)
.
= (x̃ : τ̃ ′)) =

⋃
i(τi

.
= τ ′i)

(γ1
.
= γ2) =

{
γ1 =̂ γ2, d̂om(γ1) ⊆̂ d̂om(γ2), d̂om(γ2) ⊆̂ d̂om(γ1)

}

(γ1
.
= [̂ỹ/x̃] γ2) =

{
γ1 =̂ [̂ỹ/x̃] γ2, d̂om(γ1) ⊆̂ [̂ỹ/x̃] d̂om(γ2), d̂om(γ2) ⊆̂ [̂x̃/ỹ] d̂om(γ1)

}

([̂ỹ/x̃] γ1
.
= ΓΓ) = (γ1

.
= 〈x̃/ỹ〉ΓΓ)

(Γ
.
= [̂ỹ/x̃] γ) = (γ

.
= 〈x̃/ỹ〉Γ)

(γ
.
= Γ) = (Γ

.
= γ) = C1 ∪ C2 ∪ C3 where Γ′, C1 = rename ovars(Γ)

C2 =
{
êmpty(Γ′(x)) | x ∈ dom(Γ′)

}

C3 =
{
Γ =̂ Γ′ + γ, d̂om(γ) ⊆̂ dom(Γ), dom(Γ) ⊆̂ d̂om(γ)

}

Γ1
.
= Γ2 + Γ3 = C1 ∪ C2 where Γ′, C1 = Γ2 + Γ3 and C2 = (Γ1

.
= Γ′)

Figure 14. Definitions of τ1
.
= τ2 and ΓΓ1

.
= ΓΓ2 and Γ1

.
= Γ2 + Γ3.

DEFINITION 32. domtyp(τ) is defined as follows.

domtyp((µα.α ref q2) refq1) = ∅
domtyp((ΓΓ, q1) lockq2) = domtyp(ΓΓ)
domtyp(ΓΓ tidq) = domtyp(ΓΓ)

domtyp((x̃ : τ̃)) = {x̃}

domtyp(γ) = d̂om(γ)

domtyp([̂ỹ/x̃] γ) = [̂ỹ/x̃] d̂om(γ)

Constraint set wfarg(x1 :τ1, . . . , xn :τn) is used for well-

formedness of function argument types.

DEFINITION 33. Let wfarg(x1 : τ1, . . . , xn : τn) be the con-

straint set



domtyp(τ1) ⊆̂ ∅,

domtyp(τ2) ⊆̂ {x1} ,

domtyp(τ3) ⊆̂ {x1, x2} ,
. . . ,

domtyp(τn) ⊆̂ {x1, . . . , xn−1} .





We write wfarg((x̃:τ̃)→ (τ̃ ′)) for wfarg(x̃:τ̃)∪wfarg(x̃:τ̃ ′)
and wfarg(Θ) for

⋃
f∈dom(Θ) wfarg(Θ(f)).

The constraint generation algorithm C is defined in Fig-

ures 15 and 16. The core of the algorithm takes a function

type environment Θ, a command s and a post type environ-

ment Γpost as input, and returns a pre type environment Γpre

C(Θ, s,Γpost) = (Γpre , C)

C(Θ, skip,Γpost) = (Γpost , ∅)
C(Θ, s1; s2,Γpost) = (Γpre , C1 ∪ C2) where

Γ′, C1 = C(Θ, s2,Γpost)
Γpre , C2 = C(Θ, s1,Γ

′)
C(Θ, let x : a = y in s,Γpost) = (Γpre , C1 ∪ C2 ∪ C3) where

τ = templatex(a)
Γ′, C1 = C(Θ, s, (Γpost , x : τ))

τ ′, C2 = (Γ′(x) + Γ′(y))

C3 =
{
êmpty(τ)

}

Γpre = (Γ′\ {x, y} , y : τ ′)
C(Θ, let x = null in s,Γpost) = (Γpre , C) where

Γ′, C = C(Θ, s, (Γpost , x : (µα.α ref0) ref0))
Γpre = Γ′\ {x}

C(Θ, f(ỹ),Γpost) = (Γpre , C1 ∪ C2 ∪ C3 ∪ C4) where

(x̃ : τ̃)→ (τ̃ ′) = Θ(f)
Γ′, C1 = rename ovars(Γpost)
Γpre , C2 = rename ovars(Γpost)

C3 = (Γpost
.
= 〈ỹ/x̃〉τ̃ ′ + Γ′)

C4 = (Γpre
.
= 〈ỹ/x̃〉τ̃ + Γ′)

C(Θ, let x = malloc() in s,Γpost) = (Γpre , C1 ∪ C2) where

Γ′, C1 = C(Θ, s, (Γpost , x : (µα.α ref0) ref0))
C2 = (Γ′(x)

.
= (µα.α ref0) ref1)

Γpre = Γ′\ {x}
C(Θ, free(x),Γpost) = (Γpre , C) where

Γpre = Γpost [x 7→ (µα.α ref0) ref1]
C = (Γpost (x)

.
= (µα.α ref0) ref0)

C(Θ, let x = ∗y in s,Γpost) = (Γpre , C1 ∪ C2) where

ϕ,ϕ1, ϕ2 are fresh

Γ′, C1 = C(Θ, s, (Γpost , x : (µα.α ref0) ref0))

C2 = (Γ′(x)
.
= (µα.α refϕ) refϕ) ∪ (Γ′(y)

.
= (µα.α refϕ2

) refϕ1
) ∪

{
ϕ1 >̂ 0, ϕ1 ≥̂ ϕ2

}

Γpre = (Γ′\ {x})[y 7→ (µα.α refϕ+̂ϕ2
) refϕ1

]

C(Θ, ∗y ← x,Γpost) = (Γpre , C) where

ϕ1, ϕ2, ϕ3 are fresh

C = (Γpost (x)
.
= (µα.α refϕ3

) refϕ2
) ∪ (Γpost (y)

.
= (µα.α refϕ1

) ref1) ∪
{
ϕ2 ≥̂ ϕ3

}

Γpre = Γpost [y 7→ (µα.α ref0) ref1][x 7→ (µα.α refϕ1+̂ϕ3
) refϕ1+̂ϕ2

]

C(Θ, ifnull(x) then s1 else s2,Γpost) = (Γ2, C1 ∪ C2 ∪ C3) where

ϕ1 and ϕ2 are fresh

Γ1, C1 = C(Θ, s1,Γpost)
Γ2, C2 = C(Θ, s2,Γpost)

C3 = (Γpost (x)
.
= (µα.α refϕ2

) refϕ1
) ∪ (Γ1\ {x}

.
= Γ2\ {x}) ∪

{
ϕ1 ≥̂ ϕ2

}

C(Θ,asserta(x = y),Γpost) = (Γpre , C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5) where

τ ′1, τ
′
2 = Γpost (x),Γpost (y)

τ ′, C1 = τ ′1 + τ ′2
τ1, C2 = rename ovars(τ ′1)
τ2, C3 = rename ovars(τ ′2)

τ, C4 = τ1 + τ2
C5 = (τ

.
= τ ′)

Γpre = Γ[x 7→ τ1, y 7→ τ2]

C(Θ,assert(x = ∗y),Γpost) = (Γpre , C1 ∪ C2) where

ϕ1, ϕ2, ϕ, ϕ
′
2, ϕ

′ are fresh

C1 = (Γpost (x)
.
= (µα.α refϕ) refϕ) ∪ (Γpost (y)

.
= (µα.α refϕ2

) refϕ1
) ∪

{
ϕ1 >̂ 0, ϕ1 >̂ ϕ2

}

Γpre = Γ[x 7→ (µα.α refϕ′) refϕ′ , y 7→ (µα.α refϕ′

2
) refϕ1

]

C2 =
{
ϕ +̂ ϕ2 =̂ ϕ′ +̂ ϕ′

2

}

Figure 15. Constraint generation algorithm (cases for sequential commands).

C(Θ, s,Γpost) = (Γpre , C)

C(Θ, let x = newlock() in s,Γpost) = (Γpre , C1 ∪ C2 ∪ C3) where

Γ′, C1 = C(Θ, s, (Γpost , x : (γx, 0) lock0))
Γpre , C2 = rename ovars(Γpost)

C3 =
{
Γpre =̂ (Γ′\ {x}) +̂ γx, d̂om(γx) ⊆̂ dom(Γpost)

}
∪ (Γ′(x)

.
= (γx, 0) lock1)

C(Θ, freelock(x),Γpost) = (Γpre , C1 ∪ C2 ∪ C3) where

Γpre , C1 = rename ovars(Γpost)
C2 = (Γpre(x)

.
= (γx, 0) lock1)

C3 =
{
Γpost =̂ Γpre [x 7→ (γx, 0) lock0] +̂ γx

}

C(Θ,acq(x),Γpost) = (Γpre , C1 ∪ C2 ∪ C3) where

Γpre , C1 = rename ovars(Γpost)
ϕ is fresh

C2 = (Γpre(x)
.
= (γx, 0) lockϕ)

C3 =
{
Γpost =̂ Γpre [x 7→ (γx, 1) lockϕ] +̂ γx, ϕ >̂ 0

}

C(Θ, rel(x),Γpost) = (Γpre , C1 ∪ C2 ∪ C3) where

Γpre , C1 = rename ovars(Γpost)
ϕ is fresh

C2 = (Γpost (x)
.
= (γx, 0) lockϕ)

C3 =
{
Γpre =̂ Γpost [x 7→ (γx, 1) lockϕ] +̂ γx, ϕ >̂ 0

}

C(Θ, let x = fork(s1) in s2,Γpost) = (Γpre , C1 ∪ · · · ∪ C5) where

Γ′
post , C1 = rename ovars(Γpost |FV(s1))

Γ1, C2 = C(Θ, s1,Γ
′
post)

Γ2, C3 = C(Θ, s2, (Γpost , x : γx tid0))
Γpre , C4 = (Γ1 + Γ2\ {x})

C5 =
{
FV(s1) ⊆̂ d̂om(γx), d̂om(γx) ⊆̂ d̂om(Γpost), êmpty(Γ′

post \̂ d̂om(γx))
}

C(Θ,wait(x),Γpost) = (Γpre , C1 ∪ C2 ∪ C3) where

Γpre , C1 = rename ovars(Γpost)
C2 = (Γpre(x)

.
= γx tid1)

C3 =
{
Γpost =̂ (Γpre\ {x} , x : γx tid0) +̂ γx

}

C(D) = (Θ, C)

C({fi(xi1 : ai1, . . . , ximi
: aimi

) = si}i) = (Θ,
⋃

i Ci) where

τij = templatexij
(aij) for each i and for each j ∈ {1, . . . ,mi}

τ ′ij = templatexij
(aij) for each i and for each j ∈ {1, . . . ,mi}

Θ = (fi : (x̃i : τ̃i)→ (τ̃ ′i))i
Ci = C(Θ, fi(x̃i : ai) = si) ∪ wfarg(Θ(fi)) for each i

C(Θ, f(x̃) = s) = C

C(Θ, f(x̃) = s) = C where

(x̃ : τ̃)→ (τ̃ ′) = Θ(f)

τ̃ ′′, C̃ = C(Θ, s, x̃ : τ̃ ′)

C̃ ′ =
⋃

i(τ
′′
i

.
= τi)

C =
⋃
Ci ∪

⋃
C ′

i

C(D, s) = C

C(D, s) = C1 ∪ C2 where

Θ, C1 = C(D)
∅, C2 = C(Θ, s, ∅)

Figure 16. Constraint generation algorithm (cases for concurrency-related commands).

and a set of constraints C. The way of deriving C from the

typing rules in Section 5 is standard. We add explanation to

several non-trivial cases.

Case s = let x : a = y in s0: The algorithm creates a fresh

type expression τ from the simple type annotation a,

extends Γpost with x : τ and recursively passes it to

C with the subcommand. From the returned pre type

environment Γ′, the algorithm produces the type of y,

Γ′(x) + Γ′(y), in the pre type environment of the whole

input Γpre . Note that, from the syntax of the constraint

language, Γ′ in Γ′(x),Γ′(y) and Γ′\ {x, y} is neither γ

nor [̂ỹ/x̃] γ.

Case s = f(ỹ): The algorithm creates two type environ-

ments Γ′ and Γpre from Γpost by rename ovars . Opera-

tor 〈x̃/ỹ〉 is used to generate the constraints on pre/post

type environments from the types of function arguments.

Case s = let x = ∗y in s0: The idea is the same as the pre-

vious case; create a fresh type expression, extend Γpost ,

pass it to the recursive call and calculate the type of x in

Γpre from the output of the recursive call. However, in

the cases in which reference types are involved, we have

to be aware that the type of x in the returned Γ′ is of the

shape (µα.α refϕ) refϕ due to our assumption on the

shape of reference types.

Case s = let x = newlock() in s0: We need to express

the conditions on type environments in T-NEWLOCK

in this case. To do that, we generate the constraint

Γpre =̂ (Γ′\ {x}) +̂ γx. γx is the type environment vari-

able designated for the variable x.

Case s = let x = fork(s1) in s2: The algorithm restricts

the domain of Γpost with FV(s1), renames its owner-

ship part and passes it to the recursive call for s1. The

passed type environment Γ′ subjects to êmpty(Γ′
post \̂

d̂om(γx)); with this constraint and the following lemma,

it is guaranteed that the conditions in T-FORK are met.

LEMMA 34. If Θ;Γ1 ⊢ s ⇒ Γ2, then dom(Γ1) =
dom(Γ2).

If Θ;Γ1 ⊢ s⇒ Γ2 and empty(τ) and x /∈ FV(Θ)∪
FV(Γ1)∪FV(s)∪FV(Γ2), then Θ;Γ1, x : τ ⊢ s⇒
Γ2, x : τ .

Proof Sketch Both follow from induction on the deriva-

tion of Θ;Γ1 ⊢ s⇒ Γ2. ⊓⊔

REMARK 35. The type inference algorithm makes use of

the property of the type system that, under the assumption

that a bound variable is different from each other, the PTE

assigned to each lock/pid-typed variable is globally unique

(i.e., no flow-sensitivity on PTE). Thanks to this property,

the definition of templatex(lock) and templatex(tid) can

assign the unique type environment variable for each x. This

design decision simplifies the type inference algorithm.

The following lemma guarantees soundness of this step;

it says that if a constraint set C generated by the algorithm C
satisfies |= C, then the input program is indeed well-typed.

LEMMA 36 (Soundness of C). If C(Θ,Γpost , s) = (Γpre , C)
and θ |= C, then [[Θ]]θ; [[Γpre]]θ ⊢ s⇒ [[Γpost]]θ.

6.3 Constraint reduction

The next step of the type inference is to find a valuation θ
such that θ |= C holds for the constraint set C returned

by C. This constraint reduction phase first determines the

domain of each type environment variable and decomposes

the constraints into ones on ownership variables. Then, the

resulting constraints are solved by a linear inequality solver.

Step 1: Deciding the domain of type environment vari-

ables The constraint reduction phase first reduces those

set-inclusion constraints (d̂om(γ) ⊆̂ {x̃}, {x̃} ⊆̂ d̂om(γ),

d̂om(γ) ⊆̂ d̂om(γ′) and d̂om(γ) ⊆̂ [̂ỹ/x̃] d̂om(γ′)) by cal-

culating the domain of each type environment variable and

instantiating it with a type environment template with fresh

ownership variables. In calculating the domain, we calculate

particularly the greatest domain allowed to each type envi-

ronment variable. This is justified by the observation that,

intuitively, taking the larger domain for a type environment

variable is “safe” estimation; even if the domain turns out to

be larger than necessary, the types of the redundant variables

can be made empty in the following phases.

It is in fact possible to calculate the greatest domain

by a standard fixed-point iteration because each d̂om(γ)
is either bound from above by a monotone expression, or,

from below by a set of program variables. Concretely, such

an algorithm starts from the assignment
{
d̂om(γi) 7→ V

}
i
,

where V is the (finite) set of all the variable names that

appear in the input program, and update the assignment

according to the constraints of the form d̂om(γ) ⊆̂ {x̃},

d̂om(γ) ⊆̂ d̂om(γ′) and d̂om(γ) ⊆̂ [̂ỹ/x̃] d̂om(γ′) until it

reaches the fixed-point. Then, the algorithm checks whether

the obtained assignment satisfies {x̃} ⊆̂ d̂om(γ) and returns

the assignment.

Figure 17 presents the definition of the algorithm R. In

the definition, solve dom(C) returns the map

{
d̂om(γi) 7→ {x̃i}

}
i

that gives the greatest solution of the set-inclusion con-

straints C as mentioned above. In addition to applying sub-

stitution, θC simplifies the constraints if possible. For exam-

ple, if

C =

{
êmpty((γx, q1) lockq2),
(x : (γx, q3) lockq4) =̂ (x : (γx, q5) lockq6) +̂ γy

}

θ =

{
γx 7→ (y : (µα.α ref q8) refq7),
γy 7→ (x : (γx, q9) lockq10)

}
,

R(C) = C ′ where

C1 =
{
c ∈ C | c is of the form d̂om(γ) ⊆̂ X

}

C2 =
{
c ∈ C | c is of the form {x̃} ⊆̂ d̂om(γ)

}

F = solve dom(C1 ∪ C2)
θ = makeval(F)
C ′ = iter(θ, C\(C1 ∪ C2))

makeval(
{
d̂om(γi) 7→ {x̃i}

}
i
) ={

γi 7→ (x̃i : template x̃i
(stype(x̃i)))

}
i

iter(θ, C) = C ′ where

If θC = C then C ′ = C
else C ′ = iter(θ, θC)

Figure 17. Definition ofR.

then

θC =
{

q1 =̂ 0, q2 =̂ 0, q3 =̂ q5 +̂ q9, q4 =̂ q6 +̂ q10
}
.

Lemma 37 guarantees soundness of this phase: the algo-

rithm R does not turn an unsatisfiable constraint set into a

satisfiable one. Completeness is left as future work.

LEMMA 37. If |= R(C), then |= C.

Step 2: Solving linear inequalities After completion of

Step 1, γ does not appear in the constraint set. Moreover,

constraints of the form êmpty(·) have been simplified to

ownership constraints. Thus, the residual constraints consist

of ones of the form q1 =̂ q2 or q1 >̂ q2. From the syntax

of the constraint language, these constraints form a system

of linear inequalities over rational numbers. Thus, we can

decide whether the constraints are satisfiable or not. Note

that, thanks to the use of rational numbers as ownerships, this

step is done in polynomial time on the number of ownership

variables and inequalities.

6.4 Implementation

We have implemented an automated verifier based on the al-

gorithm described in this section. The frontend of the verifier

that is in charge of C and R is implemented with OCaml.

As a linear-inequality solver, we use SMT solver Z3 [5].

The Web interface is available at http://www.fos.kuis.

kyoto-u.ac.jp/~rfukuda/freesafety-con/.

7. Related Work

Terauchi [15] has proposed a type-based race-freedom anal-

ysis based on fractional capabilities. His type system assigns

a fractional permission to each abstract location. Fractional

permissions describe read/write permission to each abstract

location. In order to deal with lock-based synchronization

and fork/join concurrency, his type system associates what

we could call “procurable capabilities” with lock types and

thread ID types; each lock type comes with capabilities

granted by acquiring/releasing the locks and each thread ID

type comes with ones granted by waiting the threads. He also

reported the result of experiment.

Our idea of procurable type environments is inspired by

his type system. An important difference, however, is that

our ownerships also represent obligation to be fulfilled (e.g.,

every lock to be deallocated exactly once before termina-

tion), not only capability. This leads to the difference in the

typing rules for deallocation of resources; his type system

does not exclude programs that deallocate locks twice or

more.

Besides Terauchi’s work [15], the idea of using rational

numbers for representing ownerships has been used in the

area of program analysis [3, 8, 13, 17]. Among them, the

work by Suenaga and Kobayashi [13] and that by Heine and

Lam [8] deal with safe memory deallocation. However, they

only deal with sequential programs. Extension of the previ-

ous techniques, especially one proposed in [13], to concur-

rency is not trivial: it requires, for example, the acyclicity

condition in T-CONFIG, which is not necessary in the se-

quential setting. Type inference, as we have shown, is non-

trivial either due to the presence of procurable type environ-

ments.

Gotsman et al. [6] have proposed an extension of the con-

current separation logic [10] with dynamic creation/disposal

of locks and threads. Though their work does not deal with

safe resource deallocation, it seems that it is not difficult to

adapt their framework to do so. They can treat programs that

store locks and thread IDs to heap, which is currently not al-

lowed in our framework. They also support structures which,

for example, enable a program to create a pair of a memory

cell and a lock guarding the cell. We would need to incorpo-

rate dependent pairs to the type system in order to deal with

such structures. As far as we know, they have not proposed

an automated verification based on their framework yet. It

seems that their framework requires for spawned threads to

terminate with empty ownerships to locks, while ours allow

threads to leave release/lock ownerships.

Calcagno et al. [4] have proposed an automated veri-

fication technique for concurrent programs. They use bi-

abduction to infer resource invariant, a separation logic for-

mula that describes which part of memory is protected by

conditional variables. Our procurable type environments

correspond to their resource invariant. The expressiveness

of concurrent separation logic allows resource invariant to

express more properties than ours (e.g., a pointer not be-

ing null). Their work has not been extended with dynamic

creation of threads nor conditional variables.

Haack et al. [7] have designed a variant of the concur-

rent separation logic for multithreaded Java programs. Their

framework supports fork/join parallelism and re-entrant

monitors. They use fractional permissions to express shar-

ing of a location among several threads. However, it is not

clear whether their logic can be easily adapted also for safe

resource deallocation because it is based on the intuitionistic

version of separation logic. Because intuitionistic separa-

tion logic admits weakening, their logic would allow facts

about the existence of an allocated memory cell to be freely

discarded.

Bornat et al. [2] have extended separation logic to concur-

rency. They use fractional permissions in their assertion lan-

guage to express sharing of locations among threads. They

also support synchronization with conditional variables by

which the logic grants access right to critical regions. This

feature is comparable to our procurable type environments

in the sense that a resource for synchronization (conditional

variables, in their case) is associated with some (fixed) per-

missions to access guarded resources. However, they do not

support dynamic creation of threads.

8. Conclusion

We have proposed a type system based on fractional own-

erships to guarantee safe resource deallocation and race-

freedom in a low-level concurrent language. The type sys-

tem is a non-trivial extension of the previous type system by

Suenaga and Kobayashi [13]. The key ideas of the extension

are (1) to assign ownerships not only to reference types but

also to lock and thread ID types, and (2) to assign procur-

able type environments to lock types and thread ID types to

describe the amount of ownerships granted by or required

for operating values of those types. We have also proposed

a type inference algorithm for the type system. The algo-

rithm reduces a type inference problem into satisfiability of

a system of linear inequalities, which is checked by the SMT

solver Z3.

Incorporating more “real-world” features to our frame-

work is another important future direction. For example, we

need to add C-like structures to our framework so that pro-

grammers can use data structures. This extension could be

done as that in the first author’s previous work [13]. Ex-

tension with pointers to locks is also necessary for deal-

ing with real-world programs. After completing these exten-

sions, we plan to extend FreeSafeTy, the prototype verifier

implemented in the previous work [13], and conduct feasi-

bility study by experiment to observe the scalability of our

technique and how much manual insertion of must-alias an-

notations is needed in reality.

The following program, which is considered to be safe

in our semantics and also typechecks in our type system,

suggests another direction to be pursued:

let x = newlock() in
acq(x); let y = fork(rel(x)) in wait(y); freelock(x).

This program is defined to be erroneous in many thread

libraries including pthreads because the thread that acquires

a lock is different from one that releases the lock. Extending

our framework to exclude more of such bad behaviors that

consist in real-world software is an important task.

In the current paper, the type system excludes all the racy

programs. However, in reality, it is sometimes convenient to

allow some memory cells to be accessed in a racy manner.

Allowing such partially racy programs would be another

interesting future work.

Acknowledgments We are grateful for valuable comments

by the anonymous reviewers. Suenaga is partially sup-

ported by KAKENHI 23·571 and Hakubi Project at Ky-

oto University. Igarashi is partially supported by KAKENHI

23220001.

References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for Java. ACM Trans. Prog.

Lang. Syst., 28(2):207–255, Mar. 2006.

[2] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson.

Permission accounting in separation logic. In Proc. of POPL,

pages 259–270. ACM Press, Jan. 2005.

[3] J. Boyland. Checking interference with fractional permis-

sions. In Proceedings of SAS 2003, volume 2694 of LNCS,

pages 55–72. Springer-Verlag, 2003.

[4] C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive

resource invariant synthesis. In Proceedings of APLAS 2009,

pages 259–274, 2009.

[5] L. De Moura and N. Bjørner. Z3: an efficient SMT solver.

In Proceedings of the Theory and practice of software, 14th

international conference on Tools and algorithms for the

construction and analysis of systems, TACAS’08/ETAPS’08,

pages 337–340. Springer-Verlag, 2008.

[6] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv.

Local reasoning for storable locks and threads. Technical

Report MSR-TR-2007-39, Microsoft Research, 2007.

[7] C. Haack, M. Huisman, and C. Hurlinc. Permission-

based separation logic for multithreaded Java programs.

http://fmt.cs.utwente.nl/files/projects/

VerCors.p1.pdf.

[8] D. L. Heine and M. S. Lam. A practical flow-sensitive and

context-sensitive C and C++ memory leak detector. In Proc.

of PLDI, pages 168–181, 2003.

[9] IEEE. The Open Group Base Specifications Issue

6, IEEE Std 1003.1, 2004 Edition, 2004. http:

//pubs.opengroup.org/onlinepubs/000095399/

basedefs/pthread.h.html.

[10] P. W. O’Hearn. Resources, concurrency, and local reasoning.

Theor. Comput. Sci., 375(1-3):271–307, 2007.

[11] B. C. Pierce. Types and Programming Languages. MIT Press,

2002.

[12] K. Suenaga. Type-based deadlock-freedom verification for

non-block-structured lock primitives and mutable references.

In G. Ramalingam, editor, Programming Languages and Sys-

tems, 6th Asian Symposium, APLAS 2008, Bangalore, India,

volume 5536 of LNCS, pages 155–170. Springer, Dec. 2008.

[13] K. Suenaga and N. Kobayashi. Fractional ownerships for

safe memory deallocation. In Z. Hu, editor, Programming

Languages and Systems, 7th Asian Symposium, APLAS 2009,

volume 5904 of Lecture Notes in Computer Science, pages

128–143. Springer-Verlag, Dec. 2009.

[14] N. Swamy, M. W. Hicks, G. Morrisett, D. Grossman, and

T. Jim. Safe manual memory management in Cyclone. Sci.

Comput. Program., 62(2):122–144, 2006.

[15] T. Terauchi. Checking race freedom via linear programming.

In Proc. of PLDI, pages 1–10, 2008.

[16] M. Tofte and J.-P. Talpin. Region-based memory manage-

ment. Info. Comput., 132(2):109–176, 1997.

[17] K. Ueda. Resource-passing concurrent programs. In Proceed-

ings of 4th International Symposium on Theoretical Aspects of

Computer Science (TACS2001), volume 2215 of LNCS, pages

95–126. Springer-Verlag, 2001.

[18] D. Walker, K. Crary, and J. G. Morrisett. Typed memory

management via static capabilities. ACM Trans. Prog. Lang.

Syst., 22(4):701–771, 2000.

Appendix

A. Proof of Type Soundness (Theorem 21)

To prove the soundness theorem, we first define invariants

for well-typed configuration.

DEFINITION 38. We writeA for the set {R}×Q≥0 ∪{L}×
Q≥0 × Q≥0 ∪ {P} × Q≥0. Sums and multiplication by a

rational number on A are defined as follows.

(R, f1) + (R, f2) = (R, f1 + f2)
(L, f11, f12) + (L, f21, f22) = (L, f11 + f21, f12 + f22)

(P, f1) + (P, f2) = (P, f1 + f2)

f · (R, f ′) = (R, f · f ′)
f · (L, f1, f2) = (L, f · f1, f · f2)

f · (P, f ′) = (P, f · f ′).

These operations on A are pointwise to those on Var
fin
→ A.

Let F1, F2 ∈ Var
fin
→ A. Then,

(F1 + F2)(x) =





F1(x) (x ∈ dom(F1)\dom(F2))
F2(x) (x ∈ dom(F2)\dom(F1))
F1(x) + F2(x)
(x ∈ dom(F1) ∩ dom(F2))

(f · F)(x) = f · F (x).

DEFINITION 39. OwnH(H, v, κ) is defined as follows.

OwnH(H, v, κ)(π) = ∅ (v 6∈ dom(H))
OwnH(H,x, κ ref0)(ε) = ∅
OwnH(H,x, κ reff)(ε) = {x 7→ (R, f)} (f > 0)
OwnH(H,x, κ reff)(0π) = OwnH(H,H(x), κ)(π)

DEFINITION 40. Own(P,H,L, v, τ) is defined as follows.

Own(P,H,L, v, κ) =∑
π∈{0}∗ OwnH(H, v, κ)(π) if v ∈ {null} ∪ dom(H)

Own(P,H,L, x, (Γ, fr) lockfo) =
{x 7→ (L, fr, fo)}+ fo ·Own(P,H,L,R,Γ)
if x ∈ dom(L) and L(x) = ⊥

Own(P,H,L, x, (Γ, fr) lockfo) = {x 7→ (L, fr, fo)}
if x ∈ dom(L) and L(x) = ⊤

Own(P,H,L, x,Γ tidf) = {x 7→ (P, f)} if x ∈ dom(P)
Own(P,H,L, v, τ) = ∅

if v /∈ dom(H) ∪ dom(L) ∪ dom(P) ∪ {null}

Own(P,H,L,R, ∅) = ∅
Own(P,H,L,R, (Γ, x : τ)) =
Own(P,H,L,R,Γ) +Own(P,H,L,R(x), τ)

If
∑

π∈{0}∗ OwnH(H, v, κ)(π) in the definition above does

not converge, Own(P,H,L, v, κ) is not defined.

Intuitively, Own(P,H,L, x, τ)(y) = f represents that

the ownership f on y is held by x of type τ .

DEFINITION 41. We write ti ≺t̃,Γ̃,R tj if there exists x ∈
dom(Γi) such that

• ¬empty(Γi(x)) and

• R(x) = tj .

We often omit “t̃, Γ̃, R” from≺
t̃,Γ̃,R if they are obvious from

contexts.

DEFINITION 42 (Acyclicity). A sequence (t1,Γ1), . . . , (tn,Γn)
of pairs of a variable and a ype environment is acyclic with

respect to R, written acyclic(t̃, Γ̃, R), if t 6≺+

t̃,Γ̃′,R
t for any

t ∈ t̃.

DEFINITION 43. A tuple (P,H,L,R,Γ) is ownership-consistent,

written ConOwn(P,H,L,R,Γ), if the following condi-

tions hold for any x ∈ dom(F) ∪ dom(H) ∪ dom(L) ∪
dom(P) where F = Own(P,H,L,R,Γ):

• F (x) = (R, 1) if x ∈ dom(H)
• F (x) = (L, 0, 1) if x ∈ dom(L) and L(x) = ⊥
• F (x) = (L, 1, 1) if x ∈ dom(L) and L(x) = ⊤
• F (x) = (P, 1) if x ∈ dom(P)
• F (x) is (R, 0), (L, 0, 0) or (P, 0) if x ∈ dom(F)\(dom(H)∪
dom(L) ∪ dom(P)).

Proof of Lemma 24. Straightforward. To see ConOwn(∅, ∅, ∅, ∅, ∅),
notice that

∑
x∈dom(∅) Own(. . .) is ∅. ⊓⊔

LEMMA 44. If Θ;Γ, x : τ ⊢ s ⇒ Γ, x : τ ′ and empty(τ),
then empty(τ ′).

PROOF. Induction on the derivation of Θ;Γ, x : τ ⊢ s ⇒
Γ, x : τ ′. ⊓⊔

LEMMA 45. If Θ;Γ1 ⊢ s⇒ Γ2, then dom(Γ1) = dom(Γ2).

PROOF. Induction on the derivation of Θ;Γ1 ⊢ s⇒ Γ2. ⊓⊔

LEMMA 46 (Weakening). If Θ;Γ1 ⊢ s⇒ Γ2 and wf(Γ1, x:
τ), then Θ;Γ1, x : τ ⊢ s⇒ Γ2, x : τ .

PROOF. Induction on the derivation of Θ;Γ1 ⊢ s⇒ Γ2. ⊓⊔

LEMMA 47. Γ[x 7→ τ] = Γ + (x : τ) if x /∈ dom(Γ).
Specifically, Γ, x : τ = Γ + {x 7→ τ}.

PROOF. Case analysis on x ∈ FV(Γ). If x /∈ FV(Γ),
then Γ[x 7→ τ] = Γ + {x 7→ τ} from Definition 18. Then,

Γ[x 7→ τ] = Γ\ {x}+ (x : τ) holds because Γ\ {x} = Γ.

If x ∈ FV(Γ), then Γ[x 7→ τ] = Γ\ {x} ⊎ {x 7→ τ}.
This is equal to Γ\ {x}+ {x 7→ τ} from Definition 18. ⊓⊔

LEMMA 48. ∅+ Γ = Γ

PROOF. Obvious from the definition of the sum of type

environments. ⊓⊔

LEMMA 49. OwnH(H, v, κ)(π) = ∅ for any π if empty(κ).

LEMMA 50. Own(P,H,L,R, ∅) = ∅.

PROOF. Obvious from the definition of Own. ⊓⊔

LEMMA 51. Own(P,H,L,R,Γ1 + Γ2) =
Own(P,H,L,R,Γ1) +Own(P,H,L,R,Γ2).

PROOF. Induction on the size of dom(Γ1) + dom(Γ2).

• Case |dom(Γ1)+dom(Γ2)| = 0: In this case, Γ1 = Γ2 =
∅. Then,

Own(P,H,L,R, ∅+ ∅) = ∅+Own(P,H,L,R, ∅)
(∵ from Lemma 48 and Definition 38)

= Own(P,H,L,R, ∅) +Own(P,H,L,R, ∅) (∵ Lemma 50).

• Case |dom(Γ1) + dom(Γ2)| > 0:

|dom(Γ1)| = 0: In this case Γ1 = ∅. Thus,

Own(P,H,L,R,Γ1 + Γ2)
= ∅+Own(P,H,L,R,Γ2)

(∵ from Lemma 48 and Definition 38)

= Own(P,H,L,R,Γ1 + Γ1) +Own(P,H,L,R,Γ2)
(∵ from Lemma 50).

|dom(Γ1)| > 0: In this case, there exists Γ′
1, x and τ

such that Γ1 = Γ′
1[x : τ] and x /∈ dom(Γ′

1). Then,

Own(P,H,L,R,Γ1 + Γ2)
= Own(P,H,L,R,Γ′

1[x : τ] +Own(P,H,L,R,Γ2)
= Own(P,H,L,R, (Γ′

1 + (x : τ)) +Own(P,H,L,R,Γ2)
(∵ from Lemma 47)

= Own(P,H,L,R,Γ1 + Γ1) +Own(P,H,L,R,Γ2)
(∵ from Lemma 50).

DEFINITION 52. Type environments Γ ↓S and Γ ↑S , where

S ⊆ Var, are defined as follows.

∅↓S = ∅
(Γ, x : τ)↓S = Γ↓S ({x} ∪ FV(τ)) ∩ S = ∅
(Γ, x : τ)↓S = Γ↓S , x : τ ({x} ∪ FV(τ)) ∩ S 6= ∅

∅ ↑S = ∅
(Γ, x : τ) ↑S = Γ ↑S ({x} ∪ FV(τ)) ∩ S 6= ∅
(Γ, x : τ) ↑S = Γ ↑S , x : τ ({x} ∪ FV(τ)) ∩ S = ∅

(Note that Γ↓S and Γ ↑S are not necessarily well formed.)

LEMMA 53. Γ = Γ↓S +Γ ↑S .

PROOF. Induction on |Γ|. ⊓⊔

LEMMA 54. Suppose ConOwn(P,H,L,R,Γ) and let Sy

be the set {x ∈ dom(R) | R(x) = R(y)} for y ∈ dom(R)∩
dom(Γ) and Γ = Γ1 + · · ·+ Γn. Then,

• If R(y) ∈ dom(P) then Own(P,H,L,R,Γ ↓Sy
) =

{R(y) 7→ (P, 1)}.
• If R(y) ∈ dom(L) and L(R(y)) = ⊥ then Own(P,H,L,R,Γ↓Sy

) = {R(y) 7→ (L, 0, 1)}.
• If R(y) ∈ dom(L) and L(R(y)) = ⊤ then Own(P,H,L,R,Γ↓Sy

) = {R(y) 7→ (L, 1, 1)}.

PROOF. We only prove the first item. The proofs of the other

items are similar.

We have Own(P,H,L,R,Γ) = Own(P,H,L,R,Γ↓Sy

)+Own(P,H,L,R,Γ ↑Sy
) from Lemma 53. We claim that

R(y) /∈ dom(Own(P,H,L,R,Γ ↑Sy
)). Then, Own(P,H,L,R,Γ↓Sy

)(R(y)) = Own(P,H,L,R,Γ)(R(y)) = (P, 1) as re-

quired. To observe R(y) /∈ dom(Own(P,H,L,R,Γ ↑Sy
),

note that, for any Γ′, v and f , Own(P,H,L,R,Γ′)(v) =
(P, f) only if there exists x ∈ dom(R) ∩ dom(Γ′) such that

R(x) = v and Γ′(x) = Γ′′ tidf for some Γ′′ from the defini-

tion of Own. Then, if R(y) belonged dom(Own(P,H,L,R,Γ ↑Sy

)), then there should be x such that x ∈ dom(R) ∩
(dom(Γ)\Sy) and R(x) = R(y), which is in fact impos-

sible from the definition of Sy .

⊓⊔

LEMMA 55. The following statements are equivalent:

1. Θ;Γ1 ⊢ E[s]⇒ Γ2.

2. Θ;Γ1 ⊢ s ⇒ Γ3 and Θ;Γ3 ⊢ E[skip] ⇒ Γ2 for some

Γ3.

PROOF. Induction on the structure of E. ⊓⊔

DEFINITION 56 (κ-reachability). Paths(h1, H, κ, h2) is

the set

{
π ∈ {0}∗

H |π|(h1) = h2 and κ(π′) > 0
for any prefix π′ of π.

}

If Paths(h1, H, κ, h2) 6= ∅, then we say h2 is κ-reachable

from h1 on H .

LEMMA 57. If h1 6= h2, then h2 is κ-reachable from H(h1)
on H if h2 is κ reff -reachable from h1 for some f > 0.

PROOF. Suppose h2 is κ reff -reachable from h1 for some

f > 0. Then, there exists π1 such that H |π1|(h1) = h2

and κ(π2) > 0 for any prefix π2 of π1. Conduct case-

analysis on π1. From h1 6= h2, π1 cannot be an empty

sequence. Suppose π1 = π30. Then, H |π30|(h1) = h2

implies H |π3|(H(h1)) = h2. Thus, it suffices to show that,

for any prefix π4 of π3, κ(π4) > 0, which easily follows

from the fact that any prefix π3 is a prefix of π1.

Suppose h2 is not κ reff -reachable from h1 for some

f > 0 but h2 is κ-reachable from H(h1). Then, there exists

π1 such that H |π1|(H(h1)) = h2 and κ(π2) > 0 for any pre-

fix π2 of π1. We show that 0π1 ∈ Paths(h1, H, κ reff , h2).
This follows from the following reasoning:

• H |0π1|(h1) = h2, which follows from H |0π1|(h1) =
H |π1|(H(h1)), and

• (κ reff)(π3) > 0 for any prefix π3 of 0π1, which follows

from the following case analysis.

If π3 is an empty sequence, then (κ reff (π3) = f >
0.

Otherwise, π3 = 0π4 for some π4, thus (κ reff)(π3) =
(κ reff)(0π4) = κ(π4. Here, because π4 is a prefix

of π1, we have κ(π4) > 0.

⊓⊔

LEMMA 58 (Obliviousness). 1. Own(P,H,L,R,Γ) =
Own(P ′, H, L,R′,Γ) if R ⊆ R′ and either (1) for

any x ∈ dom(Γ), R(x) ∈ dom(P) ∪ dom(P ′) implies

R(x) ∈ dom(P) ∩ dom(P ′) or (2) empty(Γ).

2. Own(P,H,L,R,Γ) = Own(P ′, H, L′, R′,Γ) if dom(P) =
dom(P ′) and R ⊆ R′ and either (1) for any x ∈
dom(Γ), R(x) ∈ (dom(L) ∪ dom(L′)) and z /∈
FV(Γ(x)) imply L(R(z)) = L′(R(z)) or (2) empty(Γ).

3. OwnH(H[h 7→ v′], h′, κ) = OwnH(H[h 7→ v], h′, κ)
if h is not κ-reachable from h′ and v 6= v′.

4. Own(P,H[h 7→ v′], L,R,Γ) = Own(P ′, H[h 7→
v], L,R′,Γ) if dom(P) = dom(P ′) and R ⊆ R′ and

v 6= v′ and, either (1) for any x ∈ dom(Γ), R(x) ∈
dom(H)\ {h} and h is not Γ(x)-reachable from R(x)
on H , or (2) empty(Γ).

PROOF.

1. We show

Own(P,H,L,R(x),Γ(x)) = Own(P ′, H, L,R′(x),Γ(x))

for any x ∈ dom(Γ)∩dom(R). The only non-trivial case

is R(x) ∈ dom(P). In this case, we have Γ(x) = Γ′ tidf

and Own(P,H,L,R(x),Γ(x)) = {R(x) 7→ (P, f)}
and, from R(x) ∈ dom(P) ∩ dom(P ′),

Own(P ′, H, L,R′(x),Γ(x)) = {R′(x) 7→ (P, f)}

for some f . The conclusion follows from R(x) = R′(x)
because x ∈ dom(R) and R ⊆ R′.

2. Let Γ1 ≺ Γ2 be the least relation that satisfies the follow-

ing rules:
Γ2(x) = (Γ1, f1) lockf2

Γ1 ≺ Γ2

Γ2(x) = (Γ′
1, f1) lockf2 Γ1 ≺ Γ′

1

Γ1 ≺ Γ2

Intuitively, Γ1 ≺ Γ2 represents that Γ1 appears in Γ2

as a procurable environment of a lock type. It should

be easy to observe that ≺ is well-founded. We show

Own(P,H,L,R(x),Γ(x)) = Own(P ′, H, L′, R′(x),Γ(x))
for any x ∈ dom(Γ) ∩ dom(R) by well-founded induc-

tion on ≺. Suppose R(x) ∈ dom(L). (Otherwise, the

conclusion easily follows.) Then, Γ(x) = (Γ′, f1) lockf2

for some Γ′, f1 and f2, and,

Own(P,H,L,R(x),Γ(x)) =



{R(x) 7→ (L, f1, f2)}+ f2 ·Own(P,H,L,R,Γ′)
if L(R(x)) = ⊥

{R(x) 7→ (L, f1, f2)}
if L(R(x)) = ⊤,

and

Own(P ′, H, L′, R′(x),Γ(x)) =



{R′(x) 7→ (L, f1, f2)}+ f2 ·Own(P ′, H, L′, R′,Γ′)
if L′(R′(x)) = ⊥

{R′(x) 7→ (L, f1, f2)}
if L′(R′(x)) = ⊤.

We have R(x) = R′(x) from x ∈ dom(R) and R ⊆
R′, and L(R(x)) = L′(R′(x)) from assumption. Con-

duct case-analysis on L(R(x)). The case L(R(x)) =
L′(R′(x)) = ⊤ is easy. Otherwise, from Γ′ ≺ Γ and

I.H., Own(P,H,L,R,Γ) = Own(P ′, H, L′, R′,Γ′)
follows.

3. We show OwnH(H[h 7→ v′], h′, κ)(π) = OwnH(H[h 7→
v], h′, κ)(π) if h is not κ-reachable from h′ on H[h 7→ v′]
by induction on π. The base case is easy. Suppose

π = 0π′ for some π′. Then, from the definition of

OwnH,

OwnH(H[h 7→ v′], h′, κ)(π) =


∅ if h′ /∈ dom(H) ∪ {h}
OwnH(H[h 7→ v′], (H[h 7→ v′])(h′), κ′)(π′)

if h′ ∈ dom(H) ∪ {h} and κ = κ′ reff for some f

and

OwnH(H[h 7→ v], h′, κ)(π) =


∅ if h′ /∈ dom(H) ∪ {h}
OwnH(H[h 7→ v], (H[h 7→ v])(h′), κ′)(π′)

if h′ ∈ dom(H) ∪ {h} and κ = κ′ reff for some f .

If h′ /∈ dom(H)∪{h}, then the conclusion is immediate.

Suppose h′ ∈ dom(H) ∪ {h} and κ = κ′ reff for some

f . Then,

OwnH(H[h 7→ v′], h′, κ)(π) =
OwnH(H[h 7→ v′], (H[h 7→ v′])(h′), κ′)(π′).

Then, from Lemma 57, h is not κ′-reachable from

(H[h 7→ v′])(h′) on H[h 7→ v′]. Thus, from I.H.,

OwnH(H[h 7→ v′], (H[h 7→ v′])(h′), κ′)(π′) =
OwnH(H[h 7→ v], (H[h 7→ v′])(h′), κ′)(π′).

Here, note that we have either (1) h 6= h′ or (2)

empty(κ). Indeed, if h = h′, then, because h is not

κ-reachable from h′, κ(ǫ) = 0. This implies empty(κ).
(Recall that, for any π′, κ(ππ′) = 0 if κ(π) = 0.) If

h 6= h′, then H[h 7→ v′])(h′) = (H[h 7→ v′])(h′),
thus OwnH(H[h 7→ v], (H[h 7→ v′])(h′), κ′)(π′) =
OwnH(H[h 7→ v], (H[h 7→ v])(h′), κ′)(π′), which

concludes the case. If empty(κ), then empty(κ′), thus

the conclusion follows from Lemma 49.

4. It suffices to show that, for any x ∈ dom(Γ) ∩ dom(R),
Own(P,H[h 7→ v′], L,R(x),Γ(x)) = Own(P,H[h 7→

v], L,R(x),Γ(x)). The only non-trivial case is R(x) ∈
{null} ∪ dom(H). In this case,

Own(P,H[h 7→ v′], L,R(x),Γ(x)) =∑
π∈{0}∗ OwnH(H[h 7→ v′], R(x),Γ(x)),

and

Own(P,H[h 7→ v], L,R(x),Γ(x)) =∑
π∈{0}∗ OwnH(H[h 7→ v], R(x),Γ(x)).

If R(x) = null, then the conclusion immediately fol-

lows. Otherwise, the conclusion follows from the previ-

ous item of this Lemma and h being not Γ(x)-reachable

from R(x).

LEMMA 59 (Subject reduction for commands). If Θ;Γ ⊢D
(P [t1 7→ E[s1]], H, L,R) ok and (s1, H, L,R) ❀ (s′1, H

′, L′,R′),
then Θ;Γ ⊢D (P [t1 7→ E[s′1]], H

′, L′, R′) ok.

PROOF. By T-CONFIG, we have, in particular,

Θ;Γ1 ⊢ E[s1]⇒ Γ′′
1 (1)

ConOwn(P [t1 7→ E[s1]], H, L,R,Γ1 + Γr). (2)

for some Γ1,Γr, Γ̃′′ such that Γ = Γ1 +Γr. Then, it suffices

to show that Θ;∆1 ⊢ E[s′1] ⇒ Γ′′′
1 and ConOwn(P [t1 7→

E[s′1]], H
′, L′, R′,∆1 + Γr) for some ∆1 and Γ′′′

1 .

By Lemma 55, there exists Γ′
1 such that Θ;Γ1 ⊢ s1 ⇒ Γ′

1

and Θ;Γ′
1 ⊢ E[skip]⇒ Γ′′

1 .

The proof proceeds by case analysis on the rule used to

derive (s1, H, L,R) ❀ (s′1, H
′, L′,R′). In all cases, it is

easy to show acyclic(t̃, (Γ′′′
1 ,Γ′′

2 , . . . ,Γ
′′
n), R

′).
We write F (·) for Own(P [t1 7→ s1], H, L,R, ·) and

F ′(·) for Own(P [t1 7→ s′1], H
′, L′, R′, ·).

Case E-NEWLOCK: We have

s1 = let x = newlock() in s′′1 (3)

s′1 = [z/x]s′′1 (4)

H ′ = H (5)

L′ = L[l 7→ ⊥] (6)

R′ = R[z 7→ l] (7)

for some fresh z and l. Inversion on Θ;Γ1 ⊢ s1 ⇒ Γ′
1 gives

Γ1 = Γ11 + Γ12 (8)

Θ;Γ11, x : (Γ12, 0) lock1 ⊢ s′′1 ⇒ Γ′
1, x : τ (9)

empty(τ) (10)

for some Γ11,Γ12 and τ . From (9) and freshness of z, we

have

Θ;Γ11, z : (Γ12, 0) lock1 ⊢ [z/x]s′′1 ⇒ Γ′
1, z : τ (11)

By Lemmas 46 and 55,

Θ;Γ11, z : (Γ12, 0) lock1 ⊢ E[[z/x]s′′1]⇒ Γ′′
1 , z : τ

We claim that it suffices to take Γ11, z : (Γ12, 0) lock1 as

∆1 and Γ′′
1 , z : τ as Γ′′′

1 . To observe that this choice works, it

suffices to show ConOwn(P [t1 7→ E[s′1]], H, L′, R′,∆1+
Γr).

F (Γ) = F (Γ1 + Γr)

and

F ′((Γ11, z : (Γ12, 0) lock1) + Γr)
= F ′(Γ11) + {l 7→ (L, 0, 1)}+ 1 · F ′(Γ12) + F ′(Γr)
= F ′(Γ11 + Γ12) + F ′(Γr) + {l 7→ (L, 0, 1)}
= F ′(Γ1 + Γr) + {l 7→ (L, 0, 1)} .

Since l is fresh, l 6∈ dom(F ′(Γ1 + Γr)). So, it suffices

to show F (Γ1 + Γr) = F ′(Γ1 + Γr), which follows

from Lemma 58. In fact, it is easy to show that, for any

y ∈ {R(x) | x ∈ dom(Γ1 + Γr)} ∩ (dom(L) ∪ dom(L′))
implies L(y) = L′(y) since {R(x) | x ∈ dom(Γ1 + Γr)} ∩
(dom(L)∪dom(L′)) = dom(L). Thus, we have ConOwn(P [t1 7→
E[s′1]], H, L′, R′,∆1 + Γr).

Case E-FREELOCK: We have

s1 = freelock(x) (12)

R(x) = l (13)

L(l) = ⊥ (14)

s′1 = skip (15)

H ′ = H (16)

L′ = L\ {l} (17)

R′ = R. (18)

Inversion of T-FREELOCK gives

Γ1 = Γ11, (Γ12, 0) lock1 (19)

Γ′
1 = (Γ11, x 7→ (Γ12, 0) lock0) + Γ12 (20)

for some Γ11 and Γ12. We show that it suffices to take

(Γ11, x 7→ (Γ12, 0) lock0) + Γ12 as ∆1 and Γ′′
1 as Γ′′′

1 .

We show ConOwn(P [t1 7→ E[s′1]], H, L′, R,∆1).
Let us write F (·) for Own(P,H,L,R, ·) and F ′(·) for

Own(P ′, H, L′, R, ·) and S for {x ∈ dom(R) | R(x) = l}.
Then,

F (Γ1 + Γr)
= F (Γ11) + F (x : (Γ12, 0) lock1) + F (Γr)
= F (Γ11) + {l 7→ (L, 0, 1)}+ 1 · F (Γ12) + F (Γr)
= F (Γ11 + Γ12 + Γr) + {l 7→ (L, 0, 1)} .
= F ((Γ11 + Γ12 + Γr)↓S)+

F ((Γ11 + Γ12 + Γr) ↑S)+
{l 7→ (L, 0, 1)}

F ′(∆1 + Γr)
= F ′((Γ11, x 7→ (Γ12, 0) lock0) + Γ12 + Γr)
= F ′(Γ11) + 0 · F ′(Γ12) + F ′(Γ12) + F ′(Γr)
= F ′(Γ11 + Γ12 + Γr)
= F ′((Γ11 + Γ12 + Γr)↓S) + F ′((Γ11 + Γ12 + Γr) ↑S)

On the one hand, by ownership consistency, it must be the

case that F ((Γ11 + Γ12 + Γr)↓S) ⊆ {l 7→ (L, 0, 0)} and so

empty(Γ11 + Γ12 + Γr). By Lemma 58,

F ((Γ11 + Γ12 + Γr)↓S) = F ′((Γ11 + Γ12 + Γr)↓S).

On the other hand, l 6∈ dom(F ((Γ11 + Γ12 + Γr) ↑S), and

so, by Lemma 58(2),

F ((Γ11 + Γ12 + Γr) ↑S) = F ′((Γ11 + Γ12 + Γr) ↑S).

Case E-ASSIGN: We have

s1 = ∗x← y (21)

R(x) = h (22)

R(y) = v (23)

H(h) = v′ (24)

s′1 = skip (25)

H ′ = H[h 7→ v] (26)

L′ = L (27)

R′ = R. (28)

Inversion of T-ASSIGN gives

empty(κ) (29)

Γ1(x) = κ ref1 (30)

Γ1(y) = κ1 + κ2 (31)

Γ′
1(x) = κ1 ref1 (32)

Γ′
1(y) = κ2 (33)

Γ1\ {x, y} = Γ′
1\ {x, y} (34)

for some κ, κ1 and κ2. We claim that it suffices to take Γ′
1 as

∆1 and Γ′′
1 as Γ′′′

1 . Then, we have

F (Γ1 + Γr)
= F (Γ1\ {x, y}) + {h 7→ (R, 1)}+ F (Γr) +OwnH(H, v, κ1 + κ2)

(Note empty(κ))
= F (Γ1\ {x, y}+ Γr) + {h 7→ (R, 1)}+OwnH(H, v, κ1 + κ2),

and

F ′(∆1 + Γr)
= F ′(∆1\ {x, y}+ Γr) + {h 7→ (R, 1)}+

OwnH(H ′, v, κ1 + κ2)
= F ′(∆1\ {x, y}+ Γr) + {h 7→ (R, 1)}+

OwnH(H ′, v, κ1 + κ2)

It suffices to show

F (Γ1\ {x, y}+ Γr) = F ′(Γ1\ {x, y}+ Γr) and (35)

OwnH(H, v, κ1 + κ2) = OwnH(H ′, v, κ1 + κ2). (36)

Let us write Γ′′ for Γ1\ {x, y} + Γr. To show (35), we

show that, for any x ∈ dom(Γ′′), h is not κ-reachable

fromR(x) on H if R(x) ∈ dom(H)\ {h} where κ =

Γ′′(x). Then, (35) follows from Lemma 58. To show this,

suppose h is κ-reachable from R(x) on H . Then, there exists

π such that H |π|(R(x)) = h and κ(π′) > 0 for any prefix

π′ of π, especially κ(π) > 0. Then, F (Γ′′)(h) = (R, κ(π))
from the definition of Own, which contradicts with (2).

To show (36), we show h is not κ1 + κ2-reachable from

v on H . The proof of this fact is almost as the same as the

previous one in the previous paragraph.

DEFINITION 60. We write Γ1 ≤ Γ2 if Γ2 = Γ1 + Γ3 and

empty(Γ3) for some Γ3.

Proof of Lemma 25 Assume Θ;Γ ⊢D (P,H,L,R) ok

and (P,H,L,R) ❀ (P ′, H ′, L′, R′). By T-CONFIG, we

have

ConOwn(P,H,L,R,Γ) (37)

Θ;Γi ⊢ si ⇒ Γ′
i for each i ∈ {1, . . . , n} (38)

Γ = Γ1 + · · ·+ Γn (39)

P = {t1 7→ s1, . . . , tn 7→ sn} (40)

⊢ D : Θ (41)

for any x, R(x) = ti implies PTE(Γ(x)) ≤ Γ′
i(42)

ti = ⋆ implies empty(Γ′
i) (43)

for some Γ1, . . . ,Γn,Γ
′
1, . . . ,Γ

′
n. Conduct case-analysis on

the last rule to derive (P,H,L,R) ❀ (P ′, H ′, L′, R′). We

show only that ConOwn and acyclic are preserved be-

cause the other conditions are easy. We deal with acyclic

only in the case of E-FORK because the other cases are easy.

Case E-ACQ: Without loss of generality, we can assume

s1 = E[acq(x)]. Then, L(R(x)) = ⊥, P ′ = P [t1 7→
E[skip]] and L′ = L[R(x) 7→ ⊤] and H ′ = H and R′ = R.

Let l be R(x). From Lemma 55 and inversion of T-ACQ, we

have

Γ1 = Γ′′
1 , x : (Γ′′

2 , 0) lockf (44)

Θ;Γ′′
1 , x : (Γ′′

2 , 1) lockf + Γ′′
2 ⊢ E[skip]⇒ Γ′

1(45)

f > 0 (46)

for some Γ′′
1 ,Γ

′′
2 and f . Let Γr be Γ2 + · · · + Γn and ∆ be

Γ′′
1 , x : (Γ′′

2 , 1) lockf + Γ′′
2 + Γr. We show

ConOwn(P ′, H, L′, R,∆). Let F (·) be Own(P,H,L,R, ·)
and F ′(·) be Own(P ′, H, L′, R, ·). Then,

F (Γ1 + Γr)
= F (Γ′′

1) + F (x : (Γ′′
2 , 0) lockf) + F (Γr)

(∵ Lemmas 47 and 51)

= F1(Γ
′′
1 + Γr) + {l 7→ (L, 0, f)}+ f · F1(Γ

′′
2)

(∵ (Lemma 51 and Definition of Own)).

Let Sl be {z | R(z) = l}. Then, by Lemma 53,

F (Γ1 + Γr) =

F ((Γ′′
1 + Γr)↓Sl

) + F ((Γ′′
1 + Γr) ↑Sl

) +

{l 7→ (L, 0, f)}+ f · F (Γ′′
2)

We have l /∈ dom(F ((Γ′′
1 + Γr) ↑Sl

)) by the definition of

Own. We also have l /∈ dom(f · F (Γ′′
2)), since, otherwise,

x ∈ dom(Γ′′
2), which contradicts the well-formedness of Γ1.

We claim F ((Γ′′
1 + Γr)↓Sl

)+{l 7→ (L, 0, f)}+f ·F (Γ′′
2) =

{l 7→ (L, 0, 1)}+ F (Γ′′
2). In fact,

• if (Γ′′
1 + Γr) ↓Sl

6= ∅, then from Lemma 54, we have

F ((Γ′′
1 + Γr) ↓Sl

) = {l 7→ (L, f1, f
′
1)} + f ′

1 · F (Γ′′
2) for

some 0 ≤ f ′
1 ≤ 1. Then, from (37), we have f1 = 0 and

f ′
1 = 1− f , and

• if (Γ′′
1 + Γr)↓Sl

= ∅, then

F ((Γ′′
1 + Γr)↓Sl

) + F ((Γ′′
1 + Γr) ↑Sl

)+
{l 7→ (L, 0, f)}+ f · F (Γ′′

2)
= F ((Γ′′

1 + Γr) ↑Sl
) + {l 7→ (L, 0, f)}+ f · F (Γ′′

2),

which is followed by f = 1, thanks to (37).

Thus, in both cases, we have F (Γ1+Γr) = F ((Γ′′
1 + Γr) ↑Sl

) + {l 7→ (L, 0, 1)}+ F (Γ′′
2).

We next calculate F ′(∆), which goes as follows:

F ′(∆)
= F ′(Γ′′

1 , x : (Γ′′
2 , 1) lockf + Γ′′

2 + Γr)
= F ′(Γ′′

1 + Γr) + F ′(Γ′′
2) + {l 7→ (L, 1, f)}

= F ′((Γ′′
1 + Γr)↓Sl

) + F ′((Γ′′
1 + Γr) ↑Sl

)+
F ′(Γ′′

2) + {l 7→ (L, 1, f)} .

Then, by a similar reasoning, we have F ′((Γ′′
1 + Γr) ↓Sl

) + {l 7→ (L, 1, f)} = {l 7→ (L, 1, 1)}. Thus,

F ′(∆) = F ′((Γ′′
1 + Γr) ↑Sl

) + F ′(Γ′′
2) + {l 7→ (L, 1, 1)}

Note that

• F ((Γ′′
1 + Γr) ↑Sl

) = F ′((Γ′′
1 + Γr) ↑Sl

) from Lemma 58;

• F (Γ′′
2) = F ′(Γ′′

2) from Lemma 58; and

• l /∈ F ′((Γ′′
1 + Γr) ↑Sl

) + F ′(Γ′′
2).

which is followed by ConOwn(P ′, H, L′, R,∆) as re-

quired.

Case E-REL: Similar to the case for E-ACQ.

Case E-FORK: We assume that s1 = E[let x = fork(sn+1) in s′1].
Then, P ′ = P [t1 7→ [y/x]s′1, tn+1 7→ sn+1] and H ′ = H
and L′ = L and R′ = R[y 7→ tn+1] for fresh y and tn+1.

From Lemma 55 and inversion of T-FORK, we have

Γ1 = Γ11 + Γ12 (47)

Θ;Γ12 ⊢ sn+1 ⇒ Γ′
12 (48)

Θ;Γ11, x : Γ′
12 tid1 ⊢ s′1 ⇒ Γ′

11, x : τ (49)

empty(τ) (50)

Θ;Γ′
11 ⊢ E[skip]⇒ Γ′

1 (51)

for some Γ11,Γ12,Γ
′
11, and Γ′

12. Let Γr be Γ2 + · · · +
Γn and ∆ be (Γ11, y : Γ′

12 tid1) + Γ12 + Γr. From (49)

and freshness of y, it easily follows that Θ;Γ11, y : Γ12 ⊢

[y/x]s′1 ⇒ Γ′
11, y:τ . By Lemmas 46 and 55, Θ;Γ11, y:Γ12 ⊢

E[[y/x]s′1]⇒ Γ′
1, y : τ .

Let us write F (·) for Own(P,H,L,R, ·) and F ′(·) for

Own(P ′, H, L,R′, ·). Then,

F (Γ)
= F (Γ1 + Γr)
= F (Γ11 + Γ12 + Γr),

and

F ′(∆)
= F ′(Γ11 + Γ12 + Γr) + {tn+1 7→ (P, 1)} .

From the freshness condition of y and tn+1, it follows that

F (Γ11+Γ12+Γr) = F ′(Γ11+Γ12+Γr) from Lemma 58.

We show

acyclic((t1, . . . , tn+1), ((Γ
′
1, y : τ),Γ

′
2, . . . ,Γ

′
n,Γ

′
12), R

′)

by contradiction. Suppose there exists a sequence tj1 ≺
tj2 ≺ . . . ≺ tjm = tj1 .

• If {j1, . . . , jm} ⊆ {2, . . . , n}, then it contradicts with

acyclic((t1, . . . , tn), (Γ
′
1, . . . ,Γ

′
n), R).

• Suppose ji = n + 1 for some i ∈ {2, . . . ,m}. (Consid-

ering {2, . . . ,m} is enough because j1 = jm.) Then, for

some z ∈ dom(R), R(z) = tn+1 and, from the fresh-

ness of tn+1, it should be the case of y = z and thus,

from freshness of y, ji−1 should be 1. However, this im-

plies ¬empty((Γ′
1, y : τ)(y)) and leads to contradiction

with empty(τ).

• Suppose {j1, . . . , jm} contains 1 and does not contain

n + 1. Let ji = 1. Then, there exists z ∈ dom(R)
such that ¬empty((Γ′

1, y : τ)(z)) and R(z) = tji+1
.

Since empty(τ), z must be different from y and so

¬empty(Γ′
1(z)). Then, it is easy to show that

¬acyclic((t1, . . . , tn), (Γ
′
1, . . . ,Γ

′
n), R),

which is a contradiction.

Case E-WAIT: We assume that s1 = E[wait(x)] and

sn = skip and R(x) = tn. Note that tn 6= ⋆ from ⋆ /∈ Val.

Then, P ′ = P [t1 7→ E[skip]]\ {tn} and H ′ = H and

L′ = L and R′ = R. By Lemma 55 and inversion of

T-WAIT and T-SKIP, we have, for some Γ11 and Γ12,

Γ1 = Γ11, x : Γ12 tid1 (52)

Θ; (Γ11, x : Γ12 tid0) + Γ12 ⊢ E[skip]⇒ Γ′
1(53)

Γn = Γ′
n. (54)

Let Γr be Γ2 + · · · + Γn−1 and ∆ be (Γ11, x : Γ12 tid0) +
Γ12 + Γr. Then, the only non-trivial part is the condition on

ownership consistency, which is shown below.

Let us write F (·) for Own(P,H,L,R, ·) and F ′(·) for

Own(P ′, H, L,R, ·) and S for {x ∈ dom(R) | R(x) = tn}.

Then,

F (Γ)
= F (Γ1 + Γr) + F (Γn)
= F (Γ11 + Γr) + F (Γ′

n) + {tn 7→ (P, 1)}
= F ((Γ11 + Γr)↓S) + F ((Γ11 + Γr) ↑S)+

F (Γ′
n) + {tn 7→ (P, 1)} ,

and

F ′(∆)
= F ′(Γ11 + Γr) + F ′(Γ12)
= F ′((Γ11 + Γr)↓S) + F ′((Γ11 + Γr) ↑S) + F ′(Γ12).

We have F ((Γ11 + Γr) ↑S) = F ′((Γ11 + Γr) ↑S) from

Lemma 58. We claim that

(a) empty((Γ11 + Γr) ↓S), and thus F ((Γ11 + Γr) ↓S) =
F ′((Γ11 + Γr)↓S) from Lemma 58, and

(b) Γ12 ≤ Γ′
n, which follows from (42).

In fact, from the definition of Own, dom(F ((Γ11 + Γr)↓S
)) ⊆ {tn}. Then, from ConOwn(P,H,L,R,Γ),
dom(F ((Γ11 + Γr) ↓S)) = ∅ or F ((Γ11 + Γr) ↓S)(tn) =
(P, 0). Both cases are followed by empty((Γ11 + Γr) ↓S).
Then, we have

• F (Γ′
n) = F (Γ12) = F ′(Γ12) from (b) and Lemma 58

which is followed by ConOwn(P ′, H ′, L′, R′,Γ′).

Case E-PROC: Follows from Lemma 59. ⊓⊔

Proof of Lemma 26 By T-CONFIG, we have

ConOwn(P,H,L,R,Γ) (55)

⊢ D : Θ (56)

Γ = Γ1 + · · ·+ Γn (57)

P = {t1 7→ s1, . . . , tn 7→ sn} (58)

Θ;Γi ⊢ si ⇒ Γ′
i for each i ∈ {1, . . . , n} (59)

R(x) = ti implies PTE(Γ(x)) ≤ Γ′
i (60)

ti = ⋆ implies empty(Γ′
i) (61)

for some Γ1, . . . ,Γn,Γ
′
1, . . . ,Γ

′
n. We have three things to

prove: (P,H,L,R) 6❀ Error and (P,H,L,R) is not in

race, and if End(P,H,L,R), then (P,H,L,R) does not

leak resource.

(P,H,L,R) 6❀ Error: Proof by contradiction. Sup-

pose (P,H,L,R) ❀ Error. Then, it should be derived

by E-PROCERR. Thus, there exists t ∈ dom(P) such that

P (t) = s and (s,H,L,R) ❀ Error. Then, there exist E
and s0 such that s = E[s0]. From (59) and Lemma 55, we

have

Θ;Γ1 ⊢ s0 ⇒ Γ′ (62)

Θ;Γ′ ⊢ E[skip]⇒ Γ′
1 (63)

for some Γ′. Conduct case-analysis on (s0, H, L,R) ❀

Error. We show only the case of E-DANGPTRACCERR (in

particular, the case where s0 = ∗x ← y for some x and y)

below. The other cases are similar.

In this case, R(x) /∈ dom(H) and R(x) 6= null. In-

version of T-ASSIGN gives Γ1(x) = κ ref1 for some κ.

From (55), we have Own(P,H,L,R,Γ)(R(x)) = (R, 1).
Let us write Γr for Γ2 + · · ·+ Γn. Then,

Own(P,H,L,R,Γ)(R(x)) = (R, 1)
⇐⇒ Own(P,H,L,R,Γ1)(R(x))+

Own(P,H,L,R,Γr)(R(x))
= (R, 1)

⇐⇒ Own(P,H,L,R(x),Γ1(x))(R(x))+
Own(P,H,L,R,Γ1\ {x})(R(x)) + · · · = (R, 1)

For the left-hand side of the last equation to be defined,

Own(P,H,L,R(x),Γ1(x))(R(x)) should be defined, thus

R(x) should be in dom(H) from the definition of Own,

which contradicts with R(x) /∈ dom(H).

(P,H,L,R) is not in race: Proof by contradiction. Sup-

pose (P,H,L,R) is in race. Then, without loss of general-

ity, we can assume that there are x1, x2 ∈ dom(R) such that

R(x1) = R(x2) ∈ dom(H) and,

• t1 is writing to R(x1) in (P,H,L,R) and t2 is writing to

R(x2) in (P,H,L,R); or

• t1 is writing to R(x1) in (P,H,L,R) and t2 is reading

from R(x2) in (P,H,L,R).

In the first case, P (t1) = E1[∗x1 ← y1] and P (t2) =
E2[∗x2 ← y2] for some E1, E2, y1 and y2. Let us write

h for R(x1) and R(x2), and Γr for Γ3 + · · · + Γn. Then,

by T-ASSIGN, we have Γ1(x1) = κ′
1 ref1 and Γ2(x2) =

κ′
2 ref1 for some κ′

1 and κ′
2. Then,

Own(P,H,L,R,Γ)
= Own(P,H,L,R,Γ1) +Own(P,H,L,R,Γ2)+

Own(P,H,L,R,Γr)
= Own(P,H,L, h, κ′

1 ref1)+
Own(P,H,L,R,Γ1\ {x1})+
Own(P,H,L, h, κ′

2 ref1)+
Own(P,H,L,R,Γ2\ {x2}) +Own(P,H,L,R,Γr)

= {h 7→ (R, 1)}+Own(P,H,L,H(h), κ′
1)+

Own(P,H,L,R,Γ1\ {x1})
+ {h 7→ (R, 1)}+Own(P,H,L,H(h), κ′

2)+
Own(P,H,L,R,Γ2\ {x2})
+Own(P,H,L,R,Γr)

= {h 7→ (R, 2)}+Own(P,H,L,H(h), κ′
1)+

Own(P,H,L,R,Γ1\ {x1})
+Own(P,H,L,H(h), κ′

2) +Own(P,H,L,R,Γ2\ {x2})
+Own(P,H,L,R,Γr),

which contradicts with ConOwn(P,H,L,R,Γ).
The second case is similar.

Conf does not leak resources: We first assume

End(P,H,L,R), i.e., si = skip for every i = 1, . . . , n.

Then, by T-SKIP,

Γi = Γ′
i for i ∈ {1, . . . , n} .

Then, we prove two auxiliary propositions below.

PROPOSITION 61. If Γi(x) = Γ′′ tidf for some Γ′′, and if

f > 0, then there exist y and j such that R(y) = ti and

Γj(y) = Γ′′′ tidf ′ for some Γ′′′ and f ′ > 0.

PROOF. Fix x, i and f such that Γi(x) = Γ′′ tidf for some

Γ′′ and f , and assume f > 0. Note that there is at least

one y such that R(y) = ti from the definition of Own and

ConOwn(P,H,L,R,Γ). Suppose that, for any y and j, if

Γj(y) = Γ′′′ tidf ′ for some Γ′′′ and f ′, then f ′ = 0. Then,

Own(P,H,L,R,Γ)(ti)
= Own(P,H,L,R,Γ⋆ + Γ1 + · · ·+ Γn)(ti)

(where Γ⋆ is the pre type environment for thread ⋆)

= Own(P,H,L,R,Γ⋆)(ti)+
Own(P,H,L,R,Γ1)(ti)+
· · ·+
Own(P,H,L,R,Γn)(ti).

However, from the assumption that R(y) = ti and Γj(y) =
Γ′′′ tidf ′ imply f ′ = 0, the last line of the equation above is

equal to (P, 0), which contradicts with ConOwn(P,H,L,R,Γ)
and ti ∈ dom(P). Thus, there are y and j such that

R(y) = ti and Γj(y) = Γ′′′ tidf ′ and f ′ > 0. ⊓⊔
Then, to prove that the configuration does not leak re-

sources, it suffices to show that P = {⋆ 7→ skip}, since it

implies n = 1 and t1 = ⋆ and, by (61), empty(Γ1) and so,

by ownership-consistency, H = ∅ and L = ∅.
Suppose P = {⋆ 7→ skip, t2 7→ skip, . . . , tn 7→ skip}.

(Note End(P,H,L,R).) We show that n < 2. We use the

following propositions in the proof.

Suppose n ≥ 2 and let m > n+1. By ConOwn(P,H,L,R,Γ),
we have Own(P,H,L,R,Γ)(tn) = (P, 1). By Proposi-

tion 61, there are ym and jm such that R(ym) = tn and

Γjm(ym) = Γ′′ tidf for some Γ′′ and f > 0. Then,

tjm ≺(⋆,t2,...,tn),(Γ′

1
,...,Γ′

n),R
tn. (Notice that Γi = Γ′

i for

any i.) By repeatedly using Proposition 61, we can obtain a

sequence tj1 ≺ · · · ≺ tjm ≺ tn for some j1, . . . , jm.

Because m > n + 1, there exist i and k such that i < k
and tji = tjk , which violates t 6≺+ t for any t ∈ dom(P).
Thus, P = {⋆ 7→ skip}. ⊓⊔

Proof of Theorem 21 An easy consequence of Lem-

mas 24, 25, and 26. ⊓⊔

B. Proof of Lemma 36

LEMMA 62. 1. [[〈ỹ/x̃〉τ]]θ = [[[ỹ/x̃]τ]]θ.

2. [[〈ỹ/x̃〉ΓΓ]]θ = [[[ỹ/x̃]ΓΓ]]θ.

3. If Γ = 〈ỹ/x̃〉τ̃ and Γ′ = 〈ỹ/x̃〉τ̃ ′, then

• dom(Γ) = dom(Γ′) = {ỹ}
• [[Γ(yi)]]θ = [[[x1, . . . , xi−1/y1, . . . , yi−1]τi]]θ and

• [[Γ′(yi)]]θ = [[[x1, . . . , xi−1/y1, . . . , yi−1]τ
′
i]]θ.

PROOF. Induction on the structure of τ,ΓΓ. ⊓⊔

LEMMA 63. 1. If τ, C
.
= τ1 + τ2 and θ |= C, then [[τ]]θ =

[[τ1]]θ + [[τ2]]θ.

2. If C = (τ1
.
= τ2) and θ |= C, then [[τ1]]θ = [[τ2]]θ.

3. If C = (ΓΓ1
.
= ΓΓ2) and θ |= C, then [[ΓΓ1]]θ = [[ΓΓ2]]θ.

PROOF.

1. Induction on the structure of τ1.

2. Induction on the structure of τ1.

3. Induction on the structure of ΓΓ1.

Proof of Lemma 36 Assume C(Θ,Γpost , s) = (Γpre , C)
and θ |= C. We prove [[Θ]]θ; [[Γpre]]θ ⊢ s ⇒ [[Γpost]]θ by

induction on the structure of s. We present only non-trivial

cases.

Case s = let x : a = y in s1 We have

τ = templatex(a) (64)

Γ′, C1 = C(Θ, s1, (Γpost , x : τ)) (65)

τ ′, C2 = (Γ′(x) + Γ′(y)) (66)

C3 =
{
êmpty(τ)

}
(67)

Γpre = (Γ′\ {x, y} , y : τ ′). (68)

From Lemma 63 and the definition of [[·]]θ, we have

[[τ ′]]θ = [[Γ′(x)]]θ + [[Γ′(y)]]θ (69)

[[Γpre]]θ = [[Γ′]]θ\ {x, y} , y : [[τ
′]]θ (70)

empty[[τ]]θ. (71)

From I.H., we have

[[Θ]]θ; [[Γ
′]]θ ⊢ s1 ⇒ [[Γpost]]θ, x : [[τ]]θ. (72)

Thus, (69)–(72) and T-LET completes this case.

Case s = f(x̃): We have

(x̃ : τ̃)→ (τ̃ ′) = Θ(f) (73)

C1 = (Γpost
.
= 〈ỹ/x̃〉τ̃ ′ + Γ′) (74)

C2 = (Γpre
.
= 〈ỹ/x̃〉τ̃ + Γ′) (75)

C = C1 ∪ C2. (76)

Then, from Lemma 63, we have

[[Γpost]]θ = [[〈ỹ/x̃〉τ̃ ′]]θ + [[Γ′]]θ (77)

[[Γpre]]θ = [[〈ỹ/x̃〉τ̃]]θ + [[Γ′]]θ. (78)

Thus, Lemma 62.3 and T-APP complete this case.

Case s = (let x = fork(s1) in s2): We have

Γ1, C1 = C(Θ, s1,Γ
′
post) (79)

Γ2, C2 = C(Θ, s2, (Γpost , x : γx tid0)) (80)

Γpre , C3 = (Γ1 + Γ2\ {x}) (81)

C4 =





FV(s1) ⊆̂ d̂om(γx),

d̂om(γx) ⊆̂ d̂om(Γpost),

êmpty(Γ′
post \̂ d̂om(γx))





(82)

C = C1 ∪ · · · ∪ C4. (83)

From Lemma 63, we have

[[Γpre]]θ = [[Γ1]]θ + [[Γ2]]θ\ {x} (84)

FV(s1) ⊆ dom([[γx]]θ) (85)

dom([[γx]]θ) ⊆ dom([[Γpost]]θ) (86)

empty([[Γ′
post]]θ\dom([[γx]]θ)) (87)

From I.H., we have

[[Θ]]θ; [[Γ1]]θ ⊢ s1 ⇒ [[Γ′
post]]θ (88)

[[Θ]]θ; [[Γ2]]θ ⊢ s2 ⇒ [[Γpost]]θ, x : [[γx tid0]]θ (89)

From T-FORK, it suffices to show that [[Θ]]θ; [[Γ1]]θ ⊢
s1 ⇒ [[γx]]θ, which follows from (86) and (87) and

Lemma 34.

⊓⊔

