
TYPE SYSTEMS FOR FORMAL VERIFICATION OF

CONCURRENT PROGRAMS

by

Kohei Suenaga

A Dissertation

Submitted to

the Graduate School of the University of Tokyo

in December 2007

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology

in Computer Science

Thesis Supervisor: Akinori Yonezawa

Professor of Computer Science





ABSTRACT

Writing reliable concurrent programs is said to be more difficult than sequential programs because of

the possibility of deadlocks and races. Moreover, the state-explosion problem caused by non-deterministic

interleaving of threads makes it difficult to track program states.

One of the promising approaches for high software reliability is formal verification, statically veri-

fying software before executing it. However, though static verification methods have been extensively

studied for sequential programs so far, verification for concurrent programs is still immature, in that

many important software features such as interrupts and dynamic creation of communication channels,

which often appear in practical software, have not been investigated. Because the debugging-by-testing

approach for concurrent programs is less useful than for sequential programs, static verification methods

that can deal with concurrent programs with such primitives are of significant importance.

As a step to verification methods that can deal with practical programs, we propose type-based

verification of two important security properties of concurrent programs: deadlock-freedom and resource

usage. The presented deadlock-freedom verification is equipped with three features: (1) non-block-

structured mutex primitives (2) mutable references to mutexes and (3) interrupts. Those three features,

which are heavily used in real-world programs, have not been dealt with in the deadlock-freedom analyses

proposed so far.

In order to design a deadlock-freedom verification for such programs, we define a concurrent calculus

with those three features and a type system for the calculus. Our type system guarantees deadlock-

freedom (1) by verifying that there are not circular dependencies among locking/unlocking operations

and (2) by guaranteeing that an acquired lock is released exactly once. For guaranteeing the first

condition, the type system assigns a natural number called lock level to each lock type and verifies

that locks are acquired in a strict increasing order of those numbers. For the verification of the second

condition in the presence of aliasing and references to a mutex, we use a kind of linear types called

capabilities/obligations, and ownerships, a technique to control accesses to a reference to a mutex. We

also report the result of a verification experiment of an implementation of a network protocol stack.

We next present a type-based resource usage analysis for the π-calculus. The goal of the resource

usage analysis is to statically check that various resources (e.g., files, memory and sockets) are accessed

according to an access protocol associated to each resource. Though resource usage analysis for sequential

programs is extensively studied so far, it is not well investigated for concurrent programs, especially those

involving dynamic creation/passing of communication channels and resources, which often appears in

practical software.

To this end, we design a type system for a π-calculus extended with resource creation/access prim-

itives, as an extension of the behavioral type system by Igarashi and Kobayashi. The type system

guarantees the safety property that no invalid access is performed, as well as the property that necessary

accesses (such as the close operation for a file) are eventually performed unless the program diverges. A

sound type inference algorithm for the type system is also developed to free the programmer from the

burden of writing complex type annotations. Based on the algorithm, we have implemented a proto-

type resource usage analyzer for the π-calculus. To the authors’ knowledge, ours is the first type-based



resource usage analysis that deals with an expressive concurrent language like the π-calculus.



Contents

1 Introduction 4

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 5

1.2.2 Resource Usage Analysis for the π-Calculus . . . . . . . . . . . . . . . . . 8

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts 12

2.1 Target Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Lock Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Syntax of Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Type Judgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Target Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Deadlock-freedom verification of a device driver . . . . . . . . . . . . . . . 38

2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Resource Usage Analysis for the π-Calculus 46

3.1 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



3.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Semantics of behavioral types . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Type Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Step 1: Extracting Constraints . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Step 2: Reducing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Step 3: Constraint Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Step 3-1: Construction of NA,x . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.5 Steps 3-2 and 3-3: Construction of NA,x ||MΦ and reduction of tracesx(A)

to a reachability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 A Type System for the Partial Liveness Property . . . . . . . . . . . . . . 68

3.4.2 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Related work 76

4.1 Deadlock-freedom verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Calculi with interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Resource usage analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Static analysis for practical software . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusion 82

References 84

A Proofs of Lemma 2.2 and 2.3 91

B Proof of Lemma 2.4 95

C Properties of the Subtyping Relation 97

D Proof of the Subject Reduction Property 106

E Proofs of the Lemma for Theorem 3.3 111

F Computing a Basis of Behavioral Type 113

2



Acknowledgement

I would like to express my best gratitude to Naoki Kobayashi and Akinori Yonezawa for their

supporting me enormously during these five years. They have been great mentors. I have learned

much about how to conduct research from them. They have also supported me mentally when

I was in difficulty. The contents of this thesis have been developed through many discussions

with Naoki Kobayashi.

I am also grateful to Lucian Wischik, Eijiro Sumii and Tachio Terauchi for the discussions

of the technical issues of this research. The contents of Chapter 3 is a joint work with Naoki

Kobayashi and Lucian Wischik.

I also thank Hiroya Matsuba for comments and advice from the viewpoint of a system

software researcher, and for being a great friend since I was an undergraduate student. He let

me notice the importance of dealing with interrupts in software verification.

I thank my family for their kind support since I was a child. They have always assisted me

with my life choices.

This research is supported by JSPS Research Fellowships for Young Scientists.

3



Chapter 1

Introduction

1.1 Background

Concurrent programs, in which several threads run in an interleaving manner, are getting impor-

tant as multi-processor machines and clusters get popular. Nowadays, many programs including

operating systems and various servers are written as concurrent programs.

However, writing reliable concurrent programs is said to be more difficult than sequential

programs because of the possibility of deadlocks and races. Moreover, the state-explosion prob-

lem caused by non-deterministic interleaving of threads makes it difficult to track program

states.

In order to achieve high reliability of software, one often debugs software by testing. However,

debugging by testing is insufficient for that purpose due to the possibility of missing a path that

leads to an incorrect behavior. It is especially hard to test every path of concurrent programs

due to non-determinism. What is worse, even if one finds an incorrect behavior of a concurrent

program, one may not be able to reproduce that behavior, again due to the non-determinism,

so that it may be difficult to determine the cause of the behavior.

One of the promising approaches for high software reliability is formal verification, statically

verifying the software before executing it. In this approach, one provides a verifier of a certain

security property (e.g., deadlock-freedom.) The verification algorithm should be mathematically

proved to be sound. Before executing a program, the verifier checks the program. If the

verification succeeds, then the program is guaranteed to have the security property in execution

time.

Formal verification for sequential programs are well investigated so far, including type-

based approaches [25, 30, 38, 45, 46, 50, 56, 57, 62, 64, 65] and abstract-interpretation-based ap-

proaches [4, 10, 42]. However, though much effort also has been paid for verification of con-

current programs, many important software features such as interrupts and runtime creation

of communication channels, which often appear in real-world software, have not been well in-

4



vestigated. Because the debugging-by-testing approach for concurrent programs is less useful

than for sequential programs, static verification methods for concurrent programs with such

primitives are of significant importance.

1.2 Overview of this thesis

In this thesis, as a step to verification methods that can deal with real-world programs, we study

verification of two important security properties of concurrent programs: deadlock-freedom and

resource usage, and propose type-based verification methods. The presented analyses deal with

features that are not dealt with in the existing verification methods. In the following, we present

the overview of those two verification methods.

1.2.1 Type-Based Analysis of Deadlock for a Concurrent Calculus with Interrupts

A deadlock, a state in which several threads are waiting for a lock acquired by other threads,

is one of the well-known bugs that may occur in concurrent programs. Because a deadlock

leads to an unintentional system halt, it is considered to be a serious problem, and much

work [1, 5, 14, 15, 32, 34, 35, 54] has been done to detect deadlocks.

We present a new type-based deadlock-freedom verification. The verification method is

equipped with the following three features which have not been dealt with by the existing work.

• Feature A: Non-block-structured mutex primitives.

• Feature B: Mutable references to mutexes.

• Feature C: Interrupts.

Those three features are heavily used in the real-world software. Non-block-structured mutex

primitives, whose locking operations do not syntactically correspond to unlocking operations, are

used in, for example, C programs with POSIX thread library. Mutable references to mutexes

are used frequently. Interrupts, asynchronous jump to an interrupt handler, are essential in

system software and appear in user applications as signal handling.

For example, consider the program in Figure 1.1. This example, based on a bug that was

found in an initial version of a protocol stack implementation used in an ongoing research

project on cluster computing [41], shows a typical deadlock that often occurs in a program with

interrupts. Though the original source code is written in C, the example is shown in an ML-

style language. The function flush buffer flushes the local buffer and sends pending packets

to appropriate destinations. The function receives a reference to a lock which is associated

with a network device, and acquires it before the function flushes the buffer. That function

5



let flush_buffer devlock =

let data = dequeue () in

while !data != NULL do

(* Interrupts should be forbidden before this locking operation *)

lock(!devlock);

... (* send data to the device *) ...

unlock(!devlock);

data := dequeue ()

done

(* interrupt handler *)

let receive_data packettype data devlock =

...

(* If there is room in the remote buffer, flush the local buffer *)

if packettype = RoomInBuffer then

flush_buffer devlock

...

Figure 1.1: An example of a program which may cause deadlock.

receive data works as an interrupt handler and is asynchronously called when a packet arrives.

Note that receive data calls flush buffer in order for the local buffer to be flushed as soon

as the function knows there is room in the remote buffer (a similar mechanism called congestion

control is used in TCP), so that the following control flow causes a deadlock:

Call to flush buffer → lock(!devlock)

→ an interrupt (call to receive data)

→ call to flush buffer → lock(!devlock)

To prevent the deadlock, flush buffer has to disable interrupts before it acquires the device

lock.

Though Feature A–C are heavily used in real-world software, the researches on deadlock-

freedom verification so far [1, 5, 14, 15, 32, 34, 35, 54] have not dealt with all of those three

features. Kobayashi, Saito and Sumii [32, 34, 36] studied deadlock-freedom verification for π-

calculus. However, their framework lacks Feature B and Feature C. Flanagan, Abadi and Fre-

und [1, 14, 15] and Boyapati, Lee and Rinard [5] studied type-based deadlock- and race-freedom

verification for Java. However, their frameworks lack Feature A and Feature C. Permandla,

Roberson and Boyapati [54] studied deadlock- and race-freedom verification for Java byte codes.

6



let f plock1 plock2 =

unlock(!plock1); unlock(!plock2)

let main () =

let x = newlock () in

lock(x);

let r1 = ref x in

let r2 = ref x in

f(r1, r2)

Figure 1.2: An example in which deadlock is caused by an aliasing.

However, their framework does not deal with Feature C. Importantly, Feature C is not dealt

with by the existing researches so far.

In order to design a verification framework for programs with Feature A–C, we define

a concurrent calculus which is equipped with those three features and a type system for the

calculus. Essentially, our type system guarantees that there are no circular dependencies among

locking/unlocking operations by assigning a natural number called lock level to each lock type,

and by verifying that locks are acquired in a strict increasing order of the lock levels. For

example, the type system rejects the program in Figure 1.1 because the lock !devlock may

be acquired twice sequentially due to an interrupt, so that assigning a lock level to the type of

devlock is impossible.

The actual type system is more complex than expected due to the following three difficulties.

• Possibility that an acquired lock may not be released or may be released more than once.

The type system has to guarantee that !devlock acquired in flush buffer is actually

released exactly once for the program in Figure 1.1.

• Aliasing. For example, consider the program in Figure 1.2. The function f releases

locks through the passed two references plock1 and plock2. In the function main, two

references r1 and r2 to one acquired lock x are passed to f. Thus, the program should be

rejected because the lock x is released twice.

• Possibility of race conditions to a reference to a lock. For the program in Figure 1.1,

suppose that there is a concurrently running thread which may overwrite the reference

devlock while the lock is acquired. Then, the lock released by unlock(!devlock) may

be different from one acquired by lock(!devlock), so that the acquired lock may not be

released.

7



In order to solve the first and the second difficulty, we use the idea of obligations and

capabilities [32, 34, 35]. The type system assigns an obligation to release a lock to its type

when the lock is acquired. The type system guarantees that the obligation is fulfilled by an

unlocking operation exactly once. Additionally, the type system guarantees that if a lock has

to be released, then only one variable bound to or one reference to the lock has the obligation

to release the lock (i.e., obligations are linearly [62] manipulated.) Based on this principle, the

program in Figure 1.2 is rejected because only one of x, r1 or r2 can have the obligation to

release the lock, which is not possible due to the requirement on the arguments on f that both

plock1 and plock2 must have an obligation.

The third difficulty is solved using the idea of ownerships. The type system assigns ownership

information to each reference type and guarantees that (1) each thread has an appropriate

ownership for read/write access and (2) if a thread has a write ownership of a reference, then

no other threads access the reference. Our type system uses rational-numbered ownership

information [6, 27, 61] to express those conditions concisely.

Based on the type system, we have implemented a prototype deadlock-freedom verifier for

C programs. We show the result of a preliminary experiment in Section 2.4.

1.2.2 Resource Usage Analysis for the π-Calculus

Computer programs access many external resources, such as files, memory, external devices,

etc. Such resources are often associated with certain access protocols; for example, an allo-

cated memory cell should be eventually deallocated exactly once, and after the cell has been

deallocated, no read/write access is allowed. Violating that protocol may cause problems such

as double free, dangling pointers or memory leak. Similarly, a file should be opened, accessed

several times and then should be closed. The file should not be accessed after the close operation.

A problem of statically checking that a program respects such access protocols is called

resource usage analysis [24], and has been extensively studied. DeLine and Fähndrich [11, 12],

Foster, Terauchi and Aiken [17] and Igarashi and Kobayashi [24] proposed type-based analyses.

Ball and Rajamani [3] designed an analysis based on model checking technique. However, most

of them focused on analysis of sequential programs, and did not treat concurrent programs,

especially those involving dynamic creation/passing of communication channels and resources,

which often appear in real programs.

For such problem, we propose a type-based method of resource usage analysis for concurrent

languages. We use the π-calculus (extended with resource primitives) as a target language so

that our analysis can be applied to a wide range of concurrency primitives (including those for

dynamically creating and passing channels) in a uniform manner.

A main new difficulty in dealing with concurrent programs is that control structures are

8



more complex in concurrent programs than in sequential programs. For example, consider the

following process P1:

(νc) (read(x).c〈 〉 | c( ). close(x))

In that program, after creating a communication channel c with (νc) , two threads run concur-

rently. The first thread reads a resource x and sends a signal on channel c with c〈〉. The second

thread waits for a signal on c with c(). and closes the resource x. Because of the synchronization

through channel c, x is closed only after being read. To capture this kind of causal dependency

between communications and resource access, we use CCS processes as extra type information

(which are called behavioral types). For example, the above process is given the behavioral

type (νc) (xR.c | c. xC), which actually captures the fact that those two threads synchronize on

the channel c, so that the close access on x occurs after the read access on x.

Using the behavioral types introduced above, we can construct a type system for resource

usage analysis in a manner similar to previous behavioral type systems for the π-calculus [7, 23].

The type judgment of our type system is of the form Γ . P : A, where Γ is the usual type

environment and A is a behavioral type approximating the behavior of P on the free channels and

resources. For example, the above process P1 is typed x : res.P1 : (νc) (xR.c | c. xC). Behavioral

types are also used to augment channel types. The judgment for s(x). P1 is given by:

Γ . s(x). P1 : s

where Γ = s:chan〈(x:res)(νc) (xR.c | c. xC)〉. Here, the behavioral type of s(x). P1 is simply a

single input command s. Note that the behavior of the input continuation, the behavior of P1, is

accounted for at the behavior of a process that performs output on the channel s, not at input.

The channel s has argument type (x:res)(νc) (xR.c | c. xC), which specifies that the resource sent

along channel s will be read first and then closed. Using the same type environment, the output

process s〈r〉 is typed as:

Γ, r:res . s〈r〉 : s. (νc) (rR.c | c. rC)

Here the behavioral type is an output followed by a continuation. The continuation

(νc) (rR.c | c. rC) has been obtained by substituting r for x in the argument type of s. In this way,

the types propagate information about how resources and channels passed thorough channels

are accessed.

An important property of our type system is that types express abstract behavior of pro-

cesses, so that certain properties of processes can be verified by verifying the corresponding

properties of their types, using, for example, model checking techniques. The latter properties

(of behavioral types) are more amenable to automatic verification techniques like model check-

ing than the former ones, because the types do not have channel mobility and also because the

types typically represent only the behavior of a part of the entire process.

9



1.3 Contribution

The main contribution of this thesis is a theoretical basis of deadlock-freedom verification and

resource usage verification for concurrent programs with primitives that often appear in practical

software, yet have not been dealt with by existing researches. The deadlock-freedom analysis

deals with non-block-structured mutex primitives, mutable references to mutexes and interrupts.

A combination of the ideas of lock levels, obligations/capabilities and ownerships enables the

verification. The resource usage analysis deals with dynamic creation of channels and resources.

This becomes possible by extending the behavioral type system for the π-calculus by Igarashi

and Kobayashi [23] with hiding and renaming constructors, and adapting them to the problem

of resource usage analysis.

Technical contribution of this thesis can be summarized as follows.

• Definition of a concurrent calculus with interrupts. Though Palsberg and Ma [52] proposed

a calculus with interrupts, that calculus does not deal with concurrency. As far as we know,

ours is the first formal calculus which is equipped with both concurrency and interrupts.

• An implementation of a prototype deadlock-freedom verifier based on the proposed type

system. Using that verifier, we have conducted a preliminary experiment on an imple-

mentation of a protocol stack, and confirmed that a known bug is actually detected.

• Realization of fully automatic resource usage verification for concurrent programs (while

making the analysis more precise than [23]). Igarashi and Kobayashi [23] gave only an

abstract type system, without giving a concrete type inference algorithm. Chaki et al. [7]

requires type annotations. The full automation was enabled by a combination of a number

of small ideas, like inclusion of hiding and renaming as type constructors, and approxi-

mation of a CCS-like type by a Petri net (to reduce the problem of checking conformance

of inferred types to resource usage specification).

• Resource usage verification of not only the usual safety property that an invalid resource

access does not occur, but also an extended safety (which we call partial liveness) that

necessary resource accesses (e.g. closing of a file) are eventually performed unless the whole

process diverges. The partial liveness is not guaranteed by Chaki et al.’s type system [7].

A noteworthy point about our type system for guaranteeing the partial liveness is that

it is parameterized by a mechanism that guarantees deadlock-freedom (in the sense of

Kobayashi’s definition [31]). So, our type system can be combined with any mechanism

(model checking, abstract interpretation, another type system, or whatever) to verify

deadlock-freedom for deadlock- or lock-freedom (e.g., Yoshida’s graph type system [68]).

10



• Implementation of a prototype resource usage analyzer based on the proposed method.

The implementation can be tested at http://www.yl.is.s.u-tokyo.ac.jp/~kohei/

usage-pi/.

1.4 Outline

The structure of this thesis is as follows. In Chapter 2, we present a type-based deadlock-freedom

verification for a concurrent calculus with interrupts. We first present a concurrent calculus

with interrupts and block-structured synchronization primitives in Section 2.1.1. The type

system for the calculus, presented in Section 2.2, is more simple than one we have explained in

Section 1.2.1. We clarify how interrupts are dealt with using that simple setting. We then extend

the framework with non-block-structured synchronization primitives in Section 2.3. Section 2.4

reports the result of a preliminary experiment.

In Chapter 3, we present a resource usage verification method for the π-calculus. Section 3.1

introduces an extension of the π-calculus with primitives for creating and accessing resources.

Section 3.2 introduces a type system for resource usage analysis, which guarantees that well-

typed processes never perform an invalid resource access. Section 3.3 gives a type inference

algorithm for the type system. Section 3.4 extends the type system to guarantee that necessary

resource accesses (such as closing of opened files) are eventually performed (unless the program

diverges). Section 3.5 describes a prototype resource usage analyzer we have implemented based

on the present work.

After discussing related work in Chapter 4, we conclude the thesis in Chapter 5.

11



Chapter 2

Type-Based Analysis of Deadlock for a Concurrent

Calculus with Interrupts

We present a type-based deadlock-freedom verification method for a concurrent calculus with

interrupts in this chapter. Section 2.1 and 2.2 show a verification for a language with Feature

B and Feature C presented in Section 1.2.1. Section 2.3 extends the framework with Feature

A, and presents the result of an experiment. The contents of Section 2.1 and 2.2 have been

presented in the 16th European Symposium on Programming [60].

2.1 Target Language

2.1.1 Syntax

The syntax of our target language is defined in Figure 2.1. Our language is an imperative

language which is equipped with concurrency and interrupt handling.

A program P consists of a sequence of function definitions D̃ and a main expression M . A

function definition is constructed from a function name x, a sequence of formal arguments ỹ and

a function body. Function definitions can be mutually recursive. Note that a function name

belongs to the class of variables, so that one can use a function name as a first-class value.

Expressions are ranged over by a meta-variable M . ¤ and J are left-associative. For the

sake of simplicity, we have only block-structured primitives (sync x in M and disable int M)

for acquiring/releasing locks and disabling/enabling interrupts. We explain intuition of several

non-standard primitives below.

• let x = ref v in M creates a fresh reference to v, binds x to the reference and evaluates

M .

• M1 | M2 is concurrent evaluation of M1 and M2. Both of M1 and M2 should evaluate to

().

12



x, y, z, f . . . ∈ Var

lck ::= acquired | released
P ::= D̃M

D ::= x(ỹ) = M

M ::= () | n | x | true | false
| x(ṽ) | let x = M1 in M2 | if v then M1 else M2

| let x = ref v in M | x := v |!v
| (M1 | M2) | let x = newlock () in M

| sync x in M | in sync x in M

| M1 ¤ M2 | M1 JM M2 | disable int M | in disable int M

v ::= () | true | false | n | x
E ::= [ ] | let x = E in M

| (E | M) | (M | E)

| in sync x in E | in disable int E

| E ¤ M | M1 JM E

I ::= enabled | disabled

Figure 2.1: The Syntax of Our Language.

• let x = newlock () in M generates a new lock, binds x to the lock and evaluates M .

• sync x in M attempts to acquire the lock x and evaluates M after the lock is acquired.

After M is evaluated to a value, the lock x is released.

• M1 ¤ M2 installs an interrupt handler M2 and evaluates M1. Once an interrupt occurs,

M1 is suspended until M2 evaluates to a value. When M1 evaluates to a value v, M1 ¤M2

evaluates to v.

• disable int M disables interrupts during an evaluation of M .

The following three primitives only occur during evaluation and should not be included in

programs.

• in sync x in M represents the state in which M is being evaluated with the lock x

acquired. After M evaluates to a value, the lock x is released.

• M1 JM M2 represents the state in which the interrupt handler M2 is being evaluated.

After M2 evaluates to a value, the interrupted expression M1 and the initial state of

interrupt handler M are recovered.

13



flush buffer iter(devlock , data) =

if !data = Null then () else

(sync devlock in ());flush buffer iter(devlock , dequeue())

flush buffer(devlock) = flush buffer iter(devlock , dequeue())

receive data(packettype, data, devlock) =

if packettype = Room then flush buffer(devlock) else ()

(* Main expression *)

let devlock = newlock() in

let data = ref Null in

flush buffer(devlock) ¤ receive data(Room, data, devlock)

Figure 2.2: An Encoding of the Program in Figure 1.1

• in disable int M represents the state in which M is being evaluated with interrupts

disabled. After M evaluates to a value, interrupts are enabled.

We write M1; M2 for let x = M1 in M2 where x is not free in M2.

Figure 2.2 shows how the example in Figure 1.1 is encoded in our language. Though that

encoding does not strictly conform to the syntax of our language (e.g., flush buffer iter is

applied to an expression dequeue(), not to a value), one can easily translate the program into

one that respects our syntax.

Our interrupt calculus is very expressive and can model various interrupt mechanisms, as

discussed in Examples 2.1–2.4 below.

Example 2.1 In various kinds of CPUs, there is a priority among interrupts. In such a situa-

tion, if an interrupt with a higher priority occurs, interrupts with lower priorities do not occur.

We can express such priorities by connecting several expressions with ¤ as follows.

do something(. . .) ¤ interrupt low(. . .) ¤ interrupt high(. . .)

If an interrupt occurs in do something(. . .)¤ interrupt low(. . .) (note that ¤ is left-associative),

the example above is reduced to

(do something(. . .) Jinterrupt low(...) interrupt low(. . .)) ¤ interrupt high(. . .).

That state represents that interrupt low interrupted do something. From that state, interrupt high

can still interrupt.

(do something(. . .) Jinterrupt low(...) interrupt low(. . .))

Jinterrupt high(...) interrupt high(. . .).

14



interrupt high can interrupt also from the initial state.

(do something(. . .) ¤ interrupt low(. . .)) Jinterrupt high(...) interrupt high(. . .)

From the state above, interrupt low cannot interrupt until interrupt high(. . .) evaluates to a

value.

Example 2.2 In our calculus, we can locally install interrupt handlers. Thus, we can express

a multi-threaded program in which an interrupt handler is installed on each thread.

(thread1 (. . .) ¤ handler1 (. . .)) | (thread2 (. . .) ¤ handler2 (. . .)) . . .

This feature is useful for modeling a multi-CPU system in which even if an interrupt occurs in

one CPU, the other CPUs continue to work in non-interrupt mode.

Example 2.3 In the example in Figure 2.2, we assume that no interrupt occur in the body of

receive data. One can express that an interrupt may occur during an execution of receive data

by re-installing an interrupt handler as follows.

receive data(packettype, data, devlock) =

(if packettype = Room then flush buffer(devlock) else ())¤

receive data(Room, data, devlock)

Example 2.4 Since many real-world programs are written in C, we make design decisions of

our language based on that of C. For example, function names are first-class values in our

language because C allows one to use a function name as a function pointer. With this feature,

we can express a runtime change of interrupt handler as follows:

let x = ref f in ((. . . ;x := g; . . .) ¤ (!x)())

Until g is assigned to the reference x, the installed interrupt handler is f . After the assignment,

the interrupt handler is g. This characteristic is useful for modeling operating system kernels

in which interrupt handlers are changed when, for example, device drivers are installed.

2.1.2 Operational Semantics

The semantics is defined as rewriting of a configuration (D̃, H,L, I, M). H is a heap, which

is a map from variables to values. (Note that references are represented by variables.) L is a

map from variables to {acquired, released}. I is an interrupt flag, which is either enabled

or disabled 1.

Figure 2.3 shows the operational semantics of our language. We explain several important

rules.
1We do not assign an interrupt flag to each interrupt handler in order to keep the semantics simple. Even if

we do so, the type system introduced in Chapter 2.2 can be used with only small changes.

15



• In (E-Ref) and (E-LetNewLock), newly generated references and locks are represented

by fresh variables.

• Reduction with the rule (E-Lock) succeeds only if the lock being acquired is not held.

(E-Unlock) is similar.

• disable int changes the interrupt flag only when the flag was enabled (rule (E-DisableInterrupt1)).

Otherwise, disable int does nothing (rule (E-DisableInterrupt2)).

• If the interrupt flag is enabled, then a handler M2 can interrupt M1 anytime with the

rule (E-Interrupt). When the interrupt occurs, the initial expression of interrupt han-

dler M2 is saved. After the handler terminates, the saved expression is recovered with

(E-ExitInterrupt).

The following example shows how the program in Figure 2.2 leads to a deadlocked state.

We write Lu for {devlock ′ 7→ released}, Ll for {devlock ′ 7→ acquired}, and M ′ for

flush buffer iter(devlock ′, dequeue()). We omit D̃, H and I components of configurations.

(Lu,flush buffer(devlock ′) ¤ receive data(Room, data, devlock ′))

→∗ (Lu, sync devlock ′ in ();M ′ ¤ receive data(Room, data, devlock))

→ (Ll, in sync devlock ′ in ();M ′ ¤ receive data(Room, data, devlock))

→ (Ll, in sync devlock ′ in ();M ′ Jreceive data(...) receive data(Room, data, devlock))

→∗ (Ll, in sync devlock ′ in ();M ′ Jreceive data(...) flush buffer(devlock ′))

→∗ (Ll, in sync devlock ′ in ();M ′ Jreceive data(...) sync devlock ′ in ())

The last configuration is in a deadlock because the attempt to acquire devlock ′, which is already

acquired in Ll, never succeeds and because the interrupt handler sync devlock ′ in () does not

voluntarily yield.

2.2 Type System

2.2.1 Lock Levels

In our type system, every lock type is associated with a lock level, which is represented by

a meta-variable lev . The set of lock levels is {−∞,∞} ∪ N, where N is the set of natural

numbers. We extend the standard partial order ≤ on N to that on {−∞,∞} ∪ N by ∀lev ∈
{−∞,∞} ∪ N.−∞ ≤ lev ≤ ∞. We write lev1 < lev2 for lev1 ≤ lev2 ∧ lev1 6= lev2.

2.2.2 Effects

Our type system guarantees that a program acquires locks in a strict increasing order of lock

levels. To achieve this, we introduce effects which describe how a program acquires locks during

16



x(ỹ) = M ′ ∈ D̃

(D̃, H, L, I, E[x(ṽ)]) → (D̃,H, L, I, E[[ṽ/ỹ]M ′])
(E-App)

(D̃, H, L, I, E[let x = v in M ]) → (D̃, H,L, I, E[[v/x]M ]) (E-Let)

(D̃, H, L, I, E[if true then M1 else M2]) → (D̃,H, L, I, E[M1]) (E-IfTrue)

(D̃,H, L, I, E[if false then M1 else M2]) → (D̃, H,L, I, E[M2]) (E-IfFalse)

x′ is fresh

(D̃, H,L, I, E[let x = ref v in M ]) → (D̃,H[x′ 7→ v], L, I, E[[x′/x]M ])
(E-Ref)

(D̃, H[x 7→ v′], L, I, E[x := v]) → (D̃, H[x 7→ v], L, I, E[()]) (E-Assign)

(D̃, H[x 7→ v], L, I, E[!x]) → (D̃, H[x 7→ v], L, I, E[v]) (E-Deref)

x′ is fresh

(D̃, H, L, I, E[let x = newlock () in M ]) →
(D̃, H,L[x′ 7→ released], I, E[[x′/x]M ])

(E-LetNewlock)

(D̃, H, L, I, E[() | ()]) → (D̃,H, L, I, E[()]) (E-ParEnd)

(D̃, H, L[x 7→ released], I, E[sync x in M ]) →
(D̃, H,L[x 7→ acquired], I, E[in sync x in M ])

(E-Lock)

(D̃, H,L[x 7→ acquired], I, E[in sync x in v]) → (D̃, H,L[x 7→ released], I, E[v])

(E-Unlock)

(D̃, H,L, enabled, E[M1 ¤ M2]) → (D̃, H,L, enabled, E[M1 JM2 M2])

(E-Interrupt)

(D̃, H,L, I, E[M1 JM2 v]) → (D̃, H,L, I, E[M1 ¤ M2])

(E-ExitInterrupt)

(D̃, H,L, I, E[v ¤ M ]) → (D̃,H, L, I, E[v])

(E-NoInterruptValue)

(D̃, H,L, enabled, E[disable int M ]) → (D̃,H, L,disabled, E[in disable int M ])

(E-DisableInterrupt1)

(D̃, H, L,disabled, E[disable int M ]) → (D̃,H, L,disabled, E[M ])

(E-DisableInterrupt2)

(D̃, H,L, I, E[in disable int v]) → (D̃, H, L, enabled, E[v])

(E-EnableInterrupt)

Figure 2.3: The Operational Semantics of Our Language.

17



τ ::= unit | int | bool | τ̃1
ϕ→ τ2 | τ ref | lock(lev)

lev ∈ {−∞,∞} ∪ N
ϕ ::= (lev1, lev2)

Figure 2.4: Syntax of types.

evaluation.

An effect, represented by a meta-variable ϕ, is a pair of lock levels (lev1, lev2). The meaning

of each component is as follows.

• lev1 is a lower bound of the lock levels of locks that may be acquired.

• lev2 is an upper bound of the lock levels of locks that may be acquired or have been

acquired while interrupts are enabled.

For example, an effect (0,−∞) means that locks whose levels are more than or equal to 0 may

be acquired and that no locks are acquired while interrupts are enabled. An effect (0, 1) means

that locks whose levels are more than or equal to 0 may be acquired and that a lock of level

1 may be acquired or has already been acquired while interrupts are enabled. We write ∅ for

(∞,−∞).

We define the subeffect relation and the join operator for effects as follows.

Definition 2.1 (Subeffect Relation) (lev1, lev2) ≤ (lev ′1, lev
′
2) holds if and only if lev ′1 ≤

lev1 and lev2 ≤ lev ′2.

(lev1, lev2) ≤ (lev ′1, lev
′
2) means that an expression that acquires locks according to the effect

(lev1, lev2) can be seen as an expression with the effect (lev ′1, lev
′
2). For example, (1, 2) ≤ (0, 3)

holds. ∅ is the bottom of ≤.

Definition 2.2 (Join) (lev1, lev2) t (lev ′1, lev
′
2) = (min(lev1, lev ′1),max (lev2, lev ′2))

For example, (1, 2) t (0, 1) = (0, 2) and (0,−∞) t (1, 2) = (0, 2) hold. ∅ is an identity of t.

2.2.3 Syntax of Types

Figure 2.4 shows the syntax of types and effects. A type, represented by a meta-variable τ , is

either unit, int, bool, τ̃1
ϕ→ τ2, τ ref or lock(lev). We write τ̃ for a sequence of types. τ ref

is the type of a reference to a value of type τ . τ̃1
ϕ→ τ2 is the type of functions which take a

tuple of values of type τ̃1 and return a value of type τ2. ϕ is the latent effect of the functions.

18



2.2.4 Type Judgment

The type judgment of our type system is Γ . M : τ & ϕ where Γ is a map from variables to

types. The judgment means that the resulting value of the evaluation of M has type τ if an

evaluation of M under an environment described by Γ terminates, and that locks are acquired

in a strict increasing order of lock levels during the evaluation. The minimum and maximum

lock levels acquired are constrained by ϕ. For example,

x : lock(0), y : lock(1) . sync x in sync y in () :unit & (0, 1)

and

x : lock(0), y : lock(1) . sync x in (disable int sync y in ()) :unit & (0, 0)

hold.

Definition 2.3 The relation Γ . M : τ & ϕ is the smallest relation closed under the rules in

Figures 2.5–2.7. The predicate noIntermediate(M) in Figure 2.7 holds if and only if M does

not contain in sync x in M ′, in disable int M ′ or M1 JM ′ M2 as subterms.

We explain several important rules.

• (T-Sync): If the level of x is lev , then M can acquire only locks whose levels are more

than lev . That is guaranteed by the condition lev < lev1 where lev1 is a lower bound of

the levels of locks that may be acquired by M .

• (T-DisableInterrupt): The second component of the effect of disable int M is changed

to −∞ because no interrupt occurs in M , so that no locks are acquired by interrupt han-

dlers.

• (T-InstHandler): The second component of the effect of M1 should be less than the

first component of the effect of M2 because M2 can interrupt M1 at any time. This is why

we need to include the maximum level in effects.

• (T-Fundef): The condition ϕ′ ≤ ϕi guarantees that the latent effect of the type of the

function being defined soundly approximates the runtime locking behavior.

We show how the program in Figure 2.2 is rejected in our type system. From the derivation

tree in Figure 2.8, flush buffer iter has a type (lock(1), τd ref)
(1,1)→ unit, where τd is the type

of the contents of the reference data. Thus, flush buffer has a type lock(1)
(1,1)→ unit and

receive data has a type (τp, τd ref , lock(1))
(1,1)→ unit, where τp is the type of packettype.

Consider the main expression of the example. Let Γ be devlock : lock(1), data : τd ref . Then,

we have

19



Γ . () :unit & ∅ (T-Unit) Γ . n : int & ∅ (T-Int)

Γ . true :bool & ∅ (T-True) Γ . false :bool & ∅ (T-False)

Γ(x) = τ

Γ . x : τ & ∅
(T-Var)

x : (τ1, . . . , τn)
ϕ′→ τ ∈ Γ

Γ . vi : τi & ∅ (i = 1, . . . , n)

Γ . x(v1, . . . , vn) : τ & ϕ′

(T-App)

Γ . M1 : τ1 & ϕ1

Γ, x : τ1 . M2 : τ & ϕ2

Γ . let x = M1 in M2 : τ & ϕ1 t ϕ2

(T-Let)

Γ . v :bool & ∅
Γ . M1 : τ & ϕ1

Γ . M2 : τ & ϕ2

Γ . if v then M1 else M2 : τ & ϕ1 t ϕ2

(T-If)

Γ . v : τ & ∅
x : τ ref ,Γ . M : τ ′ & ϕ

Γ . let x = ref v in M : τ ′ & ϕ

(T-Ref)

x : τ ref ∈ Γ

Γ . v : τ & ∅
Γ . x := v :unit & ∅

(T-Assign)

x : τ ref , Γ . !x : τ & ∅ (T-Deref)

Γ . M1 :unit & ϕ1

Γ . M2 :unit & ϕ2

Γ . M1 | M2 :unit & ϕ1 t ϕ2

(T-Par)

x : lock(lev), Γ . M : τ & (lev1, lev2)

Γ . let x = newlock () in M : τ & (lev1, lev2)
(T-Newlock)

Figure 2.5: Typing rules

• Γ . flush buffer(devlock) :unit & (1, 1) and

• Γ . receive data(Room, data, devlock) :unit & (1, 1).

However, the condition lev2 < lev ′1 of the rule (T-InstHandler) prevents the main expression

to be well-typed (1 < 1 does not hold).

Suppose that

sync devlock in ()

in the body of flush buffer iter is replaced by

disable int sync devlock in ().

20



x : lock(lev) ∈ Γ

Γ . M : τ & (lev1, lev2)

lev < lev1

ϕ = (lev , lev) t (lev1, lev2)

Γ . sync x in M : τ & ϕ

(T-Sync)

x : lock(lev) ∈ Γ

Γ . M : τ & (lev1, lev2)

lev < lev1

ϕ = (∞, lev) t (lev1, lev2)

Γ . in sync x in M : τ & ϕ

(T-Insync)

Γ . M : τ & (lev1, lev2)

Γ . disable int M : τ & (lev1,−∞)
(T-DisableInterrupt)

Γ . M : τ & (lev1, lev2)

Γ . in disable int M : τ & (lev1,−∞)
(T-InDisableInterrupt)

Γ . M1 : τ & (lev1, lev2)

Γ . M2 :unit & (lev ′1, lev
′
2)

lev2 < lev ′1
ϕ = (lev1, lev2) t (lev ′1, lev

′
2)

Γ . M1 ¤ M2 : τ & ϕ

(T-InstHandler)

Γ . M1 : τ & (lev1, lev2)

Γ . M2 :unit & (lev ′1, lev
′
2)

Γ . M :unit & (lev ′′1, lev
′′
2)

lev2 < lev ′1 lev2 < lev ′′1
ϕ′ = ϕ t (lev1, lev2) t (lev ′1, lev

′
2)

Γ . M1 JM M2 : τ & ϕ′

(T-InInterrupt)

Figure 2.6: Typing rules

Then, flush buffer iter has a type (lock(1), τd ref)
(1,−∞)→ unit Thus, because

Γ . flush buffer(devlock) :unit & (1,−∞)

and −∞ < 1 hold, the program is well-typed.

2.2.5 Type Soundness

We prove the soundness of our type system. Here, type soundness means that a well-typed

program does not get deadlocked if one begins an evaluation of the program under an initial

configuration (i.e., under an empty heap, an empty lock environment and enabled interrupt

flag).

We first define deadlock. The predicate deadlocked(L,M) defined below means that M is in

a deadlocked state under L.

Definition 2.4 (Deadlock) The predicate deadlocked(L,M) holds if and only if for all E and

i, M = E[i] implies that there exist x and M ′ such that i = sync x in M ′ ∧L(x) = acquired.

21



Γ ⊇ f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fn : (τn,1, . . . , τn,mn)

ϕn→ τn

Γ, xi,1 : τi,1, . . . , xi,mi : τi,mi . Mi : τi & ϕ′

ϕ′ ≤ ϕi noIntermediate(Mi)

Γ `D fi(xi,1, . . . , xi,mi) = Mi : (τi,1, . . . , τi,mi)
ϕi→ τi

(T-Fundef)

{f1, . . . , fn} is the set of names of functions declared in D̃

Γ ⊇ {f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fn : (τn,1, . . . , τn,mn)

ϕn→ τn}
Γ `D Di : (τi,1, . . . , τi,mi)

ϕi→ τi (1 ≤ i ≤ n)

Γ . M :unit & ϕ noIntermediate(M)

`P D̃M

(T-Prog)

D̃ = {f1(x1,1, . . . , x1,m1) = M1, . . . , fl(xl,1, . . . , xl,ml
) = Ml}

H = {y1 7→ v1, . . . , yk 7→ vk}
L = {z1 7→ lck1, . . . , zn 7→ lckn}

Γ `D (fi(xi,1, . . . , xi,mi) = Mi) : (τi,1, . . . , τi,mi)
ϕi→ τi (1 ≤ i ≤ l)

Γ . vi : τ ′i & ∅ (1 ≤ i ≤ k)

Γ = f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fl : (τl,1, . . . , τl,ml

)
ϕl→ τl,

y1 : τ ′1 ref , . . . , yk : τ ′k ref ,

z1 : lock(lev1), . . . , zn : lock(levn)

`Env (D̃, H, L) : Γ
(T-Env)

`Env (D̃, H, L) : Γ Γ . M : τ & (lev1, lev2)

`C (D̃, H, L, I, M) : τ
(T-Config)

Figure 2.7: Typing Rules for Program and Configuration.

Here, i is defined by the following syntax.

i ::= x(ṽ) | let x = v in M

| if true then M1 else M2 | if false then M1 else M2

| let x = ref v in M | x := v |!x
| let x = newlock () in M | (() | ()) | sync x in M | in sync x in v

| M1 JM2 v | v ¤ M | disable int M | in disable int v

In the definition above, i is a term that can be reduced by the rules in Figure 2.3. Thus,

deadlocked(L,M) means that every reducible subterm in M is a blocked lock-acquiring instruc-

tion. For example,

deadlocked(L, (in sync x in (sync y in 0)) | (in sync y in (sync x in 0)))

22



... T1 T2

Γ . if . . . then () else (sync devlock in ());flush buffer iter(. . .) :unit & (1, 1)
...

where

T1 =
Γ . () :unit & ∅ 1 < ∞

Γ . sync devlock in () :unit & (1, 1)

T2 = Γ . flush buffer iter : (lock(1), τd)
(1,1)→ unit & ∅ ...

Γ . flush buffer iter(devlock , dequeue()) :unit & (1, 1)

Figure 2.8: Derivation Tree of the body of flush buffer iter . Γ =

flush buffer iter : (lock(1), τd ref)
(1,1)→ unit,flush buffer : lock(1)

(1,1)→
unit, receive data : (τp, τd ref , lock(1))

(1,1)→ unit, devlock : lock(1), data : τd.

holds where L = {x 7→ acquired, y 7→ acquired}.
Note that M1 ¤ M2 is not included in the definition of i because, in the real world, whether

M1 ¤ M2 is reducible or not depends on the external environment which is not modeled in our

calculus. For example, (sync x in ()) ¤ () is deadlocked under the environment in which x is

acquired.

Theorem 2.1 (Type Soundness) If `P D̃M and (D̃, ∅, ∅, enabled, M) →∗ (D̃′,H ′, L′, I ′,M ′),

then ¬deadlocked(L′,M ′).

The theorem above follows from Lemmas 2.1–2.4 below. In those lemmas, we use a predicate

wellformed(L, I, M) which means that L, I and the shape of M are consistent.

Definition 2.5 wellformed(L, I, M) holds if and only if

• L(x) = released or x /∈ Dom(L) implies that M does not contain in sync x,

• L(x) = acquired implies AckIn(x, M),

• I = enabled implies that M does not contain in disable int.

• I = disabled implies that there exist E and M ′ such that M = E[in disable int M ′]

and both E and M ′ do not contain in disable int.

Here, AckIn(x,M) is the least predicate that satisfies the following rules.

E and M ′ do not contain in sync x in

AckIn(x,E[in sync x in M ′])
(AckIn-Base)

AckIn(x,M1)

E, M ′ and M2 do not contain

in sync x in

AckIn(x,E[M1 JM ′ M2])
(AckIn-Interrupt)

23



Lemma 2.1 If `P D̃M , then wellformed(∅, enabled,M) and `C (D, ∅, ∅, enabled,M).

Lemma 2.2 If wellformed(L, I,M) and (D̃,H, L, I,M) → (D̃′, H ′, L′, I ′,M ′), then wellformed(L′, I ′,M ′).

Lemma 2.3 (Preservation) If `C (D̃, H,L, I, M) : τ and (D̃, H,L, I,M) → (D̃′, H ′, L′, I ′,M ′),

then `C (D̃′, H ′, L′, I ′,M ′) : τ .

Lemma 2.4 (Deadlock-Freedom) If `C (D̃,H, L, I,M) : τ and wellformed(L, I, M), then

¬deadlocked(L,M).

Proofs of those lemmas are in Appendix A and B.

2.2.6 Type Inference

We can construct a standard constraint-based type inference algorithm as follows. The algo-

rithm takes a program as an input, prepares variables for unknown types and lock levels, and

extracts constraints on them based on the typing rules. By the standard unification algorithm

and the definition of the subeffect relation, the extracted constraints can then be reduced to a

set of constraints of the form {ρ1 ≥ ξ1, . . . , ρn ≥ ξn} where the grammar for ξ1, . . . , ξn is given

by
ξ ::= ρ (lock level variables)

| −∞ | ∞ | min(ξ1, ξ2) | max (ξ1, ξ2) | ξ + 1.

Note that lev < lev1 in (T-Sync) can be replaced by lev +1 ≤ lev1. The constraints above can

be solved as in Kobayashi’s type-based deadlock analysis for the π-calculus [32].

2.3 Extension

We extend our framework with non-block-structured mutex primitives in this section. We first

show the extension to the syntax, and then show the extended the type system.

2.3.1 Target Language

Figure 2.9 shows the syntax of the new target language. We do not give a detailed explanation

here because the intuitive meaning of most constructs can be guessed from the semantics of the

original language. The main difference of the new and the old language is as follows.

• Instead of expressions M , we use statements, which are ranged over by a meta-variable s,

as a body of a program.

• A block-structured mutex primitive sync x in M is replaced by non-block-structured ones

lock x and unlock x. disable int M is also replaced by disable int and enable int .

24



x, y, z, f . . . ∈ Var

lck ::= acquired | released
P ::= D̃s

D ::= x(ỹ) = s

v ::= () | true | false | n | x
s ::= 0 | x(ṽ) | (if v then s1 else s2)

| let x = ref v in s | let x =!y in s | x := y

| (s1 | s2) | let x = newlock () in s

| lock x | unlock x

| s1 ¤ s2 | s1 Js s2

| disable int | enable int

| s1; s2

E ::= [ ] | E; s | (E | s) | (s | E)

| E ¤ s | s1 Js E

I ::= enabled | disabled

Figure 2.9: Syntax

• For a technical reason in designing the type system, we introduce a statement let x =!y in s

as a primitive in order to name the result of a dereference. The type system forces

programs not to access the reference y inside s. We write [!y/x]s, which is a statement

obtained by replacing every free occurrence of x in s with !y, for let x =!y in s when the

distinction between those two statements do not matter.

The semantics of the new language is shown in Figure 2.10.

2.3.2 Type System

Overview

We show the main idea of the extended type system in this section. Essentially, the extended

type system guarantees that locks are acquired in an strict increasing order of their levels, as

in the original type system. However, there are three difficulties in the extended language.

• The possibility that a lock acquired in a function may not be released within the function.

For example, consider the two programs in Figure 2.11. The main function in the left-

hand side program acquires x after executing the function f which acquires and releases

x. The main function in the right-hand side program also acquires x after calling f .

However, f only acquires x and does not release x, which leads to a deadlock. Thus, we

25



x(ỹ) = s′ ∈ D̃

(D̃,H, L, I, x(ṽ)) → (D̃,H, L, I, [ṽ/ỹ]s′)
(E-App)

(D̃, H, L, I,0; s) → (D̃,H, L, I, s) (E-Seq)

(D̃, H, L, I, (if true then s1 else s2)) → (D̃, H,L, I, s1) (E-IfTrue)

(D̃, H,L, I, (if false then s1 else s2)) → (D̃, H, L, I, s2) (E-IfFalse)

x′ is fresh

(D̃, H, L, I, let x = ref v in s) → (D̃,H[x′ 7→ v], L, I, [x′/x]s)
(E-Ref)

(D̃,H[x 7→ v′], L, I, x := v) → (D̃, H[x 7→ v], L, I,0) (E-Assign)

(D̃, H[y 7→ v], L, I, E[let x =!y in s]) → (D̃, H[y 7→ v], L, I, E[[v/x]s])

(E-LetDeref)

x′ is fresh

(D̃, H,L, I, let x = newlock () in s) → (D̃, H,L[x′ 7→ released], I, [x′/x]s)
(E-LetNewlock)

(D̃,H, L, I,0 | 0) → (D̃, H, L, I,0) (E-ParEnd)

(D̃, H, L[x 7→ released], I, lock x) → (D̃, H, L[x 7→ acquired], I,0) (E-Lock)

(D̃,H, L[x 7→ acquired], I,unlock x) → (D̃,H, L[x 7→ released], I,0)

(E-Unlock)

(D̃,H, L, enabled, s1 ¤ s2) → (D̃, H, L, enabled, s1 Js2 s2)

(E-Interrupt)

(D̃, H,L, I, s1 Js2 0) → (D̃,H, L, I, s1 ¤ s2) (E-ExitInterrupt)

(D̃, H, L, I,0 ¤ s) → (D̃,H, L, I,0) (E-NoInterruptHalt)

(D̃, H, L, I,disable int ) → (D̃, H,L,disabled, s)

(E-DisableInterrupt)

(D̃, H,L, I, enable int ) → (D̃, H,L, enabled, s)

(E-EnableInterrupt)

(D̃, H, L, I, s) → (D̃′,H ′, L′, I ′, s′)

(D̃, H, L, I, E[s]) → (D̃′,H ′, L′, I ′, E[s′])
(E-Context)

Figure 2.10: Operational Semantics

26



f(x) = lock x;unlock x

main() =

let x = newlock() in

f(x); lock x

f(x) = lock x

main() =

let x = newlock() in

f(x); lock x

Figure 2.11: Examples that show a difficulty caused by non-block-structured mutex primitives.

f(x, y) = unlock y

main() = let x = newlock() in

lock(x);

let y = ref x in

f(x, !y)

f(x, y) = unlock x;unlock y

main() = let x = newlock() in

lock(x);

let y = ref x in

f(x, !y)

Figure 2.12: Programs that contain aliasing to a lock occurs.

should reject the latter program. In order to reject the right-hand side program, the type

system has to track whether the lock x has to be released after a call to a function, which

is not necessary in the original language.

• Aliasing. For example, consider the programs in Figure 2.12. The function f takes two

locks x and y as arguments and releases both in the right-hand side program, while f

releases only x in the left-hand side program. In the function main, both programs

generate a fresh lock x and acquire the lock. After that, a pointer y to the lock x is

generated, so that !y is an alias of x. Then, the function main passes x and !y to f . We

should reject the right-hand side program because the program releases the lock generated

in main twice. Note that such problem does not occur in the original language because it

is syntactically guaranteed that an acquired lock is released exactly once in that language.

• Race conditions to a reference to a lock. Consider the program in Figure 2.13. The

program generates two references r1 and r2, where r1 is a reference to a lock x and r2

is a reference to y. Then, two threads are spawned. The first thread acquires mutexes

twice through r1 and r2, while the second thread assigns y to r1. Due to that race to r1,

a deadlock occurs if r1 := y is executed before the first thread ends.

Instead of the effect-based approach of the original type system, the extended type system

solves the first two difficulties using the idea of capabilities and obligations [32, 34, 35]. In the

extended type system, each lock type has an obligation to release the lock, a capability to acquire

the lock, or neither. The type system deals with the obligations and the capabilities based on

the following principles.

27



let x = newlock() in

let y = newlock() in

let r1 = ref x in

let r2 = ref y in

(lock(!r1); lock(!r2);unlock(!r2);unlock(!r1)) |
(r1 := y)

Figure 2.13: A program that contains race condition to a reference to a mutex.

flush buffer iter(devlock , data) =

if !data = Null then () else

(lock devlock ;unlock devlock);flush buffer iter(devlock , dequeue())

flush buffer(devlock) = flush buffer iter(devlock , dequeue())

receive data(packettype, data, devlock) =

if packettype = Room then flush buffer(devlock) else ()

(* Main statement *)

let devlock = newlock() in

let data = ref Null in

flush buffer(devlock) ¤ receive data(Room, data, devlock)

Figure 2.14: An Encoding of the Program in Figure 1.1

1. lock x can be executed if and only if (1) x has a capability and (2) the level of every lock

with an obligation is less than the level of x.

2. unlock x can be performed if and only if x has an obligation.

3. An obligation is treated linearly, that is, if an alias to a lock with an obligation is generated,

then exactly one of the lock or the alias inherits the obligation.

Based on the principles above, the extended type system rejects the program in the right-hand

side in Figure 2.11, because, due to the restriction (2) in the first principle, the level of x has

to be less than itself for the program to be accepted, which is unsatisfiable. The program in

Figure 2.12 is also rejected because only one of x or y has an obligation after the reference y is

generated due to the third principle, while f requires both arguments to have an obligation.

In order to deal with interrupts, a capability and an obligation are accompanied by a tag that

indicates whether the lock may be held while interrupts are enabled. Based on those tags, the

type system infers the conditions that correspond to lev2 < lev ′1 in the rule (T-InstHandler)

in Figure 2.6. For example, consider the example in Figure 2.14, which encodes the program

in Figure 1.1 with the extended language. For that program, the type system infers (1) that

28



lev ∈ {0, 1, . . .} ∪ {−∞,∞}
ι, θ, ξ ::= DI | EI

U ::= 0 | obι | capι

r ∈ [0, 1]

τ ::= unit | int | bool | ((τ1, . . . , τn) | ι) (θ,ξ)→lev ((τ ′1, . . . , τ
′
n) | ι′) | τ ref r

| lock(lev , U)

Figure 2.15: Syntax of types.

devlock in flush buffer(devlock) has a capability with a tag that indicates the capability may

be used while interrupts are enabled and (2) that devlock in receive data(Room, data, devlock)

has a capability, so that devlock may be acquired. Thus, the level of devlock must be less than

itself for the program to be accepted, which is not satisfiable.

The third difficulty is solved using ownerships, the right of a thread to access a reference.

As Boyland [6], Terauchi [61] and Kikuchi and Kobayashi [27] do, we use rational-numbered

ownerships. A well-typed program obeys the following rules on ownerships in manipulating

references.

1. An ownership 1 is assigned to a reference when the reference is generated.

2. A thread is required to have an ownership greater than 0 on a reference in order to read

a value from the reference.

3. A thread is required to have an ownership 1 on a reference in order to write a value to

the reference.

4. When a thread is spawned, an ownership of each reference is divided and distributed to

each thread.

Based on those rules, the program in Figure 2.13 is rejected because the total ownership required

on the reference r1 exceeds 1: the first thread requires an ownership more than 0 while the second

thread requires 1.

Syntax

Figure 2.15 shows the syntax of types. In order to track the state of interrupts, we use interrupt

flags ι which range over {EI,DI}. EI means that the interrupts are enabled and DI means

disabled.

Usage, ranged over by a meta-variable U , represents a capability or an obligation assigned

to a lock type. A usage 0 indicates that there is no obligation nor no capability on a lock type.

29



f(y) = disable int ; lock y; enable int

g() = enable int

(* Main statement *)

let x = newlock() in

f(x) | g()

Figure 2.16: A concurrent program in which a thread enables interrupts.

A usage obι represents an obligation to release a lock, while a usage capι represents a capability

to acquire a lock.

Usages obι and capι are accompanied by an interrupt flag ι. The interrupt flag represents

whether the lock can be held while interrupts are enabled. If ι is DI, then the lock can be held

only while interrupts are disabled. If ι is EI, the lock can be held while interrupts are enabled.

For example, if a lock has type lock(lev , capDI), then (1) it cannot be acquired while interrupts

are enabled and (2) the program cannot enable interrupts while the lock is held. We introduce

a partial order DI ≤ EI, which means that the type system may conservatively assume that a

lock which is held only while interrupts are disabled as one held while interrupts are enabled.

τ is a meta-variable that represents types. A type of references τ ref r is accompanied by an

ownership r of the reference, which is a rational number in the set [0, 1]. A lock type lock(lev , U)

has a usage U as well as a lock level lev .

A function type (τ̃ | ι) (θ,ξ)→lev (τ̃ ′ | ι′) consists of the following seven components.

• τ̃ and τ̃ ′: the types of arguments before and after execution of the functions.

• ι and ι′: the interrupt flag before and after execution of the functions.

• Context lock level lev : the maximum level of locks which may have obligations in calling

the function.

• Self enable flag ξ: an interrupt flag that indicates whether the function may enable inter-

rupts during execution.

• Context enable flag θ: an interrupt flag that indicates whether the function can be con-

currently executed with a thread that may enable interrupts.

We need θ and ξ because the interrupt state is shared among threads. For example, consider

the program in Figure 2.16. Though the function f acquires the passed lock y after disabling

interrupts, the type system has to assume that the capability of y may be used while interrupts

are enabled (i.e., the type of y has to be lock(lev , capEI) for some lev) because f is concurrently

executed with the function g which enables interrupts during execution. In that program, the

30



U1 ⊗ U2

obι ⊗ obι′ = undefined

obι ⊗ capι′ = obιtι′

capι ⊗ obι′ = obιtι′

capι ⊗ capι′ = capιtι′

U ⊗ 0 = 0⊗ U = U

ωU

ωobι = undefined

ωcapι = capι

τ1 ⊗ τ2

τ1 ref r1 ⊗ τ2 ref r2 = τ1 ⊗ τ2 ref r1+r2

lock(lev , U1)⊗ lock(lev , U2) =

lock(lev , U1 ⊗ U2)

τ ⊗ τ = τ

(where τ is unit, int,bool,

or a function type.)

ωτ

ω(τ ref r) = (ωτ) ref r

ω(lock(lev , U)) = lock(lev , ωU)

ωτ = τ

(where τ is unit, int,bool,

or a function type.)

Γ1 ⊗ Γ2, ωΓ

(Γ1 ⊗ Γ2)(x) =





Γ1(x) (if x ∈ Dom(Γ1) and x /∈ Dom(Γ2))

Γ2(x) (if x /∈ Dom(Γ1) and x ∈ Dom(Γ2))

Γ1(x)⊗ Γ2(x) (if x ∈ Dom(Γ1) ∩Dom(Γ2))

(ωΓ)(x) = ω(Γ(x))

Figure 2.17: Definition of operators ⊗ and ω.

self enable flag of g and the context enable flag of f are inferred to be EI, from which the

requirement on the type of y above is derived.

Type Judgment

The type judgment for statements in the extended type system is (Γ | ι) .
(θ,ξ)
lev s ⇒ (Γ′ | ι′).

Type environments Γ and Γ′ describe the types of free variables in s before and after execution

of s. The interrupts flags ι and ι′ represents the state of interrupts before and after execution

of s. A context enable flag θ indicates whether there may exist other thread that may enable

interrupts. A self enable flag ξ indicates whether s may enable interrupts. A lock level lev is

the maximum level of locks that may be held by the context to which s belongs.

The type judgment intuitively means that locks are acquired in an strict increasing order

of their levels and an acquired lock is released exactly once if the statement is executed (1)

under an environment described by Γ, (2) under an interrupt state described by ι, (3) with

threads whose enable/disable behavior on the interrupt state are described by θ and (4) with a

31



noob(U),noob(τ)

noob(0) (NoOb-Zero) noob(capι)

(NoOb-Unlocked)

noob(U)

noob(lock(lev , U))
(NoOb-Lock)

noob(τ)

noob(τ ref r)
(NoOb-Ref)

τ is unit, int,bool, or a function type.

noob(τ)
(NoOb-Other)

Figure 2.18: Definition of noob.

noob(Γ)

Γ . () :unit
(T-Unit)

noob(Γ)

Γ . n : int
(T-Int)

noob(Γ)

Γ . true :bool
(T-True)

noob(Γ)

Γ . false :bool
(T-False)

noob(Γ)

x : τ, Γ . x : τ
(T-Var)

Figure 2.19: Typing rules for values.

continuation that respects types in Γ′.

The type judgment is defined as the least relation that satisfies the typing rules in Fig-

ure 2.19–2.21. In those rules, we use the following definitions.

Definition 2.6 (⊗ and ω) Operators ⊗ and ω are defined as in Figure 2.17.

Definition 2.7 (Stripping) An operator τ [ is defined as follows.

(τ ref r)[ = τ [ ref0

(lock(lev , U))[ = lock(lev ,0)

τ [ = τ (where τ is unit, int,bool, or a function type.)

Definition 2.8 (No obligation) noob(τ) is defined as the least predicate that satisfies the

rules in Figure 2.18.

Definition 2.9 levelU , a function that takes a type and returns a set of lock levels, is defined

as follows.

levelU (τ ref r) = levelU (τ)

levelU (lock(lev , U ′)) = {lev} (where U = U ′)

levelU (τ) = ∅ (τ = unit, int,bool, or (τ̃ | ι) (θ,ξ)→lev (τ̃ ′ | ι′))

32



(Γ | ι) .
(θ,DI)
lev 0 ⇒ (Γ | ι) (T-Nop)

(Γ1 | ι1) .
(θ,ξ1)
lev s1 ⇒ (Γ2 | ι2) (Γ2 | ι2) .

(θ,ξ2)
lev s2 ⇒ (Γ3 | ι3)

(Γ1 | ι1) .
(θ,ξ1tξ2)
lev s1; s2 ⇒ (Γ3 | ι3)

(T-Seq)

(x : lock(lev , U1), Γ | ι) .
(θ,ξ)
lev s ⇒ (x : lock(lev , U2), Γ′ | ι′)

noob(U1) noob(U2)

(Γ | ι) .
(θ,ξ)
lev let x = newlock () in s ⇒ (Γ′ | ι′)

(T-Newlock)

lev ′ tmax(levelob (Γ)) < lev ι t θ ≤ ι′

(Γ, x : lock(lev , capι′) | ι) .
(θ,DI)

lev ′ lock x ⇒ (Γ, x : lock(lev , obι′) | ι)
(T-Lock)

ι t θ ≤ ι′

(x : lock(lev , obι′) | ι) .
(θ,DI)
lev unlock x ⇒ (x : lock(lev , capι′) | ι)

(T-Unlock)

Γi . vi : τi (i = 1, . . . , n) Γ′i . vi : τ ′i (i = 1, . . . , n)

lev ′ ≤ lev

Γpre = (Γ1 ⊗ · · · ⊗ Γn)⊗ (x : ((τ1, . . . , τn) | ι) (θ,ξ)→lev ((τ ′1, . . . , τ
′
n) | ι′))

Γpost = (Γ′1 ⊗ · · · ⊗ Γ′n)⊗ (x : ((τ1, . . . , τn) | ι) (θ,ξ)→lev ((τ ′1, . . . , τ
′
n) | ι′))

θ1 ≤ θ x : lock(lev ′′, obι′′) ∈ Γpre =⇒ ξ ≤ ι′′

(Γpre | ι) .
(θ1,ξ)

lev ′ x(v1, . . . , vn) ⇒ (Γpost | ι′)
(T-App)

Γ1 . v :bool (Γ2 | ι) .
(θ,ξ1)
lev s1 ⇒ (Γ | ι′) (Γ2 | ι) .

(θ,ξ2)
lev s2 ⇒ (Γ | ι′)

(Γ1 ⊗ Γ2 | ι) .
(θ,ξ1tξ2)
lev if v then s1 else s2 ⇒ (Γ | ι′)

(T-If)

Figure 2.20: Typing rules for statements (1/2).

We write levelob (τ) for levelobEI(τ)∪levelobDI(τ), and levelcap (τ) for levelcapEI(τ)∪levelcapDI(τ).

levelU (Γ) is defined as {lev |x : τ ∈ Γ ∧ lev ∈ levelU (τ)}.

U1 ⊗ U2 gives the usage that means both obligations in U1 and U2 have to be fulfilled.

obι ⊗ obι′ is undefined because releasing an acquired lock twice is prohibited. ωU intuitively

means U ⊗ U ⊗ · · · ⊗ U . Operators ⊗ and ω on usages are naturally extended to types. τ [

is an operation that strips all the capability, obligation and ownerships from τ . noob(τ) is a

predicate that asserts τ does not have any obligation to fulfil. levelU is a function that collects

levels of locks whose usages are equal to U .

We explain the important rules. In the rule (T-Newlock), noob(U1) means that the newly

generated lock has no obligation. noob(U2) means that all the obligations in the type of x

should be fulfilled at the end of s because x cannot be accessed after execution of s.

33



Γ1 . v : τ (x : τ ref1, Γ2 | ι) .
(θ,ξ)
lev s ⇒ (x : τ ′ ref1, Γ′2 | ι′) noob(τ ′)

(Γ1 ⊗ Γ2 | ι) .
(θ,ξ)
lev let x = ref v in s ⇒ (Γ′2 | ι′)

(T-Ref)

(x : τ, y : τ [ ref0, Γ | ι) .
(θ,ξ)
lev s ⇒ (x : τ1, y : τ2 ref0, Γ′ | ι′) r > 0

(y : τ ref r,Γ | ι) .
(θ,ξ)
lev let x =!y in s ⇒ (y : τ1 ⊗ τ2 ref r, Γ′ | ι′)

(T-Deref)

noob(τ3)

(x : τ3 ref1, y : τ1 ⊗ τ2 | ι) .
(θ,DI)
lev x := y ⇒ (x : τ1 ref1, y : τ2 | ι)

(T-Assign)

(Γ | ι) .
(θ,DI)
lev disable int ⇒ (Γ | DI) (T-DisableInterrupt)

x : lock(lev , obι) ∈ Γ =⇒ ι = EI

(Γ | ι) .
(θ,EI)
lev enable int ⇒ (Γ | EI)

(T-EnableInterrupt)

(Γ1 | ι) .
(θ1,ξ1)
lev s1 ⇒ (Γ′1 | ι1) (Γ2 | ι) .

(θ2,ξ2)
lev s2 ⇒ (Γ′2 | ι2)

ξ2 t θ ≤ θ1 ξ1 t θ ≤ θ2

noob(Γ′1) noob(Γ′2)

(Γ1 ⊗ Γ2 | ι) .
(θ,ξ1tξ2)
lev s1 | s2 ⇒ (Γ′1 ⊗ Γ′2 | ι1 t ι2)

(T-Par)

(Γ1 | ι) .
(θ,ξ1)
lev s1 ⇒ (Γ′1 | ι′)

(Γ2 | EI) .
(θ,ξ2)
lev s2 ⇒ (Γ′2 | ι′′)
noob(Γ′2)

max (levelob (Γ1) ∪ levelcapEI(Γ1)) < min(levelcap (Γ2))

(Γ1 ⊗ ωΓ2 | ι) .
(θ,ξ1tξ2)
lev s1 ¤ s2 ⇒ (Γ′1 | ι′ t ι′′)

(T-InstHandler)

(Γ1 | ι) .
(θ,ξ1)
lev s1 ⇒ (Γ′1 | ι1) (Γ2 | ι) .

(θ,ξ2)
lev s2 ⇒ (Γ′2 | ι2)

(Γ | EI) .
(θ,ξ)
lev s ⇒ (Γ′ | ι′′)

noob(Γ′2) noob(Γ′)

max (levelob (Γ1) ∪ levelcapEI(Γ1)) < min(levelcap (Γ2))

max (levelob (Γ1) ∪ levelcapEI(Γ1)) < min(levelcap (Γ))

(Γ2 ⊗ Γ1 ⊗ ωΓ | ι) .
(θ,ξ1tξ2tξ)
lev s1 Js s2 ⇒ (Γ′1 | ι′)

(T-InInterrupt)

(Γ | ι) .
(θ,ξ)
lev s ⇒ (Γ′ | ι′)

max (levelob (Γ′′)) < min(levelcap (Γ))

(Γ,Γ′′ | ι) .
(θ,ξ)
lev s ⇒ (Γ′, Γ′′ | ι′)

(T-Weak)

Figure 2.21: Typing rules for statements (2/2).

34



y : lock(1, ob) . y : lock(1, ob)

...
Γ3 . unlock z ⇒ Γ4

Γ1 . let z =!x in unlock z ⇒ Γ2 noob(lock(1, cap))
y : lock(1, ob) . let x = ref y in let z =!x in unlock z ⇒ y : lock(1, cap)

Figure 2.22: A derivation tree of let x = ref y in unlock x under the assumption y : lock(0, ob),

where

(T-Lock) assigns an obligation to the type of x. The condition lev ′tmax(levelob (Γ)) < lev

guarantees that the level of lock x is greater than levels of already acquired locks. Note that the

condition lev < lev1 in the rule (T-Sync) in Figure 2.6 corresponds to lev ′tmax(levelob (Γ)) <

lev in (T-Lock).

The condition ι t θ ≤ ι′ in (T-Lock) means that if ι′ = DI (i.e., x should not be acquired

while interrupts are enabled), then the interrupt flag ι should be DI and there should not

be other threads which may enable interrupts. For example, (x : lock(0, capEI) | EI) .
(DI,DI)
lev

lock x ⇒ (x : lock(0, capEI) | EI) holds, while (x : lock(0, capDI) | EI) .
(DI,DI)
lev lock x ⇒

(x : lock(0, capDI) | EI) nor (x : lock(0, capDI) | DI) .
(EI,DI)
lev lock x ⇒ (x : lock(0, capDI) | EI)

does not hold. The pre-interrupt flag of the second judgment EI means that interrupts may be

enabled when lock x is executed. However, the type of x is lock(0, capDI) which means that

the lock may not be held while interrupts are enabled, so that the judgment does not hold. The

third judgment does not hold either because its context enable flag is EI, so that there may be

another thread which may enable interrupts.

(T-Unlock): The usage of the type of x is changed from obι′ to capι′ . We need the condition

ι t θ ≤ ι′ for the same reason as in the case (T-Lock).

In the rule (T-Ref), an ownership 1 is assigned to the new reference x in typing s. At the

end of s, x should not have any obligation because x cannot be accessed after execution of s.

In the rule (T-Deref), all the obligations, capabilities and ownerships in the type of y are

stripped from y and delegated to x in typing s. Thus, y cannot be accessed inside s. At the

end of s, obligations, capabilities and ownerships of x are returned to y.

A derivation of a statement let x = ref y in let z =!x in unlock z under the type envi-

ronment y : lock(0, obEI) in Figure 2.22 shows how (T-Ref) and (T-Deref) work. For the

simplicity of the presentation, we have erased the interrupt-related contents such as DI and EI

from the derivation tree. The type environments Γ1, . . . , Γ4 in that figure is defined as follows.

Γ1 = x : lock(1, ob) ref1, y : lock(1, cap)

Γ2 = x : lock(1, cap) ref1, y : lock(1, cap)

Γ3 = x : lock(1,0) ref0, y : lock(1, cap), z : lock(1, ob)

Γ4 = x : lock(1,0) ref0, y : lock(1, cap), z : lock(1, cap).

35



Note that the obligation of y is passed to the newly generated reference x, delegated to z and

fulfilled through z.

The rule (T-Assign) guarantees that there is no obligation that must be fulfilled through the

reference x because x is being overwritten. The obligation or the capability of y is distributed

to x and y by the assignment. For example, both of

x : lock(0, cap) ref1, y : lock(0, ob) . x := y ⇒ x : lock(0, cap) ref1, y : lock(0, ob)

and

x : lock(0, cap) ref1, y : lock(0, ob) . x := y ⇒ x : lock(0, ob) ref1, y : lock(0, cap)

hold. After the assignment, the obligation originally assigned to y should be fulfilled through y

in the first case, while it should be fulfilled through the reference x in the second case. However,

x : lock(0, cap) ref1, y : lock(0, ob) . x := y ⇒ x : lock(0, ob) ref1, y : lock(0, ob)

does not hold.

In the rule (T-Par), obligations, capabilities and ownerships in the type environments of s1

and s2 are added using ⊗ operator in the conclusion part. The condition ξ2t θ ≤ θ1 guarantees

that, if we have θ1 = DI, which means s1 should not be executed with threads that may

enable interrupts, then neither s2 nor threads other than s1 and s2 should not enable interrupts

(indicated by ξ2 = DI and θ = DI respectively.) The intuitive meaning of ξ1tθ ≤ θ2 is similar.

In the rules (T-DisableInterrupt) and (T-EnableInterrupt), the interrupt flags are

changed to DI and EI respectively. The condition x : lock(lev , obι) ∈ Γ =⇒ ι = EI in the rule

(T-EnableInterrupt) guarantees that every lock type with an obligation in Γ is accompanied

by an interrupt flag EI. This is necessary to guarantee the invariant that a lock with a usage

obDI and capDI can be held only while interrupts are disabled.

The condition max (levelob (Γ1)∪levelcapEI(Γ1)) < min(levelcap (Γ2)) in the rule (T-InstHandler)

guarantees that the minimum level of locks that may be acquired in s2 (i.e., min(levelcap (Γ2)))

should be greater than (1) the maximum level of the already acquired locks (i.e., levelob (Γ1))

and (2) the maximum level of locks that may be acquired during interrupts are enabled (i.e.,

levelcapEI(Γ1).) This condition corresponds to the condition lev2 < lev ′1 of the rule (T-InstHandler)

in Figure 2.6.

The rule (T-Weak) is for adding redundant variables to type environments. In that rule,

the condition max (levelob (Γ′′)) < min(levelcap (Γ)) guarantees that if newly added lock types

have obligations, then the levels of those lock types (levelob (Γ′′)) should be less than the level

of locks that may be acquired in s (levelcap (Γ).)

36



program parser preprocessor

inference

Constraint Constraint

OK

NG

generator reducer

P
Sfrag

replacem
ents

program

parser

preprocessor

C
onstraint
generator

reducer
T

ype
inference

m
odule

O
K

N
G

Figure 2.23: Structure of the verifier.

Type Inference

We can design a standard constraint-based type inference algorithm for our type system. We

informally explain the behavior of such algorithm.

The type inference algorithm consists of two subalgorithms: constraint generation and con-

straint reduction. The constraint generation algorithm receives a program in which every bound

variable is annotated with its simple type, and returns a set of constraints that should be sat-

isfied for the program to be well-typed by constructing a typing derivation tree based on the

rules in Figure 2.20 and 2.21. A constraint set consists of (1) inequalities between interrupt

flags (ι1 ≤ ι2) (2) inequalities between lock levels (lev1 ≤ lev2) (3) equalities between usages

(γ = γ1 ⊗ · · · ⊗ γn where γ is a usage variable or a usage defined in Figure 2.15) (4) noob(γ)

and (5) linear inequalities among ownerships.

The generated constraints are passed to the constraint reduction algorithm. The algorithm

solves constraints of the form (1)–(4) above in a standard manner. The constraints of the form

(5) are solved using a linear inequality solver.

2.4 Experiment

2.4.1 Implementation

Based on the type system introduced in the previous section, we have implemented a deadlock-

freedom verifier. Figure 2.23 shows the structure of the verifier. The verifier is implemented in

Objective Caml [38]. The verifier first constructs the abstract syntax tree of an input program

using CIL [49]. Then, the verifier applies several pre-processing, such as conversion of an

assignment to a variable into one through a pointer, to the abstract syntax tree. After that, the

verifier passes the tree to the type inference algorithm, which was described in Section 2.3.2. If

the type inference succeeds, the verifier reports that the program is deadlock-free. Otherwise,

the verifier reports the error.

The verifier does not require any type annotation. Types are automatically inferred by the

type inference algorithms. However, when one passes a source file which does not contain main

function, the user has to provide main which describes how the functions in the passed file are

37



/* A function that may be called while interrupts are enabled. */

int f(...) {

...

}

/* A function that is used as an interrupt handler. */

int handler(...) {

...

}

Figure 2.24: A source file example.c, which does not contain main function.

int main(int argc, char **argv) {

request_irq(handler);

enable_irq();

f(...);

return 0;

}

Figure 2.25: An example of a main function that describes how the functions in Figure 2.24 are

used.

used. For example, consider the file example.c in Figure 2.24. Suppose that the programmer

intends to call f while interrupts are enabled and to use handler as an interrupt handler.

Then, one has to provide main function in Figure 2.25 in verifying example.c. Inside the main

function, the programmer’s intention that handler is used as an interrupt handler is expressed

by a call to request irq with an argument handler. request irq is a function that installs its

argument as an interrupt handler. Another intention that f is called while interrupts are enabled

is also expressed by a call to f just after enable irq, which enables interrupts. By inspecting

the main function, the verifier generates constraints that correspond to those intention.

The current implementation cannot deal with a program in which obligations/capabilities

arise/disappear inside structures. In order to verify such program, one has to rewrite the

program that does not manipulate a lock inside structures.

2.4.2 Deadlock-freedom verification of a device driver

Using the current implementation of the verifier, we have conducted a verification experiment

on a part of the source code of a protocol stack [41] presented in Section 1.2.1. The primary aim

38



int main(int argc, char **argv)

{

struct csocknet_connection con;

spinlock_t *devlock;

/* csocknet_recv is used as an interrupt handler. */

request_irq(0, csocknet_recv, 0, (int*)0, 0);

/* csocknet_sendq_flush may be called while interrupts are enabled. */

enable_irq();

csocknet_sendq_flush(&con, devlock);

return 0;

}

Figure 2.26: main function provided for the verification.

of this experiment is to clarify weaknesses of the current type system and the implementation.

We do not intend to insist the current implementation is applicable to the real-world programs.

We have manually extracted the function definitions which are involved in the deadlock bug

mentioned in Section 1.2.1 from the source codes in the implementation of [41], have made

corrections to get the extracted source code to meet the restrictions on locks in structures

explained in the previous section, and have provided a main function in Figure 2.26, which

describes how the functions in the extracted code are intended to be used. After that work, the

input program consists of 869 lines of code.

Figure 2.27 shows a part of the definition of a function csocknet send to device, which is

contained in the extracted source code. The function csocknet send to device corresponds

to flush buffer presented in Figure 1.1. Due to the restriction on structures explained in

the previous section, lock acquiring/releasing operations, which were originally operations on

&dev->lock, are replaced with operations on devlock, a lock passed to csocknet send to device.

If the program is compiled with a macro constant BUGGY defined, the function csocknet send to device

uses spin lock and spin unlock in acquiring/releasing devlock instead of spin lock irq,

which disables interrupts before acquiring a lock, and spin unlock irq, which enables in-

terrupts after releasing a lock, so that deadlock may occur due to the reason mentioned in

Section 1.2.1.

Figure 2.28 shows a part of the verification result of the input program in which the macro

constant BUGGY is defined. This output shows how the verifier reports verification failure. The

39



static int csocknet_send_to_device(struct sk_buff *skb, spinlock_t *devlock)

{

struct net_device *dev = skb->dev;

if (dev->type == ARPHRD_MYRI){

int rc;

unsigned long flags;

#ifdef BUGGY

spin_lock(devlock);

#else

/* Acquires a lock after disabling interrupts. */

spin_lock_irq(devlock);

#endif

/* Originally netif_queue_stopped(dev) */

if (netif_queue_stopped_dis(dev)) {

#ifdef BUGGY

spin_unlock(devlock);

#else

spin_unlock_irq(devlock);

#endif

return 1;

}

rc = dev->hard_start_xmit(skb, dev);

#ifdef BUGGY

spin_unlock(devlock);

#else

spin_unlock_irq(devlock);

#endif

return rc;

} else {

return dev_queue_xmit(skb);

}

}

Figure 2.27: A part of the input used in the experiment.

40



LESSTHAN constraints among lock levels cannot be solved.

There is a circle from ’’LEVVAR 39482.

Globals:

...

csocknet_send_to_device:

FUN(prearg : ref(’STRUCT sk_buff(6711), ’’OVAR 6140 );

ref(lock(’’LEVVAR 39482 , lockstate(’CAP, ’ENABLED)),

’’OVAR 39400 )

postarg : ref(’STRUCT sk_buff(34234), ’’OVAR 39178 );

ref(lock(’’LEVVAR 39482 , lockstate(’CAP, ’ENABLED)),

’’OVAR 39400 )...)

csocknet_recv:::

FUN(prearg : ref(’STRUCT sk_buff(26562), ’’OVAR 26733 );

ref(’STRUCT net_device(30924), ’’OVAR 39382 );

ref(’STRUCT packet_type(29560), ’’OVAR 39385 );

ref(’STRUCT net_device(30003), ’’OVAR 39388 );

ref(lock(’’LEVVAR 39396 , lockstate(’CAP, ’’IVAR 28231 )),

’’OVAR 39393 );

ref(lock(’’LEVVAR 39482 , lockstate(’CAP, ’ENABLED)),

’’OVAR 39400 )

postarg : ref(’STRUCT sk_buff(24703), ’’OVAR 39379 );

ref(’STRUCT net_device(30924), ’’OVAR 39382 );

ref(’STRUCT packet_type(29560), ’’OVAR 39385 );

ref(’STRUCT net_device(30003), ’’OVAR 39388 );

ref(lock(’’LEVVAR 39396 , lockstate(’CAP, ’’IVAR 28231 )),

’’OVAR 39393 );

ref(lock(’’LEVVAR 39482 , lockstate(’CAP, ’ENABLED)),

’’OVAR 39400 )...)

...

Figure 2.28: A part of the output.

41



verifier reports that an inequality of lock levels cannot be solved, and that a lock level variable

’’LEVVAR 39482 is involved in the error. The verifier also presents the inferred types of the

defined functions. From that type information, we have the levels of the second parameter of

csocknet send to device (i.e., devlock in Figure 2.27) and the sixth parameter of an interrupt

handler csocknet recv are ’’LEVVAR 39482. We also have that the interrupt flag added to the

usage of the second parameter of csocknet send to device is enabled, so that the condition

max (levelob (Γ1) ∪ levelcapEI(Γ1)) < min(levelcap (Γ2)) was not satisfiable. The verifier reports

no error when we do not define BUGGY.

2.4.3 Discussion

We have discovered the following two weaknesses of the current type system through the false-

alarms reported by the verifier during the experiment.

Lack of polymorphism on interrupt flags

Consider the program in Figure 2.29. Though that program does not deadlock, the current type

system rejects that program as follows.

1. The function f does nothing and returns, so that its inferred type is (unit | ι) → (unit | ι)
for some interrupt flag ι. (We have omitted the self enable flag, the context enable flag

and the context lock level from the type of f.) Note that the pre- and the post-interrupt

flags of the type of f are the same.

2. Because the function g calls f while interrupts are enabled, the interrupt flag ι above has

to be EI from the typing rules (T-EnableInterrupt), (T-Seq) and (T-App), so that

the type of f is (unit | EI) → (unit | EI), which implies interrupts may be enabled at

the end of a call to f.

3. The function h disables interrupts, calls f, and then acquires a lock l. From the type of f,

which says interrupts may be enabled after the call to f, the usage of the lock l before the

lock acquiring operation should be, from (T-App), (T-Seq) and (T-Lock), capEI, which

means l may be acquired while interrupts are enabled, though l is acquired only while

interrupts are disabled. (Note that h disables interrupts at the beginning and f does not

change the interrupt state.)

4. The function handler acquires the lock l. Thus, the usage of l should be capEI before a

call to handler.

5. In main, the function handler is installed as an interrupt handler and then g is called,

which is encoded as h()¤handler() in our calculus. Thus, the condition max (levelob (Γ1)∪

42



levelcapEI(Γ1)) < min(levelcap (Γ2)) in the typing rule (T-InstHandler) is not satisfiable

because levelcapEI(Γ1) = {lev} and levelcap (Γ2) = {lev}.

In the experiment, we avoided false-alarms of this kind by manually duplicating the imple-

mentation of f as f dis, and called f while interrupts are enabled (i.e., in g) and f dis while

disabled (i.e., in h.) For example, a call to netif queue stopped dis in Figure 2.27 is a result

of such duplication. We need to extend our type system with polymorphism on interrupt flags

in order to avoid such manual duplication.

Lack of path-sensitivity

Consider the following definition of a function f.

void f(...) {

int sk;

if (sk) {

...

} else {

spin_lock(conlock);

}

...

/* The function does not change the value of sk in this part. */

...

if (sk) {

...

} else {

spin_unlock(conlock);

}

}

The function f first acquires a lock conlock if a local variable sk is false. After doing some

work which does not change the value of sk, the function again checks the value of sk and

unlocks conlock if sk is false. Because sk is a local variable, the value of sk is not changed by

other threads or interrupt handlers, so that conlock is released exactly once after it is acquired.

However, because our types are not path-sensitive, the verifier cannot determine the usage of

conlock after the first branch, so that reports a type error. We need to rewrite the program as

follows.

43



void f(...) {

int sk;

if (sk) {

...

/* Code that was between the first and the second branch

in the original source is inserted here. */

...

} else {

spin_lock(conlock);

/* Code that was between the first and the second branch

in the original source is inserted here. */

spin_unlock(conlock);

}

}

The code above does not require path-sensitivity on the type of conlock, so that the verification

succeeds.

44



/* A function that does not change the interrupt state. */

int f() {

return 0;

}

int g() {

enable_irq();

/* f is called while interrupts are enabled. */

f();

return 0;

}

spinlock_t *l;

int h() {

disable_irq();

f();

spin_lock(l);

spin_unlock(l);

}

/* An interrupt handler. */

void handler() {

spin_lock(l);

spin_unlock(l);

}

int main(int argc, char **argv) {

request_irq(handler);

h();

}

Figure 2.29: An example that describes a problem caused by lack of polymorphism on interrupt

flags.

45



Chapter 3

Resource Usage Analysis for the π-Calculus

We present a type-based resource usage analysis for the π-calculus extended with resource

creation/access primitives in this chapter. Section 3.1 shows the syntax and the semantics of

our target language. Section 3.2 presents a type system for the verification of resource safety

property and states the soundness of the type system. Section 3.3 presents a type inference

algorithm for the type system. Section 3.4 shows an extension of the type system for verification

of partial liveness property. Section 3.5 reports a prototype of resource usage analyzer for the

presented calculus.

The contents of this chapter is presented in a journal Logical Methods in Computer Sci-

ence [37]. The formalization through Section 3.1–3.4 is a joint work with Naoki Kobayashi and

Lucian Wischik. The implementation presented in 3.5 is due to the author.

3.1 Processes

This chapter introduces the syntax and the operational semantics of our target language.

3.1.1 Syntax

Definition 3.1 (processes) The set of processes is defined by the following syntax.

P (processes) ::= 0 | x〈v1, . . . , vn〉. P | x(y1, . . . , yn). P

| (P |Q) | if v then P else Q

| (νx)P | ∗P | accξ(x).P | (NΦx)P

v (values) ::= x | true | false

Here, x, y, and z range over a countably infinite set Var of variables. ξ ranges over a set of

labels called access labels. Φ, called a trace set, denotes a set of sequences of access labels that

is prefix-closed. The prefixes (like (νx) and (NΦx)) bind tighter than the parallel composition

| .

46



An access label specifies the kind of an access operation. Typical access labels that we are

going to use in this paper are: I for initialization, R for read, W for write, and C for close.

Process accξ(x).P accesses the resource x, and then behaves like P . We will often write

init(x).P , read(x).P , write(x).P , and close(x).P for accI(x).P , accR(x).P , accW (x).P ,

accC(x).P . Process (NΦx)P creates a new resource with the bound name x that should be

accessed according to Φ, and then behaves like P . Φ specifies a set of acceptable sequences of

operations that are allowed for the new resource x. For example, (N(I(R+W )∗C)#x)P creates

a resource that should be first initialized, read or written an arbitrary number of times, and

then closed. Here, (S)# is the prefix closure of S, i.e., {s | ss′ ∈ S}. We write ε for the empty

sequence.

We often abbreviate a sequence v1, . . . , vn to ṽ, and write x〈ṽ〉. P and x(ỹ). P for x〈v1, . . . , vn〉. P
and x(y1, . . . , yn). P . We often omit trailing 0 and write x〈ṽ〉 and accξ(x) for x〈ṽ〉.0 and

accξ(x).0 respectively.

The bound and free variables of P are defined in a customary manner; also (NΦx)P binds

x. We identify processes up to α-conversion, and assume that α-conversion is implicity applied

so that bound variables are always different from each other and from free variables.

3.1.2 Operational Semantics

We now formally define the operational semantics of our process calculus The operational se-

mantics is almost the same as the standard reduction semantics for the π-calculus, except that

trace sets Φ (which represent how resources should be accessed in future) may change during

reduction.

Definition 3.2 The structural preorder ¹ is the least reflexive and transitive relation closed

under the rules in Figure 3.1 (P ≡ Q stands for (P ¹ Q) ∧ (Q ¹ P )).

Reminder 3.1 As in our previous behavioural type systems for the π-calculus [23, 31, 33], the

structural relation is asymmetric. If the standard, symmetric structural relation were used, the

type preservation property would not hold: Γ . ∗P |P : A does not necessarily imply Γ . ∗P : A)

for the type system introduced in the next chapter.

Definition 3.3 The set of reduction labels, ranged over by L, is {xξ | x ∈ Var} ∪ {τ}. We

define target(L) by:

target(xξ) = {x} target(τ) = ∅

Definition 3.4 Let Φ be a set of sequences of access labels. Φ−ξ is defined by: Φ−ξ = {s |
ξs ∈ Φ}.

47



P |0 ≡ P (SP-Zero)

P |Q ≡ Q |P (SP-Commut)

P | (Q |R) ≡ (P |Q) |R (SP-Assoc)

∗P ¹ ∗P |P (SP-Rep)

(νx) P |Q ¹ (νx) (P |Q)(if x not free in Q) (SP-New)

(NΦx)P |Q ¹ (NΦx)(P |Q)(if x not free in Q) (SP-NewR)

P ¹ P ′ Q ¹ Q′

P |Q ¹ P ′ |Q′
(SP-Par)

P ¹ Q

(νx) P ¹ (νx) Q
(SP-CNew)

P ¹ Q

(NΦx)P ¹ (NΦx)Q
(SP-CNewR)

Figure 3.1: Structural Preorder

Definition 3.5 The reduction relation L−→ is the least relation closed under the rules in Fig-

ure 3.2.

We write P −→ Q when P
L−→ Q for some L. We write −→∗ for the reflexive and transitive

closure of −→.

Notice that when an invalid access to a resource occurs (i.e. when the program accesses ξ but

the specification Φ has no ξ-prefixes), then resource specification Φ is set to ∅ by (R-NewR1).

On the other hand Φ ⊇ {ε} indicates a resource that has been correctly used so far, and Φ = {ε}
indicates one that has been correctly and completely used.

Definition 3.6 A process P is resource-safe if it does not contain a sub-expression of the form

(N∅x)Q.

We give a type system guaranteeing that any resource-safe, well-typed process cannot be reduced

to a non-safe process (in other words, any resource-safe, well-typed process never performs an

invalid access) in Section 3.2.

Example 3.1 The following process first creates a resource x that should be first initialized, read

an arbitrary number of times, and then closed. It then spawns four processes; they synchronize

48



x〈z̃〉. P |x(ỹ). Q τ−→ P | [z̃/ỹ]Q

(R-Com)

accξ(x).P xξ−→ P (R-Acc)

P
L−→ Q

P |R L−→ Q |R
(R-Par)

if true then P else Q
τ−→ P

(R-IfT)

if false then P else Q
τ−→ Q

(R-IfF)

P
L−→ Q x 6∈ target(L)

(νx) P
L−→ (νx) Q

(R-New)

P
xξ−→ Q

(NΦx)P τ−→ (NΦ−ξ
x)Q

(R-NewR1)

P
L−→ Q x 6∈ target(L)

(NΦx)P L−→ (NΦx)Q
(R-NewR2)

P ¹ P ′ P ′ L−→ Q′ Q′ ¹ Q

P
L−→ Q

(R-SP)

Figure 3.2: Reduction Relation

through channels c1 and c2, so that x is accessed in a valid order.

(N(IR∗C)#x)(νc1) (νc2)
(

init(x).(c1〈 〉 | c1〈 〉) /* initialize x, and send signals */

| c1( ). read(x).c2〈 〉 /* wait for a signal on c1,

then read x, and signal on c2*/

| c1( ). read(x).c2〈 〉 /* wait for a signal on c1,

then read x, and signal on c2*/

| c2( ). c2( ). close(x)
)
/* wait on c2, then close x */

2

Example 3.2 The following program is prototypical of recursive functions. There is a replicated

service which listens on channel s; it either terminates the recursion by sending a message back

on the reply channel r, or it recursively invokes a sub-instance of itself which will reply on a

private channel r′. In this example each recursive step does a read(x). The following program

use an integer to decide whether or not to recurse. Though our language does not have integers

and operations on them as primitives, it is trivial to extend our language and type system with

those primitives.
(νs)

( ∗(s(n, x, r). if n = 0 then r〈〉
else (νr′) (s〈n− 1, x, r′〉 | r′(). read(x).r〈〉)

| (N(IR∗C)#x)(νr) (init(x).s〈100, x, r〉 | r(). close(x))
)

The above program corresponds to the following higher-level program:

49



init(x); parbegin read(x); read(x) parend; close(x)

Example 3.3 Consider the following producer/consumer program:1

(νproducer) (νconsumer)

∗(producer (b, p, c). p().accP(b).(c〈〉 | producer 〈b, p, c〉)) |
∗(consumer (b, p, c). c().accG(b).(p〈〉 | producer 〈b, p, c〉)) |
(N((P G)∗)#buf )(νx) (νy)

∗(producer 〈buf , x, y〉) | ∗(consumer 〈buf , x, y〉) |x〈〉

The first two processes ∗(producer (b, p, c). · · · ) and

∗(consumer (b, p, c). · · · ) define the behavior of producers and consumers. A producer repeatedly

waits to receive a signal on p, performs a put on the buffer b (by accP(b)), and then sends

a signal on c. A consumer repeatedly waits to receive a signal on c, performs a get on the

buffer b (by accP(b)), and then sends a signal on p. The third process creates a new buffer

on which put and get should be applied only alternately, creates two channels x and y used for

synchronization, and runs infinitely many producers and consumers.

Reminder 3.2 We treat resources as primitives in this paper, but we could alternatively ex-

press a resource as a tuple of channels, each of which corresponds to each access operation. For

example, the resource in Example 3.1 can be expressed as a tuple consisting of three channels

init, read, and close. If we did so, we could directly reuse the previous type systems [7, 23] to

infer some of the properties discussed in this paper (with different precision). Treating resources

as primitives, however, simplifies the type systems introduced in later chapters and clarifies the

essence: if we expressed a resource as a tuple of channels, we would need primitives for simulta-

neous creation of multiple channels as in [23], and need to care about whether communications

on the resource access channels succeed or not. On the other hand, our resource access prim-

itives are non-blocking, which simplifies in particular the extended type system discussed in

Section 3.4.

3.2 Type System

This section introduces a type system that prevents invalid access to resources. The type

system in this section does not guarantee a liveness property that all the necessary accesses are

eventually made; extensions to guarantee that property are discussed in Section 3.4.

1This is an example taken from an ealier version of [51] and modified.

50



3.2.1 Types

We first introduce the syntax of types. We use two categories of types: value types and behav-

ioral types. The latter describes how a process accesses resources and communicates through

channels. As mentioned in Section 1.2.2, we use CCS processes for behavioral types.

Definition 3.7 (types) The sets of value types σ and behavioral types A are defined by:

σ ::= bool | res | chan〈(x1 :σ1, . . . , xn :σn)A〉
A ::= 0 | α | a.A | xξ.A | τ.A | (A1 |A2) | A1 ⊕A2 | ∗A

| 〈y1/x1, . . . , yn/xn〉A | (νx) A | µα.A | A↑S | A↓S

a (communication labels) ::= x | x

A behavioral type A, which is a CCS process, describes what kind of communication and

resource access a process may perform. 0 describes a process that performs no communication

or resource access. The types x.A, x. A, xξ.A and τ.A describe processes that first perform

an action and then behave according to A; the actions are, respectively, an input on x, an

output on x, an access operation ξ on x, and the invisible action. A1 |A2 describes a process

that performs communications and resource access according to A1 and A2, possibly in parallel.

A1⊕A2 describes a process that behaves according to either A1 or A2. ∗A describes a process

that behaves like A an arbitrary number of times, possibly in parallel. 〈y1/x1, . . . , yn/xn〉A,

abbreviated to 〈ỹ/x̃〉A, denotes simultaneous renaming of x̃ with ỹ in A. (νx) A describes a

process that behaves like A for some hidden channel x. For example, (νx) (x. y |x) describes a

process that performs an output on y after the invisible action on x. The type µα.A describes

a process that behaves like a recursive process defined by α
4
= A.2 The type A↑S describes

a process that behaves like A, except that actions whose targets are in S are replaced by the

invisible action τ , while A↓S describes a process that behaves like A, except that actions whose

targets are not in S are replaced by τ . The formal semantics of behavioral types is defined later

using labeled transition semantics.

As for value types, bool is the type of booleans. res is the type of resources. The type

chan〈(x1 : σ1, . . . , xn : σn)A〉, abbreviated to chan〈(x̃ : σ̃)A〉, describes channels carrying tuples

consisting of values of types σ1, . . . , σn. Here the type A approximates how a receiver on the

channel may use the elements x1, . . . , xn of each tuple for communications and resource access.

For example, chan〈(x : res, y : res)xR.yC〉 describes channels carrying a pair of resources, where

a party who receives the actual pair (x′, y′) will first read x′ and then close y′. We sometimes

omit σ̃ and write chan〈(x̃)A〉 for chan〈(x̃ : σ̃)A〉. When x̃ is empty, we also write chan〈〉.

2The replication ∗A and µα.(A |α) have the same semantics in this section, but they are differentiated in

Section 3.4 by the predicate disabled.

51



Note that 〈ỹ/x̃〉 is treated as a constructor rather than an operator for performing the actual

substitution. We write [ỹ/x̃] for the latter throughout this paper. 〈ỹ/x̃〉A is slightly different

from the relabeling of the standard CCS [44]: 〈y/x〉(x | y) allows the communication on y, but

the relabeling of CCS does not. This difference calls for the introduction of a special transition

label {x, y} in Section 3.2.2.

Definition 3.8 The set of free variables of A, written FV(A), is defined by:

FV(0) = ∅
FV(α) = ∅

FV(x.A) = {x} ∪ FV(A)

FV(x.A) = {x} ∪ FV(A)

FV(xξ.A) = {x} ∪ FV(A)

FV(τ.A) = FV(A)

FV(A1 |A2) = FV(A1) ∪ FV(A2)

FV(A1 ⊕A2) = FV(A1) ∪ FV(A2)

FV(∗A) = FV(A)

FV(〈ỹ/x̃〉A) = (FV(A)\{x̃}) ∪ {ỹ}
FV((νx) A) = FV(A)\{x}
FV(µα.A) = FV(A)

FV(A↑S) = FV(A)\S
FV(A↓S) = FV(A) ∩ S

As defined above, (νx) A, 〈ỹ/x̃〉A, and A↑S bind x, x̃, and the variables in S respectively. We

identify behavioral types up to renaming of bound variables. In the rest of this paper, we require

that every channel type chan〈(x1 : σ1, . . . , xn : σn)A〉 must satisfy FV(A) ⊆ {x1, . . . , xn}. For

example, chan〈(x:res)xR〉 is a valid type but chan〈(x:res)yR〉 is not.3

3.2.2 Semantics of behavioral types

We give a labeled transition relation l−→ for behavioral types. The transition labels l (distinct

from the reduction labels L of Definition 3.3) are

l ::= x | x | xξ | τ | {x, y}

The label {x, y} indicates the potential to react in the presence of a substitution that identifies

x and y. We also extend target to the function on transition labels by:

target(x) = target(x) = {x} target({x, y}) = {x, y}
3This constraint can be removed if we assume that the free variables in codom(Γ) never clash with the

bound variables of P in the judgment form Γ . P : A given later. In particular, we need an implicit assumption

{ey}∩FV(Γ)=∅ in Figure 3.4, (T-In).

52



a.A
a→A xξ.A

xξ→ A τ.A
τ→A (Tr-Act)

A1
l→A′1

A1|A2
l→A′1|A2

A2
l→A′2

A1|A2
l→A1|A′2

(Tr-Par1)

A1
x→A′1 A2

y→A′2

A1|A2
{x,y}−→ A′1|A′2

A1
y→A′1 A2

x→A′2

A1|A2
{x,y}−→ A′1|A′2

(Tr-Par2)

A
{x,x}−→ A′

A
τ−→ A′

(Tr-Com)

A1
l→A′1

A1⊕A2
l→A′1

A2
l→A′2

A1⊕A2
l→A′2

(Tr-Or)

A | ∗A l−→ A′

∗A l−→ A′
(Tr-Rep)

[µα.A/α]A l−→ A′

µα.A
l−→ A′

(Tr-Rec)

A
l−→ A′

〈ỹ/x̃〉A [ey/ex]l−→ 〈ỹ/x̃〉A′
(Tr-Rename)

A
l−→ A′ target(l)∩{x} = ∅
(νx) A

l−→ (νx) A′
(Tr-Hiding)

A
l→A′ target(l)⊆S

A↑S
τ→A′↑S

A
l→A′ target(l)∩S=∅

A↑S
l→A′↑S

(Tr-Exclude)

A
l→A′ target(l)⊆S

A↓S
l→A′↓S

A
l→A′ target(l)∩S=∅

A↓S
τ→A′↓S

(Tr-Project)

Figure 3.3: Transition semantics of behavioral types

The transition relation l−→ on behavioral types is the least relation closed under the rules in

Figure 3.3. We write =⇒ for the reflexive and transitive closure of τ−→. We also write l=⇒ for

=⇒ l−→=⇒.

Reminder 3.3 (νx) A should not be confused with A↑{x}. (νx) A is the hiding operator of

CCS, while A↑{x} just replaces any actions on x with τ [23]. For example, (νx) (x. yξ) cannot

make any transition, but (x. yξ)↑{x} τ−→ yξ

−→ 0↑{x}.

53



The set tracesx(A) defined below is the set of possible access sequences on x described by

A.

Definition 3.9 (traces)

tracesx(A) = {ξ1 . . . ξn | A↓{x} xξ1
=⇒ · · · xξn

=⇒ A′}

Note that tracesx(A) is prefix-closed (hence a trace set) by definition.

We define the subtyping relation A1 ≤ A2 below. Intuitively, A1 ≤ A2 means that a

process behaving according to A1 can also be viewed as a process behaving according to A2. To

put in another way, A1 ≤ A2 means that A2 simulates A1.We define ≤ for only closed types,

i.e., those not containing free type variables.

Definition 3.10 (subtyping) The subtyping relation ≤ on closed behavioral types is the largest

relation such that A1 ≤ A2 and A1
l−→ A′1 implies A2

l=⇒ A′2 and A′1 ≤ A′2 for some A′2.

We often write A1≥A2 for A2≤A1, and write A1 ≈ A2 for A1≤A2 ∧A2≤A1.

Reminder 3.4 Note that the subtyping relation defined here is the converse of the one used

in Igarashi and Kobayashi’s generic type system [23]. This is due to two different, dual views

on behavioral types. Here, we think of behavioral types as describing the behavior of processes.

On the other hand, Igarashi and Kobayashi [23] think of behavioral types as describing the

assumption on the environment about what kind of process is accepted by the environment.

Because of this difference, they write behavioral types on the lefthand side of ., and write A1&A2

for non-deterministic choice instead of A1 ⊕A2.

Reminder 3.5 Depending on what property the type system should guarantee, a finer subtyping

relation may need to be chosen. For example, the above definition allows

(xW .0) | (xW .0) ≤ xW .xW .0. We may want to disallow this relation if we want to infer a

property like “no simultaneous writes on x can occur.”

The following properties are satisfied by ≤ . For proofs, see Appendix C.

Lemma 3.1 1. ≤ is a precongruence, i.e., ≤ is closed under any behavioral type construc-

tor.

2. If A1 ≤ A2, then tracesx(A1) ⊆ tracesx(A2) for any x.

3. B1 ⊕B2 ≤ A if and only if B1 ≤ A and B2 ≤ A .

4. If [B/α]A ≤ B, then µα.A ≤ B.

54



3.2.3 Typing

We consider two kinds of judgments, Γ . v : σ for values, and Γ . P : A for processes. Γ is a

mapping from a finite set of variables to value types. In Γ . P :A, the type environment Γ

describes the types of the variables, and A describes the possible behaviors of P . For example,

x : chan〈(b :bool)0〉 . P : x |x implies that P may send booleans along the channel x twice.

The judgment y : chan〈(x : chan〈(b :bool)0〉)x〉 . Q : y means that Q may perform an input on

y once, and then it may send a boolean on the received value. Note that in the judgment

Γ . P : A, the type A is an approximation of the behavior of P on free channels. P may do less

than what is specified by A, but must not do more; for example, x : chan〈( )0〉 . x〈 〉 :x |x holds

but x : chan〈( )0〉 . x〈 〉. x〈 〉 : x does not. Because of this invariant, if A does not perform any

invalid access, neither does P .

We write dom(Γ) for the domain of Γ. We write ∅ for the empty type environment, and

write x1 : τ1, . . . , xn : τn (where x1, . . . , xn are distinct from each other) for the type environment

Γ such that dom(Γ) = {x1, . . . , xn} and Γ(xi) = τi for each i ∈ {1, . . . , n}. When x 6∈ dom(Γ),

we write Γ, x : τ for the type environment ∆ such that dom(∆) = dom(Γ)∪ {x}, ∆(x) = τ , and

∆(y) = Γ(y) for y ∈ dom(Γ). We define the value judgment relation Γ . v:σ to be the least

relation closed under

Γ, x:σ . x:σ Γ . true:bool Γ . false:bool.

We write Γ . ṽ:σ̃ as an abbreviation for (Γ . v1:σ1) ∧ · · · ∧ (Γ . vn:σn).

Definition 3.11 The type judgment relation Γ.P :A is the least relation closed under the rules

given in Figure 3.4.

We explain key rules below.

In rule (T-Out), the first premise Γ.P : A2 implies that the continuation of the output pro-

cess behaves like A2, and the second premise Γ.x : chan〈(ỹ : σ̃)A1〉 implies that the tuple of val-

ues ṽ being sent may be used by an input process according to 〈ṽ/ỹ〉A1. Therefore, the whole be-

havior of the output process is described by x. (〈ṽ/ỹ〉A1 |A2). Here, 〈v1/x1, . . . , vn/xn〉A stands

for 〈vi1/xi1 , . . . , vik/xik〉A where {vi1 , . . . , vik} = {v1, . . . , vn}\{true, false}. For example,〈true/x, y/z〉A
stands for 〈y/z〉A. Note that, as in previous behavioral type systems [7, 23], the resource access

and communications made on ṽ by the receiver of ṽ are counted as the behavior of the output

process (see Remark 3.7).

In rule (T-In), the first premise implies that the continuation of the input process behaves

like A2. Following previous behavioral type systems [7, 23], we split A2 into two parts: A2↓{ey}
and A2↑{ey}. The first part describes the behavior on the received values ỹ and is taken into

account in the channel type. The second part describes the resource access and communications

55



performed on other values, and is taken into account in the behavioral type of the input process.

The condition A2↓{ey} ≤ A1 requires that the access and communication behavior on ỹ conforms

to A1, the channel arguments’ behavior.

In (T-New), the premise implies that P behaves like A, so that (νx) P behaves like (νx) A.

Here, we only require that x is a channel, unlike in the previous behavioral type systems for the

π-calculus [23, 33]. That is because we are only interested in the resource access behavior; the

communication behavior is used only for accurately inferring the resource access behavior.

In (T-NewR), we check that the process’s behavior A conforms to the resource usage

specification Φ.

Rule (T-Sub) allows the type A′ of a process to be replaced by its approximation A.

We remark that weakening of Γ can be derived (Appendix D, Lemma D.1) and so is not

needed as a rule.

The following example shows how information about the usage of resources by an input

process is propagated to an output process.

Example 3.4 Let us consider (NΦx)P , where

Φ = (R∗C)#

P = (νy) (y〈x, x〉 | y(z1, z2). read(z1).close(z2)).

Let Γ = y : chan〈(z1, z2)zR
1 .zC

2 〉, x : res. Then, the following judgment holds for the output

and input processes.
Γ . y〈x, x〉 : y. xR.xC

Γ . y(z1, z2). read(z1).close(z2) : y.0

Here, we have used subtyping relations 〈x/z1, x/z2〉zR
1 .zC

2 ≈ xR.xC and zR
1 .zC

2 ↑{z1,z2} ≈ 0. By

using (T-Par) and (T-New), we obtain

x : res . P : (νy) (y. xR.xC | y)

Using (T-Sub) with (νy) (y. xR.xC | y) ≈ xR.xC we get

x : res . P : xR.xC

Since tracesx(xR.xC)) ⊆ (R∗C)#, we obtain ∅ . (NΦx)P :0 by using (T-NewR) and (T-Sub).

2

56



Γ . 0 :0 (T-Zero)

Γ . P : A2 Γ . x : chan〈(ỹ : σ̃)A1〉 Γ . ṽ : σ̃

Γ . x〈ṽ〉. P : x. (〈ṽ/ỹ〉A1 |A2)
(T-Out)

Γ, ỹ : σ̃ . P :A2 Γ . x : chan〈(ỹ : σ̃)A1〉 A2↓{ey} ≤ A1

Γ . x(ỹ). P : x. (A2↑{ey})
(T-In)

Γ . P1 : A1 Γ . P2 : A2

Γ . P1 |P2 : A1 |A2

(T-Par)

Γ . P : A

Γ . ∗P : ∗A
(T-Rep)

Γ . v :bool Γ . P : A Γ . Q : A

Γ . if v then P else Q : A
(T-If)

Γ, x : chan〈(ỹ : σ̃)A1〉 . P :A2

Γ . (νx) P : (νx) A2

(T-New)

Γ . P :A Γ . x : res

Γ . accξ(x).P : xξ.A
(T-Acc)

Γ, x : res . P : A tracesx(A) ⊆ Φ

Γ . (NΦx)P : A↑{x}
(T-NewR)

Γ . P : A′ A′ ≤ A

Γ . P : A
(T-Sub)

Figure 3.4: Typing Rules

Example 3.5 Recall Example 3.2:

P = (νs) (∗s(n, x, r). P1 | (NΦx)P2)

P1 = if n = 0 then r〈〉
else (νr′) (s〈n− 1, x, r′〉 | r′(). read(x).r〈〉)

P2 = (νr) (init(x).s〈100, x, r〉 | r(). close(x))

Φ = (IR∗C)#

57



Let A1 = µα.(r⊕(νr′) (〈r′/r〉α|r′. xR.r) and let Γ = s:chan〈(n:int, x:res, r:chan〈〉) A1〉. Then

Γ, n:int, x:res, r:chan〈〉 . P1 :A1

Γ . ∗s(n, x, r). P1 : ∗s. (A1↑{n,x,r}) ≈ ∗s
Γ . P2 : (νr) (xI .A1|r. xC)

So long as tracesx((νr) (xI .A1|r. xC)) ⊆ Φ, we obtain ∅ . P :0. See Section 3.3.3 for the

algorithm that establishes tracesx(·) ⊆ Φ. 2

Reminder 3.6 The type A1 in the example above demonstrates how recursion, hiding, and

renaming are used together. In general, in order to type a recursive process of the form

∗s(x). (νy) (· · · s〈y〉 · · · ), we need to find a type that satisfies (νy) (· · · 〈y/x〉A · · · ) ≤ A. More-

over, for the type inference (in Section 3.3), we must find the least such A. Thanks to the type

constructors for recursion, hiding, and renaming, we can always do that: A can be expressed by

µα.(νy) (· · · 〈y/x〉α · · · ) (recall Lemma 3.1.4).

Reminder 3.7 A reader may wonder why the rules (T-Out) and (T-In) are asymmetric, in

the sense that information about the continuation of a receiver process is transferred to a sender

process but not vice versa. That design choice comes from the observation that a channel or

resource exchanged between a sender and a receiver are, in general, statically known only to the

sender, so that we have to put information about the behavior on the channel or resource into

the type of the sender. For example, consider the process ((νy) (x〈y〉 | · · · ) |x(z). z〈 〉. Since the

receiver x(z). z〈 〉 is not in the scope of y, we have to put the information that y will be used

for output into the type of the sender x〈y〉 (as x. y). It is still useful and possible to recover

the symmetry in the treatment of senders and receivers to some extent: see Section 8 of our

previous paper [23].

The following theorem states that no well-typed process performs an invalid access to a

resource.

Theorem 3.1 (type soundness (safety)) Suppose that P is safe. If Γ.P : A and P −→∗ Q,

then Q is safe.

Proof 3.1 We make use of the following lemma:

• Subject-reduction. If P
L−→ P ′ and Γ . P : A then A

L=⇒ A′ and Γ . P ′ :A′.

Proof: see Appendix D.

For the proof of the theorem, we focus on just a single reduction step. By the Lemma we

know that judgements are preserved by reduction; we must show that safety is also preserved, by

58



induction on the derivation of reduction. The only interesting case is (R-NewR1), (NΦx)P τ→
(NΦ−ξ

x)P ′, since the other rules do not alter trace-sets Φ. In this case, we are given Γ . P : A,

tracesx(A) ⊆ Φ, and P
xξ→ P ′. By the Lemma, A

xξ

=⇒ A′ for some Γ . P ′ : A′. Assume (NΦx)P

is safe; hence so is P ; by the induction hypothesis so is P ′. From the conditions tracesx(A) ⊆ Φ

and A
xξ

=⇒ A′, we get ξ ∈ tracesx(A) ⊆ Φ, so that ε ∈ Φ−ξ 6= ∅. So, (NΦ−ξ
x)P ′ is safe.

3.3 Type Inference Algorithm

This chapter discusses an algorithm which takes a closed process P as an input and checks

whether ∅.P :0 holds. As in similar type systems [24, 33], the algorithm consists of the following

steps.

1. Extract constraints on type variables based on the (syntax-directed version of) typing

rules.

2. Reduce constraints to trace inclusion constraints of the form

{tracesx1(A1) ⊆ Φ1, . . . , tracesxn(An) ⊆ Φn}

3. Decide whether the constraints are satisfied.

The algorithm for Step 3 is sound but not complete.

We give an overview of each step below. The first two steps are almost the same as those in

the previous work.

3.3.1 Step 1: Extracting Constraints

The typing rules presented in Section 3.2 can be transformed to the syntax-directed typing rules

shown in Figure 3.5. In the figure, Γ1 ∪ Γ2 is the type environment obtained by merging both

bindings, and defined only if Γ1(x) = Γ2(x) for every x ∈ dom(Γ1) ∩ dom(Γ2). Type equality

here is syntactic equality up to α-renaming. And wd(Γ1∪Γ2) means that Γ1∪Γ2 is well-defined.

The two sets of typing rules are equivalent in the following sense: If Γ . P : A is derivable, then

there exists A′ such that A′ ≤ A holds and Γ .sd P :A′ is derivable. Conversely, if Γ .sd P : A

is derivable, so is Γ . P : A.

Based on the syntax-directed rules, we obtain the algorithm in Figure 3.6, which takes a

process P and outputs a triple consisting of a type environment Γ, a behavioral type A, and

a set C of constraints. In Figure 3.6, Γ1 ⊗ · · · ⊗ Γn is defined to be (Γ, C) where Γ and C are

given by:
dom(Γ) = dom(Γ1) ∪ · · · ∪ dom(Γn)

Γ(x) = Γi(x) where x ∈ dom(Γi)\(dom(Γ1) ∪ · · · ∪ dom(Γi−1))

C = {Γi(x) = Γj(x) | x ∈ dom(Γi) ∩ dom(Γj)}

59



∅ .sd 0 :0 (T-SD-Zero)

Γ0 .sd P : A2 Γi . vi : σi (for each i ∈ {1, . . . , n})
Γ0 ∪ Γ̃ ∪ (x : chan〈(ỹ : σ̃)A1〉) .sd x〈ṽ〉. P :x. (〈ṽ/ỹ〉A1 |A2)

(T-SD-Out)

Γ .sd P : A2 A2↓{ey} ≤ A1 wd(Γ ∪ ỹ : σ̃)

(Γ\{ỹ}) ∪ x : chan〈(ỹ : σ̃)A1〉 .sd x(ỹ). P :x.A2↑{ey}
(T-SD-In)

Γ1 .sd P1 : A1 Γ2 .sd P2 : A2

Γ1 ∪ Γ2 .sd P1 |P2 :A1 |A2

(T-SD-Par)

Γ .sd P :A

Γ .sd ∗P : ∗A
(T-SD-Rep)

Γ0 . v : bool Γ1 .sd P : A1 Γ2 .sd Q : A2

A1 ≤ A A2 ≤ A

Γ0 ∪ Γ1 ∪ Γ2 .sd if v then P else Q : A
(T-SD-If)

Γ .sd P :A2 wd(Γ ∪ (x : chan〈(x̃ : τ̃)A1〉))
Γ\{x} .sd (νx) P : (νx) A2

(T-SD-New)

Γ .sd P :A

Γ ∪ (x : res) .sd accξ(x).P : xξ.A
(T-SD-Acc)

Γ .sd P : A tracesx(A) ⊆ Φ wd(Γ ∪ (x : res))

Γ\{x} .sd (NΦx)P :A′↑{x}
(T-SD-NewR)

Figure 3.5: Syntax Directed Typing Rules

The triple (Γ, A, C) output by PT satisfies the following properties:

• θΓ . P : θA holds for any substitution θ such that |= θC.

• If Γ′ . P :A′, then there exists a substitution θ such that θΓ ⊆ Γ′ and θA ≤ A′.

Here, Γ and A may contain variables representing unknown behavioral types and value types. C

is a set of constraints on them, and the substitution θ above replaces them with closed behavioral

types and value types. Intuitively, the triple (Γ, A, C) expresses a set of type judgments for P .

The first property above says that the triple contains only valid judgments, while the second

property says that every valid judgment is subsumed by the triple.

We do not give a formal proof of the above properties; As usual, they can be proved by

induction on the structure of P .

60



PTv(x) = (x : ρ, ρ) (where ρ fresh)

PTv(b) = (∅,bool) if b ∈ {true, false}

PT(0) = (∅,0, ∅)
PT(x〈ṽ〉. P0) = let (Γi, σi) = PTv(vi)

(Γ0, A0, C0) = PT(P0)

(Γ, C) = Γ0 ⊗ (x : chan〈(ỹ : σ̃)α〉)⊗ Γ1 ⊗ · · · ⊗ Γn

in (Γ, x. ([ṽ/ỹ]α |A0), C) (where α fresh)

PT(x(ỹ). P0) = let (Γ0, A0, C0) = PT(P0)

(Γ1, C1) = Γ0 ⊗ (x : chan〈(ỹ : ρ̃)α〉)⊗ (ỹ : ρ̃)

in (Γ\ỹ, x. A0↑{ey}, C0 ∪ C1 ∪ {α ≥ A0↓{ey}}) (where α, ρ̃ fresh)

PT(P0 |P1) = let (Γ0, A0, C0) = PT(P0)

(Γ1, A1, C1) = PT(P1)

(Γ2, C2) = Γ0 ⊗ Γ1

in (Γ2, A0 |A1, C0 ∪ C1 ∪ C2)

PT(if v then P0 else P1 ) = let (Γ0, A0, C0) = PT (P0)

(Γ1, A1, C1) = PT(P1)

(Γ2, σ) = PTv(v)

(Γ, C2) = Γ0 ⊗ Γ1 ⊗ Γ2

in (Γ, A0 ⊕A1, C0 ∪ C1 ∪ C2 ∪ {σ = bool})
PT((νx) P0) = let (Γ0, A0, C0) = PT (P0)

C1 = if x ∈ dom(Γ0)then {isChan(Γ0(x))}else ∅
in (Γ0\{x}, (νx) A0, C0 ∪ C1)

PT(∗P0) = let (Γ0, A0, C0) = PT (P0)

in (Γ0, ∗A0, C0)

PT(accξ(x).P0) = let (Γ0, A0, C0) = PT (P0)

(Γ1, C1) = Γ0 ⊗ (x : res)

in (Γ1, x
ξ.A0, C0 ∪ C1)

PT((NΦx)P0) = let (Γ0, A0, C0) = PT (P0)

(Γ1, C1) = Γ0 ⊗ (x : res)

in (Γ1\{x}, A0↑{x}, C0 ∪ C1 ∪ {tracesx(A0) ⊆ Φ})

Figure 3.6: An algorithm for constraint extraction.

61



3.3.2 Step 2: Reducing Constraints

Given a closed process P , PT(P ) produces a triple (∅, A,C). The set C of constraints consists

of unification constraints on value types (where all the behavioral types occurring in them are

variables), constraints of the form isChan(σ) (which means that σ is a channel type), subtype

constraints on behavioral types of the form α ≥ A, and constraints of the form tracesx(A) ⊆ Φ.

We can remove the first two kinds of constraints (unification constraints on value types and

isChan(σ)) by applying the standard unification algorithm. Thus, we obtain the following

constraints:
{α1 ≥ A1, . . . , αn ≥ An,

tracesx1(B1) ⊆ Φ1, . . . , tracesxm(Bm) ⊆ Φm}
Here, we can assume that α1, . . . , αn are different from each other, since α ≥ A1 and α ≥ A2

can be replaced with α ≥ A1⊕A2 by Lemma 3.1. We can also assume that {α1, . . . , αn} contains

all the type variables in the constraint, since otherwise we can always add the tautology α ≥ α.

Each subtype constraint α ≥ A can also be replaced by α ≥ µα.A, by using Lemma 3.1.

Therefore, the above constraints can be further reduced, by Lemma 3.1, to:

{tracesx1([Ã
′/α̃]B1) ⊆ Φ1, . . . , tracesxm([Ã′/α̃]Bm) ⊆ Φm}

Here, A′1, . . . , A
′
n are the least solutions for the subtype constraints.

Thus, we have reduced type checking to the validity of trace inclusion constraints of the

form tracesx(A) ⊆ Φ.

Example 3.6 Recall Example 3.2. By applying the algorithm PT and the first part of Step 2,

we obtain the following constraints:

tracesx((νr) (xI .s. α1 | r. xC)) ⊆ (IR∗C)#

α1 ≥ r. α2 ⊕ (νr′) (s. 〈r′/r〉α1 | r′. xR.r. α2)↓{n,x,r}
α2 ≥ α2

By applying the second part of Step 2, we obtain tracesx(A1) ⊆ (IR∗C)# where

A1 = (νr) (xI .s. A2 | r. xC)

A2 = µα1.r. A3 ⊕ (νr′) (s. 〈r′/r〉α1 | r′. xR.r. A3)↓{n,x,r}
A3 = µα2.α2.

3.3.3 Step 3: Constraint Solving

We present an approximate algorithm for checking a trace inclusion constraint tracesx(A) ⊆ Φ

when the trace set Φ is a regular language. (Actually, we can extend the algorithm to deal with

the case where Φ is a deterministic Petri net language: see Remark 3.8.)

62



We first describe the algorithm with an example. In Example 3.6 above, we have reduced

the typability of the process to the equivalent constraint tracesx(A1) ⊆ Φ where Φ = (IR∗C)#

and

A1↓{x} ≈ (νr) (xI .A′′2 | r. xC)

A′′2 = r ⊕ (νr′) (〈r′/r〉A′′2 | r′. xR.r)

Here, we have removed A3 = µα.α since A3 ≈ 0.

Step 3-1. Approximate the behavior of A1↓{x} by a Petri net [55] NA1,x. This part is

similar to the translation of usage expressions into Petri nets in Kobayashi’s previous work [28,

33, 35]. Since the behavioral types are more expressive (having recursion, hiding, and renaming),

however, we need to approximate the behavior of a behavioral type unlike in the previous work.

In this case A1↓{x} is infinite. To make it tractable we make a sound approximation A′1 by

pushing (ν) to top level, and we eliminate 〈r′/r〉:

A′1 = (νr, r′) (xI .A′2 | r. xC)

A′2 = r ⊕ (A′3 | r′. xR.r)

A′3 = r′ ⊕ (A′3 | r′. xR.r′)

Then NA′1,x is as pictured. (Here we treat A1 ⊕ A2 as τ.A1 ⊕ τ.A2 for clarity. We also use a

version of Petri nets with labeled transitions.)

x
I
.A

′
2x

I
.A

′
2 r.xCr.xC

τ.r ⊕ τ.(A′
3|r′

.x
R

.r)τ.r ⊕ τ.(A′
3|r′

.x
R

.r)

τ.r
′ ⊕ τ.(A′

3|r
′
.x

R
.r

′)τ.r
′ ⊕ τ.(A′

3|r
′
.x

R
.r

′)

rr xCxC

xR.rxR.r

r′.xR.rr′.xR.r

r′r′

xR.r′xR.r′r′.xR.r′r′.xR.r′

I

R

R

τ

τ
τ

τ

C

τ

τ

τ

τ

B1

B2

B3

B4

B5

B6 B7

B8

B9

B10

B11

The rectangles are the places of the net, and the dots labeled by τ, xR, etc. are the transitions

of the net. Write ix for the number of tokens at node Bx. The behavior A′1 corresponds to

the initial marking {i1=1, i10=1}. We say that the nodes B̃ together with the restricted names

(r, r′) constitute a basis for A′1. Note here that tracesx(A1) ⊆ tracesx(A′1) = ptraces(NA′1,x)

where ptraces(NA′1,x) is the set of traces of the Petri net. Thus, ptraces(NA′1,x) ⊆ Φ is a

sufficient condition for tracesx(A1) ⊆ Φ . The key point here is that A′1 still has infinite states,

but all its reachable states can be expressed in the form (νr, r′) (i1B1 | · · · | i11B11) (where ikBk

63



is the parallel composition of ik copies of Bk), a linear combination of finitely many processes

B̃. That is why we could express A′1 by the Petri net as above.

Step 3-2. Construct a deterministic, minimized automaton MΦ that accepts the language

Φ. Here the initial marking is {i12=1}.

I

R

C

B12

I.R∗.C

B13

R∗.C

Step 3-3. Construct another Petri net NA′1,x ‖MΦ from NA′1,x and MΦ, which simulates the

behavior of PA and MΦ simultaneously, so that the problem of tracesx(A′1)(= ptraces(NA′1,x)) ⊆
Φ is equivalent to a reachability problem of NA′1,x ‖MΦ. In the example, NA′1,x ‖MΦ has the ini-

tial marking {i1=1, i10=1, i12=1} and transitions such as B1|B12
I−→ B2|B13. ptraces(NA′1,x) ⊆

Φ if and only if the following unsafe state is unreachable.

(i1>0 ∧ i12=0) ∨ (i7>0 ∧ i13=0) ∨ (i9>0 ∧ i13=0) ∨ (i11>0 ∧ i13=0)

To explain, if i1 > 0 ∧ i12=0 then the behavior is able to make an R transition but the specifi-

cation automaton MΦ is not able.

Step 3-4. Use an approximate algorithm to decide the reachability problem of NA′1,x ‖MΦ,

in a manner similar to Kobayashi’s type-based analyzer TyPiCal [28] for the π-calculus.

The above steps 3-1, 3-2, and 3-3 are described in more detail below. See Section 3.5 for

Step 3-4.

3.3.4 Step 3-1: Construction of NA,x

We first introduce the notion of a basis. The basis is analogous to that of a vector space; Each

state is expressed as a linear combination of elements of the basis.

Definition 3.12 A pair ({y1, . . . , ym}, {B1, . . . , Bn}) is a basis of A if all of the following

conditions are satisfied:

• A ≈ (νy1) · · · (νym) (i1B1 | · · · | inBn) for some i1, . . . , in ∈ Nat.

• If Bj
l−→ C, then there exist i1, . . . , in ∈ Nat such that C ≈ i1B1 | · · · | inBn.

• For each Bj, there are only finitely many C (up to ≈) such that Bj
l−→ C.

Note that if ({ỹ}, {B1, . . . , Bn}) is a basis of A, then whenever A =⇒ A′, there exist i1, . . . , in

such that A′ ≈ (νỹ) (i1B1 | · · · | inBn). Let us write Index(C) for (i1, . . . , in) such that C ≈
i1B1 | · · · inBn. (If there are more than one such tuple, Index(C) picks one among them.)

64



Therefore, if A↓{x} has a basis, the behavior of A↓{x} is simulated by the (labeled) Petri net

N
A,x,({ey},{ eB}) given below. Here, we use a process-like syntax to represent the elements of a

Petri net rather than the standard tuple notation (P, T, F, W,M0). A marking state m which

has ik tokens for each place pk (k ∈ {1, . . . , n}) is written i1p1 | · · · | inpn. A transition that

consumes a marking m1 and produces m2 is expressed by m1
γ−→ m2, where γ is the label of

the transition.

• The set P of places is {pB1 , . . . , pBn}.

• The initial marking mI is i1pB1 | · · · | inpBn

where A↓{x} ≈ (νỹ) (i1B1 | · · · | inBn).

• The set of transitions consists of:

– pBj

τ−→ i1pB1 | · · · | inpBn

where Index(C) = (i1, . . . , in), for each Bj
τ−→ C.

– pBj

ξ−→ i1pB1 | · · · | inpBn

where Index(C) = (i1, . . . , in), for each Bj
xξ−→ C.

– pBj | pBj′
τ−→ (i1 + i′1)pB1 | · · · | (in + i′n)pBn where Index(C) = (i1, . . . , in) and

Index(C ′) = (i′1, . . . , i
′
n), for each pair of transitions Bj

z−→ C and Bj′
z−→ C ′

such that z ∈ {ỹ}.

Below, we omit the basis and just write NA,x for N
A,x,({ey},{ eB}). Let us write ptraces(NA,x)

for the set:

{ξ1 · · · ξk | mI
ξ1=⇒ · · · ξk=⇒ m′}

where
ξ

=⇒ means τ−→∗ ξ−→ τ−→∗
. By the construction of NA,x, ptraces(NA,x) = tracesx(A).

The construction of NA,x outlined above can be applied only when a basis of A↓x can be

found (by some heuristic algorithm). If A↓x has no basis or cannot be found, we approximate

A↓x by moving all the ν-prefixes to the top-level; for example, y. (νx) A, ∗(νx)A and µα.(νx) A

are replaced by (νx) (y. A), (νx) ∗A, and (νx) µα.A respectively. Let A′ be the approximation

of A↓{x}. It is easy to prove that A′ is a sound approximation of A↓{x}, in the sense that

tracesx(A) ⊆ tracesx(A′).

We can compute a basis of A′ as follows (see Appendix F for more details). Since ν-prefixes

do not appear inside recursion, we can first eliminate the constructors ·↑S , ·↓S , and 〈ỹ/x̃〉. Let

(νỹ) A′′ be the resulting expression, where A′′ does not contain ·↑S , 〈ỹ/x̃〉, or (νx) . Let B be

the set of behavioral types that are subexpressions of the behavioral types obtained from A′′

by expanding recursive types and do not contain “unnecessary” unfolding [µα.A/α]A. Then, B

is a finite set, and ({ỹ},B) is a basis of A′. We can therefore construct a Petri net NA′,x. By

65



the construction, ptraces(NA′,x) = tracesx(A′) ⊇ tracesx(A), so that ptraces(NA′,x) ⊆ Φ is

a sufficient condition for tracesx(A) ⊆ Φ.

3.3.5 Steps 3-2 and 3-3: Construction of NA,x ‖MΦ and reduction of tracesx(A) to

a reachability problem

Let PNA,x
and TNA,x

be the sets of places and transitions of NA,x respectively. Let MΦ be a

minimized deterministic automaton4 that accepts Φ, and let QΦ be its set of states and δΦ be

its transition function.

Definition 3.13 The composition of NA,x and MΦ, written NA,x ‖MΦ, is defined as follows:

• The set of places is PNA,x
∪QΦ

• The set of transitions is:

{(m|q) ξ−→ (m′|q′) | (m ξ→m′) ∈ TNA,x
∧ δΦ(q, ξ) = q′}

∪{m τ−→ m′ | (m τ→m′) ∈ TNA,x
}

• Initial state is mI | qI where mI is the initial state of NA,x and qI is the initial state of

MΦ.

Now, ptraces(NA,x) ⊆ Φ can be reduced to the reachability problems of NA,x ‖MΦ.

Theorem 3.2 ptraces(NA,x) ⊆ Φ if and only if no marking m | q that satisfies the following

conditions is reachable:

• m
ξ−→ m′ for some m′ and ξ in NA,x.

• δΦ(q, ξ) is undefined.

Thus, we can reduce ptraces(NA,x) ⊆ Φ to a finite set of reachability problems of NA,x ‖MΦ.

Hence ptraces(NA,x) ⊆ Φ is decidable [43].

Corollary 3.1 ptraces(NA,x) ⊆ Φ if and only if for every transition rule of the form m1
ξ−→

m2 of NA,x and q such that δΦ(q, ξ) is undefined, no marking m such that m ≥ m1 | q is reachable

by NA,x ‖MΦ.

Reminder 3.8 We can actually extend the above algorithm for checking tracesx(A) ⊆ Φ to

deal with the case where Φ belongs to the class of deterministic Petri net languages (more

precisely, the class of P-type languages of λ-free, deterministic Petri nets [53, 55]). If Φ is

the P-type language of a λ-free, deterministic Petri net, then its complement Φ is a Petri net
4Note that since Φ is prefix-closed, all the states of the minimized automaton are accepting states.

66



language [53]. Therefore, we can construct a Petri net that accepts the intersection of the

language of NA,x and Φ [55]), so that ptraces(NA,x) ⊆ Φ can be reduced to the emptiness

problem of the Petri net, which is decidable due to the decidability of the reachability problem.

Some of the useful resource usage specifications are not regular languages but are determin-

istic Petri net language. For example, consider a stack-like resource on which, at any point of

program execution, the number of times the operation pop has been performed is less than the

number of times push has been performed. Such specification is expressible as a deterministic

Petri net language.

3.4 Extensions

The type system given so far guarantees that no invalid resource access is performed, but

not that any necessary access is performed eventually; for example, the type system does not

guarantee that a file is eventually closed. We discuss extensions of the type system to guarantee

such properties.

We are interested in type systems that satisfy either partial liveness5 or the stronger liveness

property:

• partial liveness: If P −→∗ Q and Q 6−→, then Q does not contain any resource to which

some access must be performed.

• liveness: In any fair reduction sequence P −→ P1 −→ P2 −→ · · ·, P eventually performs

all the necessary resource access. (Here, a reduction sequence is fair if an input or output

action that is infinitely enabled will eventually succeed. Without the fairness assump-

tion, no process can satisfy the liveness property in the presence of a divergent process

(νx) (x〈 〉 | ∗x( ). x〈 〉, which is too restrictive.)

Our idea is to take the resource type system from the previous sections, and combine it with

some existing system that annotates those communications that eventually succeed. Specifically,

this existing system might be (1) deadlock-freedom [33, 35], which guarantees that the anno-

tated communications eventually succeed unless the process diverges; the combination would

then guarantee partial liveness. Or the existing system could be (2) lock-freedom [31, 33], which

guarantees that the annotated communications eventually succeed even in the presence of diver-

gence (assuming a strongly fair scheduler); the combination would then guarantee full liveness.

To formally state which resource access must be performed, we extend the trace sets.

5This is not a standard term; actually, the partial liveness here can be viewed as the safety property that

no ‘bad’ state is reachable such that the necessary accesses have not yet been performed but the system cannot

make any move.

67



Definition 3.14 An extended trace set is a set of sequences of access labels, possibly ending

with a special label ↓, that is closed under the prefix operation.

Intuitively, the special label ↓ means that no further resource access need to be performed. For

example, the trace set ({C ↓, RC ↓})# means that the close operation needs to be performed,

while ({↓, R ↓, C ↓, RC ↓})# means that the close operation need not be performed.

Now we can state the partial liveness property more formally. We write (ν̃Ñ) for a (possibly

empty) sequence of ν- and N-binders.

Definition 3.15 A process P is partially live if ↓ ∈ Φ whenever P −→∗¹ (ν̃Ñ)(NΦx)Q 6−→.

3.4.1 A Type System for the Partial Liveness Property

We extend the syntax of processes to allow each input and output prefix to be annotated with

information about whether the communication is guaranteed to succeed.

Definition 3.16 ((extended) processes) The set of (extended) processes is given by:

t (attributes) ::= c | ∅
P ::= xt〈y1, . . . , yn〉. P | xt(y1, . . . , yn). P | · · ·

The attribute c indicates that when the annotated input or output operation appears at the

top-level, the operation will succeed unless the whole process diverges, while ∅ does not give

such a guarantee. We often omit tag ∅.
We assume that there exists a type system guaranteeing that any well-typed process is well-

annotated in the sense of Definition 3.17 below. There are indeed such type systems [29, 33, 35].

Moreover, the static analysis tool TyPiCal [28] can automatically infer the annotations.

Definition 3.17 P is active, written active(P ), if P ¹ (ν̃Ñ)(xc〈ṽ〉. Q |R) or P ¹ (ν̃Ñ)(xc(ỹ). Q |R).

Additionally, P is well-annotated, written well annotated(P ), if for any P ′ such that P −→∗ P ′

and active(P ′), there exists P ′′ such that P ′ −→ P ′′.

For example, xc〈 〉.0 |xc( ). y∅〈 〉.0 is well-annotated, but

xc〈 〉.0 |xc( ). yc〈 〉.0 is not. Note that x∅( ). xc〈 〉.0 is well-annotated since, although the output

never succeeds, it does not appear at the top-level.

Now we introduce the type system that guarantees the partial liveness. We extend the

behavioral types by extending each input, output, or τ -action with an attribute to indicate

whether the action is guaranteed to succeed.

A ::= xt. A | xt. A | τt.A | · · ·

68



disabled(0, S)

disabled(xξ.A, S) if disabled(A, S) and x 6∈ S

disabled(ac.A, S) if disabled(A, S)

disabled(a∅.A, S)

disabled(τc.A, S) if disabled(A, S)

disabled(τ∅.A, S)

disabled(A1 |A2, S) if disabled(A1, S) and disabled(A2, S)

disabled(A1 ⊕A2, S) if disabled(A1, S) or disabled(A2, S)

disabled(∗A,S) if disabled(A, S)

disabled((νx) A,S) if disabled(A, S\{x})
disabled(A↑S′ , S) if disabled(A, S\S′)
disabled(A↓S′ , S) if disabled(A, S ∩ S′)

disabled(〈ỹ/x̃〉A,S) if disabled(A, {z | [ỹ/x̃]z ∈ S})
disabled(µα.A, S) if disabled([µα.A/α]A,S)

Figure 3.7: The definition of disabled(A,S)

For example, a process having type xc. x∅.0 implies that the process may send values on x

twice, and that the first send is guaranteed to succeed (i.e., the sent value will be received by

some process), while there is no such guarantee for the second send.

The transition semantics of behavioral types is unchanged; The attribute t is just ignored.

We revise the definitions of the subtype relation and the traces by using the following

predicate disabled(A, S). Intuitively, this means that A describes a process that may get blocked

without accessing any resources in S.

Definition 3.18 disabled(A,S) is the least binary relation between extended behavioral types

and sets of variables closed under the rules in Figure 3.7.

Definition 3.19 The set etracesx(A) of extended traces is:

{ξ1 · · · ξn ↓ |∃B.A↓{x} xξ1
=⇒ · · · xξn

=⇒ B ∧ disabled(B, {x})}
∪{ξ1 · · · ξn|∃B.A↓{x} xξ1

=⇒ · · · xξn

=⇒ B}

Here, A↓{x} xξ1
=⇒ · · · xξn

=⇒ B ∧disabled(B, {x}) means that ξn may be the last access to x, so that

↓ is attached to the sequence ξ1 · · · ξn. By definition, etracesx(A) is prefix-closed.

69



Γ .pl P : A2 Γ .pl x : chan〈(ỹ : σ̃)A1〉
Γ .pl ṽ : σ̃

Γ .pl xt〈ṽ〉. P : xt. (〈ṽ/ỹ〉A1 |A2)
(ET-Out)

Γ, ỹ : σ̃ .pl P : A2 Γ . x : chan〈(ỹ : σ̃)A1〉
A2↓{ey} ≤ A1

Γ .pl xt(ỹ). P : xt. (A2↑{ey})
(ET-In)

Γ, x : res .pl P :A etracesx(A) ⊆ Φ

Γ .pl (NΦx)P : A↑{x}
(ET-NewR)

Figure 3.8: Typing Rules for Partial Liveness

Definition 3.20 A1 ≤ A2 is the largest relation on closed behavioral types that satisfies the

following properties:

• If A1
l−→ A′1 then there exists A′2 such that A2

l=⇒ A′2 and A′1 ≤ A′2.

• disabled(A1, S) implies disabled(A2, S) for any set S of variables.

Note that by the definition, A1 ≤ A2 implies etracesx(A1) ⊆ etracesx(A2).

The typing rules are the same as those in Section 3.2, except for the rules shown in Figure 3.8.

The only changes are that attributes have been attached to (ET-Out) and (ET-In), and that

tracesx(A↓{x}) has been replaced by etracesx(A↓{x}) in (ET-NewR). An important invariant

maintained by the typing rules is that the type of an input/output process is annotated with

c only if the process itself is annotated with c. For example, we cannot derive x : chan〈〉 .pl

x∅〈 〉 : xc.

The following theorem states the soundness of the extended type system.

Theorem 3.3 If well annotated(P ) and ∅ .pl P :A, then P is partially live.

Proof 3.2 We make use of three lemmas. The first two show that typing and well-annotatedness

are preserved by reduction. The third means that the type of a process properly captures the

possibility of the process being blocked.

• Subject reduction. If Γ .pl P : A and P
L−→ Q, then there exists some B such that

Γ .pl Q : B and A
L=⇒ B.

Proof: See Appendix D.

• Well-annotatedness. If well annotated(P ) and P −→∗¹ Q, then well annotated(Q).

Proof: trivial by definition of well annotated(P ).

70



• Disabled. If well annotated(P ) and Γ.pl P : A with bool 6∈ codom(Γ), then P 6−→ implies

disabled(A,S) for any S.

Proof: See Appendix E.

Now we are ready to prove the theorem. Suppose that P −→∗ (ν̃Ñ)(NΦx)Q 6−→ and well annotated(P ),

∅ .pl P : A. We have to show ↓ ∈ Φ. By subject-reduction we obtain ∅ .pl (ν̃Ñ)(NΦx)Q : A′

for some A′. By the inversion of the typing rules, we get ỹ : r̃es, z̃ : σ̃, x : res .pl Q : B and

tracesx(B) ⊆ Φ for some sequence σ̃ of channel types. (Here, ỹ and z̃ are the variables

bound by N.) By well-annotatedness we also have well annotated((ν̃Ñ)(NΦx)Q), which im-

plies well annotated(Q). Thus, by Disabled, we get disabled(B, S) for any S, which implies

disabled(B↓{x}, {x}). So, we have ↓ ∈ etracesx(B) ⊆ Φ as required.

Example 3.7 An annotated version of Example 3.5:

P = (νs) (∗sc(n, x, r). P1 | (NΦx)P2)

P1 = if n = 0 then rc〈〉
else (νr′) (sc〈n− 1, x, r′〉. | r′c(). read(x).rc〈〉)

P2 = (νr) (init(x).sc〈100, x, r〉 | rc(). close(x))

Φ = (IR∗C ↓)#

is well-annotated. Suppose

A1 = µα.(rc ⊕ (νr′) (〈r′/r〉α|r′c. xR.rc)

Γ = s:chan〈(b:int, x:res, r:chan〈〉) A1〉.
Then

Γ . P1 : A1

Γ . ∗sc(n, x, r). P1 : ∗sc. (A1↑{n,x,r}) ≈ ∗sc

Γ . P2 : (νr) (xI .A1|rc. xC).

So long as etracesx((νr) (xI .A1 | rc. xC .)) ⊆ Φ, we obtain ∅ . P :0. 2

3.4.2 Type Inference

The type inference algorithm for the extended type system is almost the same as the algorithm

for the basic type system discussed in Section 3.3. The only changes are:

• In the constraint generaltion algorithm PT, attribute annotations for input and ouptut

processes are propagated to types. For example, the case for output processes becomes:

PT(xt〈ṽ〉. P0) =

let (Γi, σi) = PTv(vi)

(Γ0, A0, C0) = PT(P0)

(Γ, C) = Γ0 ⊗ (x : chan〈(ỹ : σ̃)α〉)⊗ Γ1 ⊗ · · · ⊗ Γn

in (Γ, xt. ([ṽ/ỹ]α |A0), C) (where α fresh)

71



• The constraint tracesx(A) ⊆ Φ is replaced by etracesx(A) ⊆ Φ.

The second change forces us to adjust the reduction of the constraint to the reachability

problem of Petri nets (recall step 3 of the algorithm in Section 3.3). First, we need to use

eptraces(NA,x) defined below, which corresponds to etracesx(A), instead of ptraces(NA,x) in

the reduction.

Definition 3.21 eptraces(NA,x) is the set

{ξ1 · · · ξk | mI
ξ1=⇒ · · · ξk=⇒ m′} ∪ {ξ1 · · · ξk ↓| mI

ξ1=⇒ · · · ξk=⇒ m′ ∧ pdisabled(m′, {x})}

where mI is the initial marking of NA,x. pdisabled(m,S) means that disabled(A,S) holds for

the behavioral type A expressed by m.

Second, the construction of an automaton needs to be adjusted so that it accepts extended

traces. For example, the automaton used in the explanation of Step 3-2 in Section 3.3 is

replaced by the one that accepts IR∗C ↓.
With these changes, the validity of a constraint etracesx(A) ⊆ Φ is reduced to the reacha-

bility problem of a Petri net NA,x ‖MΦ where composition of a Petri net NA,x and an automaton

MΦ is defined in the same manner as Definition 3.13.

Theorem 3.4 eptraces(NA,x) ⊆ Φ if and only if no marking m | q that satisfies the following

conditions is reachable:

• pdisabled(m, {x}).

• δΦ(q, ↓) is undefined.

3.5 Implementation

We have implemented a prototype resource usage analyzer based on the extended type system

described in Section 3.4. We have tested all the examples given in the present paper. The

implementation can be tested at http://www.yl.is.s.u-tokyo.ac.jp/~kohei/usage-pi/.

The analyzer takes a pi-calculus program as an input, and uses TyPiCal[28] to annotate

each input or output action with an attribute on whether the action is guaranteed to succeed

automatically (recall the syntax of extended processes in Section 3.4). The annotated program

is then analyzed based on the algorithm described in Section 3.3.

The followings are some design decisions we made in the current implementation. We restrict

the resource usage specification (Φ) to the regular languages, although in future we may extend

it based on Remark 3.8. In Step 3-1 of the algorithm for checking etracesx(A) ⊆ Φ, we blindly

approximate A by pushing all of its ν-prefixes to the top-level. In future we might utilize an

72



existing model checker to handle the case where A is already finite. In Step 3-4 for solving the

reachability problems of Petri nets, we approximate the number of tokens in each place by an

element of the finite set {0, 1, 2, “3 or more”}. That approximation reduces Petri nets to finite

state machines, so we can use BDD to compute an approximation of the reachable states.

Figure 3.9 shows a part of a successful run of the analyzer. The first process (on the second

line) of the input program runs a server, which returns a new, initialized resource. We write !

and ? for output and input actions. The resource access specification is here expressed by the

number 1 of newR 1, x, which refers to the built-in specification (I(R+W )∗C ↓)#. The second

process runs infinitely many client processes, each of which sends a request for a new resource,

and after receiving it, reads and closes it. The third process (on the 6th line) is a tail-recursive

version of the replicated service in Example 3.2. Here, a boolean is passed as the first argument

of s instead of an integer, as the current system is not adapted to handle integers; it does not

affect the analysis, since the system ignores the value and simply inspects both branches of the

conditional. Note that the program creates infinitely many resources and has infinitely many

states. The first output is the annotated version of the input program produced by TyPiCal,

where !! and ?? are an output and an input with the attribute c (recall Section 3.4).

The remaining part shows the trace inclusion constraint and the constructed Petri net. The

final line reports that the verification has succeeded, which implies that both the safety property

(in Section 3.2) and the partial liveness property (in Section 3.4) are satisfied.

3.6 Discussion

We have presented a resource usage verification for the π-calculus extended with resource ma-

nipulation primitives. Though we believe the idea of extracting resource-wise behavior of a

program using a type system and verifying the safety of the behavior can be applied to practi-

cal software, it is difficult to apply our current framework directly to practical software because

the current calculus lacks many primitives which are in standard programming languages. In

this section, we roughly discuss how the idea of our verification can be applied to primitives in

more practical language. We discuss particularly how function calls, references and interrupts

can be dealt with. More detailed discussion or formalization of such extensions are left as future

work.

Function calls We can deal with function calls in almost the same manner as communications

on channels. A function type would be of the form (τ1, . . . , τn) A→ τ . This function type is

accompanied by a behavioral type A which describes how the arguments of the function are

accessed after the function call. Note that A on that function type corresponds to a behavioral

type attached to a channel type of the current type system, which describes how communicated

73



Input:

new create,s in

*(create?(r).newR 1,x in acc(x,init).r!(x))

| *(new r in create!(r)

| r?(y).new c in s!(false,y,c) | s!(false,y,c)

| c?().c?().acc(y,close))

| *(s?(b,x,r).if b then r!()

else acc(x,read).s!(b,x,r))

Output:

(*** The result of lock-freedom analysis ***)

new create, s in

*create??(r). newR 1,x in acc(x, I). r!!(x)

| *(new r in create!!(r)

| r??(y).new c in s!!(false,y,c) | s!!(false,y,c)

| c??().c??().acc(y,close))

...

(*** Constraints ***)

etrace(x,acc(x, init).(c!! & acc(x, read). $16 | $16 |

c??. c??. acc(x, close). O)) is included in 1

...

(*** initial marking ***)

1 * 11 | 1 * 7

(*** 14 Places ***)

0: c!!. O

...

(*** 9 Transitions ***)

(x,close): 1*12 | 1*10 -> -1*12 | 1*13 | -1*10 | 1*1

...

No error found

Figure 3.9: A Sample Run of the Analyzer.

74



values will be used after the communication.

References Dealing with mutable references is important because it is necessary in modelling

a program in which processes communicate using shared memory. In order to deal with refer-

ences, behavioral types should be extended to be able to express communications and resource

accesses through references.

A challenge is race-condition on a reference. Due to a similar reason to the difficulty in

references to mutexes described in Section 2.3.2, we need to prevent race on a reference to avoid

unexpected change of a reference content by concurrently running threads. For that purpose, we

may be able to use the ownership idea introduced in Section 2.3.2, or some external race-freedom

analysis.

Interrupts We can deal with interrupts by extending our calculus with an interrupt primitive

P1 ¤ P2 which intuitively means an execution of an interrupt handler P2 may interrupt P1. We

also need to extend behavioral types with A1 ¤ A2. In verification of partial-liveness property,

we have to use a deadlock-freedom analysis which takes interrupts into account, such as one

presented in Chapter 2.

In Step 3 of constraint solving phase in Section 3.3.3, we should consider how to judge

whether a trace inclusion constraint tracesx(A) ⊆ Φ holds when A contains an interrupt A1 ¤

A2. A possible solution is to extend the encoding of a behavioral type with Petri-net used in

Section 3.3.3 with interrupts. Such extended encoding may need to make an approximation to

A.

75



Chapter 4

Related work

4.1 Deadlock-freedom verification

Much work on deadlock-freedom verification [5, 32, 34, 35, 54] has been done so far. As we have

mentioned in Section 1.2.1, our deadlock-freedom analysis deals with primitives that have been

ignored in the existing researches.

Kobayashi, Saito and Sumii [32, 34, 35] have proposed type systems for deadlock-freedom of

π-calculus processes. Their idea is (1) to express how each channel is used as a usage expression

and (2) to add capability levels and obligation levels to the inferred usage expressions in order

to detect circular dependency among input/output operations to channels. However, their

framework does not deal with interrupts. If we ignore interrupts, our usages can be seen as a

shrunk form of their usage expressions; following their encoding [32], lock(lev , ob) corresponds

to ()/ ∗ I∞lev .O
lev∞ and lock(lev , cap) to ()/Olev∞ | ∗ I∞lev .O

lev∞ and lock(lev ,0) to ()/0.

Boyapati, Lee and Rinard [5] proposed a type-based deadlock- and race-freedom verification

of Java programs. In their framework, programmers annotate each object with a partially-

ordered lock level. Then the type system guarantees that locks are acquired in a strict decreasing

order. The type system also provides a special ordering mechanism for tree-structured objects

in order to deal with programs that sequentially acquire locks in such objects in a parent-to-

child order. The difference between our type system and theirs is that (1) their type system

deals with race-freedom (2) their type system is equipped with polymorphism on lock levels (3)

our type system deals with non-block-structured mutex primitives and interrupts and (4) their

type system requires annotation on lock ordering, while ours not.

Permandla, Roberson and Boyapati [54] proposed a type-based deadlock- and race-freedom

verification for Java virtual machine language. They also adopt lock-level-based approach.

Though they deal with non-block-structured synchronization primitives, they do not deal with

interrupts.

Several model-checking-based verification methods [20, 21, 63, 67] can deal with concurrency,

76



and some of them [20, 21] deal with non-block-structured mutex primitives. However, none of

them deals with interrupts.

4.2 Calculi with interrupts

Chatterjee et al. have proposed a calculus that is equipped with interrupts [8, 52]. They also

proposed a static analysis of stack boundedness (i.e., interrupt chains cannot be infinite) of

programs. The main differences between our calculus and their calculus are as follows: (1) their

calculus is not equipped with concurrency primitives (2) each handler has its own interrupt

flag in their calculus (3) our calculus can express an install, a change and a detach of interrupt

handlers. Due to (1), we cannot use their calculus to discuss deadlock-freedom analysis. As for

(2), their calculus has an interrupt mask register (imr) to control which handlers are allowed to

interrupt and which are not. This feature is indispensable in the verification of operating system

kernels. We can extend our calculus to incorporate this feature by adding a tag to each interrupt

handler (M ¤ {t1 : M1, . . . , tn : Mn}) and by specifying a tag on interrupt disabling primitives

(disable int t in M). A handler with tag t cannot interrupt inside disable int t in. We also

extend effects like (lev , taglevel), where taglevel is a map from tags to lock levels. taglevel(t) is

an upper bound of the lock levels of locks that may be acquired or have been acquired while

interrupts specified by t is enabled. Typing rules need to be modified accordingly. Concerning

(3), our calculus can express a change of interrupt handlers as shown in Chapter 2.1.

Asynchronous exceptions [19, 39] in Java and Haskell are similar to interrupts in that both

cause an asynchronous jump to an exception/interrupt handler. Asynchronous exceptions are

the exceptions that may be unexpectedly thrown during an execution of a program as a result

of some events such as timeouts or stack overflows. Marlow et al. [39] extended Concurrent

Haskell [26] with support for handling asynchronous exceptions. However, an asynchronous

exception does not require the context in which the exception is thrown to be resumed after an

exception handler returns, while an interrupt requires the context to be resumed.

4.3 Resource usage analysis

Resource usage analysis and similar analyses have recently been studied extensively, and a

variety of methods from type systems to model checking have been proposed [2, 11, 12, 17, 24,

40, 59]. However, only a few of them deal with concurrent languages. To our knowledge, none

of them deal with the partial liveness property (or the total liveness property) that we discussed

in Section 3.4. Nguyen and Rathke [51] propose an effect-type system for a kind of resource

usage analysis for functional languages extended with threads and monitors. In their language,

neither resources nor monitors can be created dynamically. On the other hand, our target

77



language is π-calculus, so that our type system can be applied to programs that may create

infinitely many resources (due to the existence of primitives for dynamic creation of resources:

recall the example in Figure 3.9), and also to programs that use a wide range of communication

and synchronization primitives. Capability-based type systems can deal with concurrency to a

certain degree ([11], Section 4.2), by associating each resource with a unique capability to access

the resource. The type system can control the resource access order, by ensuring the uniqueness

of the capability and keeping track of what access is currently allowed by each capability. In this

approach, however, resource accesses are completely serialized and programmers have to care

about appropriately passing capabilities between threads. Capability-based type systems [11, 12]

also require rather complex type annotations. Igarashi and Kobayashi’s type system for resource

usage analysis for λ-calculus [24] can be extended to deal with threads, by introducing the

following typing rule:

Γ1 . M1 : τ1 Γ2 . M2 : τ2

Γ1 ⊗ Γ2 . spawn(M1);M2

Here, Γ1 ⊗ Γ2 describes resources that are used according to Γ1 and Γ2 that are used in an

interleaving manner. However, it is not obvious how to accurately capture information about

possible synchronizations between M1 and M2.

Model checking technologies [3] can of course be applicable to concurrent languages, but

they suffer from the state explosion problem, especially for expressive concurrent languages

like π-calculus, where resources and communication channels can be dynamically created and

passed around. Appropriate abstraction must be devised for effectively performing the resource

usage analysis for the π-calculus with model checking. Actually, our type-based analysis can

be considered a kind of abstract model checking. The behavioral types extracted by (the

first two steps of) the type inference algorithm are abstract concurrent programs, each of which

captures the access behavior on each resource. Then, conformance of the abstract program with

respect to the resource usage specification is checked as a model checking problem. It would be

interesting to study a relationship between the abstraction through our behavioral type and the

abstraction techniques for concurrent programs used in the model checking community. From

that perspective, an advantage of our approach is that our type, which describes a resource-

wise behavior, has much smaller state space than the whole program. In particular, if infinitely

many resources are dynamically created, the whole program has infinite states, but it is often

the case that our behavioral types are still finite (indeed so for the example in Figure 3.9). The

limitation of our current analysis is that programs can be abstracted in only one way; on the

other hand, the usual abstract model checking techniques refine abstraction step by step until

the verification succeeds.

78



Technically, closest to our type system are that of Igarashi and Kobayashi [23] and that of

Chaki, Rajamani, and Rehof [7]. Those type systems are developed for checking the communi-

cation behavior of a process, but by viewing a set of channels as a resource, it is possible to use

those type systems directly for the resource usage analysis. We summarize below similarities

and differences between those type systems [7, 23] and the type system in the present paper.

(1) Whether types are supplied by the programmer or inferred automatically: Types are

inferred automatically in Igarashi and Kobayashi’s generic type [23] and the type system of the

present paper, but the type of each channel must be annotated with in Chaki et al.’s type system.

The annotated type contains information about how the values (channels, in particular) sent

along the channel are used by senders and receivers, and that information is used to make the

type checking process compositional. For the purpose of the resource usage analysis discussed

here, we think that it is a burden for programmers to declare how channels are going to be used,

since their primary concern is how resources are accessed, not channels. Ideal would be to allow

the user to specify some types and infer the others, like in ML. For that purpose, we need to

develop an algorithm to check the conformance A ≤ B of an inferred type A to a declared type

B. That seems generally harder to decide than the trace inclusion constraint tracesx(A) ⊆ Φ,

but we expect to be able to develop a sound algorithm by properly restricting the language of

declared types.

(2) The languages used as behavioral types: All the three type systems use a fragment of

CCS as the language of types to check cross-channel dependency of communications. The types

in Igarashi and Kobayashi’s generic type system for the π-calculus [23], however, lacks hiding,

so that their type system cannot be applied to obtain precise information about resource usage.

In fact, their analysis would fail even for the program in Example 3.1. Chaki et al.’s type system

does use hiding, but lacks renaming as a constructor. Without the renaming constructor, the

most general type does not necessarily exist, which hinders automatic type inference (recall

Remark 3.6).

(3) Algorithms for checking the conformance of inferred types with respect to specifications:

In Igarashi and Kobayashi’s generic type system, how to check conformance of inferred types

with respect to the user-supplied specifications was left open, and only suggested that it could

be solved as a model checking problem. In Chaki et al.’s type system [7], the conformance

is expressed as A |= F (for checking the global behavior, where F is an LTL-formula) and

A ≤ A′ (for checking the conformance of declared types with respect to inferred types). In

their type checker PIPER [7], those conditions are verified using SPIN, so that A is restricted to

a finite-state process. Corresponding to the conformance check of the above work is the check

of trace inclusion constraints tracesx(A) ⊆ Φ. Our algorithm based on the reduction to Petri

nets works even when A has infinite states.

79



(4) The guaranteed properties: Both Igarashi and Kobayashi’s generic type [23] and the

extended type system of the present paper can guarantee a certain lock-freedom property, that

necessary communications or resource accesses are eventually performed (unless the whole pro-

cess diverges), while Chaki et al.’s type system and the type system in Section 3.2 of the present

paper do not. The guaranteed properties depend on the choice of the language of behavioral

types and the subtyping relation. In the latter type systems, the ordinary simulation relation

is used, so that a process’s type describes only an upper-bound of the possible behavior of the

process, not a lower-bound of the behavior like a certain resource access is eventually performed.

Rajamani et al. [18, 58] recently introduced a more elaborate notion of simulation relation called

“stuck-free conformance.” Even with the stuck-free conformance relation, however, their type

system [7] still cannot guarantee the lack of deadlock-freedom of a process. On the other hand,

by relying on an external analysis to check deadlock-freedom, the extension in Section 3.4 keeps

the typing rules and the subtyping relation simple, while achieving the guarantee that necessary

resource accesses are eventually performed unless the whole process diverges.

Kobayashi’s type systems for deadlock-freedom and livelock-freedom [31, 33, 35] and its im-

plementation [28] form the basis of the extended type systems for partial and total liveness

properties discussed in Section 3.4, and are used for producing well-annotated programs. Con-

versely, the behavioral types introduced in this paper can be used to refine the type systems

for deadlock-freedom and livelock-freedom. Yoshida and Honda have also studied type systems

that can guarantee certain lock-freedom properties [22, 68, 69]. So, their type systems can also

be used for checking whether programs are well-annotated in the sense of Section 3.4.

In Section 3.4, we have utilized the existing analysis for deadlock-freedom to enhance the

result of the resource usage analysis. Other type systems for concurrent languages may also

be useful. For example, the type system for atomicity [9] can be used to infer the atomicity

of a sequence of actions in a source program. By using the atomicity information, we may

be able to reduce the state space of behavioral types and check the trace inclusion relation

etracesx(A) ⊆ Φ more efficiently.

4.4 Static analysis for practical software

Much effort is being paid [1, 13, 15, 16, 47, 48, 66] to statically analyze large-scale practical soft-

ware to detect bugs. Those researches are related to ours because our final aim is also to provide

a verification framework for practical concurrent software. Among those researches, verification

based on type qualifiers by Foster et al. [16], an error detection method using SAT solvers [66]

and an inconsistency inference by Dillig et al. [13] do not deal with concurrency and interrupts.

Though researches on race detection by Naik et al. [47, 48] deal with concurrency, they do not

80



deal with interrupts. The race-freedom verification by Flanagan , Abadi and Freund [1, 15] also

deals with concurrency. However, their framework lacks non-block-structured mutex primitives

and interrupts. In addition, some of those researches [13, 47, 48, 66] sacrifice soundness, so that

those analyses do not guarantee the security properties which each analysis checks.

81



Chapter 5

Conclusion

We have presented type-based verification methods for deadlock-freedom and resource usage

of concurrent programs with primitives that are often used in practical programs: non-block-

structured mutex primitives, mutable references and interrupts for the deadlock-freedom ver-

ification and dynamic creation of resources and channels for the resource usage verification.

Though those primitives are heavily used in practical software, they have not been dealt with

by existing researches.

The presented deadlock-freedom verification guarantees that there are no circular dependen-

cies among locking/unlocking operations and that an acquired lock is released exactly once. The

former property is guaranteed by assigning a lock level to each lock type. In order to guarantee

the latter property in the presence of aliasing and the possibility of race on a reference to a

mutex, we use the idea of obligations/capabilities and rational-numbered ownerships. We have

also implemented a prototype deadlock-freedom verifier and conducted an experiment.

The type system for resource usage analysis guarantees safety and partial liveness by ab-

stracting the behavior of processes using behavioral types. We have also developed a sound (but

incomplete because of the last phase for deciding the trace inclusion relation tracesx(A) ⊆ Φ)

algorithm for it in order to liberate programmers from the burden of writing complex type

annotations. We have also implemented a prototype resource usage analyzer based on the

algorithm.

The most important future work is to assess the effectiveness of our verification methods

by further experiments, and to improve our framework based on the result. For the deadlock-

freedom analysis, we have shown the result of an experiment in Section 2.4. The experiment has

revealed several weaknesses of the current type system such as the necessity of polymorphism

on interrupt flags. After making extension to deal with those problems, we plan to conduct

further experiments using larger software such as device drivers and operating system kernels.

For the resource usage analysis, there is still a gap between our current framework and practical

software written in, for example, the C language. We plan to extend our framework to conduct

82



the verification of practical software.

Another future work is to develop more user-friendly verifiers. The current implementations

of the presented analyses only report an error when the verification fails. Considering applying

our verification to large software, the verifier needs to show information to help programmers

find the cause of an error.

We also consider refining the calculus we have presented in Section 2.1 to model actual

behavior of software more precisely. For example, disable int of the current calculus does not

block, though the interrupt disabling primitives used in the Linux kernel may block when an in-

terrupt handler is running. We may need to add a primitive for obtaining current interrupt state

to our calculus to express the behavior of spin lock irqsave and spin unlock irqrestore

primitives used in the Linux kernel.

We also plan to develop a verification method for other crucial safety properties such as

race-freedom and atomicity.

83



References

[1] Mart́ın Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static

race detection for java. ACM Transactions on Programming Languages and Systems,

28(2):207–255, March 2006.

[2] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Slam and static

driver verifier: Technology transfer of formal methods inside microsoft. In Integrated Formal

Methods 2004, volume 2999 of Springer-Verlag, pages 1–20, 2004.

[3] Thomas Ball and Sriram K. Rajamani. The SLAM project: Debugging system software

via static analysis. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles

of Programming Languages, pages 1–3, 2002.

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-

tonie Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical

software. In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 196–207, June 2003.

[5] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-

gramming: Preventing data races and deadlocks. In Proceedings of the 2002 ACM SIG-

PLAN Conference on Object-Oriented Programming Systems, Languages and Applications,

(OOPSLA 2002), volume 37 of SIGPLAN Notices, pages 211–230, November 2002.

[6] John Boyland. Checking interference with fractional permissions. In Static Analysis: 10th

International Symposium (SAS 2003), pages 55–72, 2003.

[7] Sagar Chaki, Sriram Rajamani, and Jakob Rehof. Types as models: Model checking

message-passing programs. In Proceedings of ACM SIGPLAN/SIGACT Symposium on

Principles of Programming Languages, pages 45–57, 2002.

[8] Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Henzinger, and

Jens Palsberg. Stack size analysis for interrupt-driven programs. Information and Com-

putation, 194(2):144–174, 2004.

84



[9] Shaz Qadeer Cormac Flanagan. A type and effect system for atomicity. In Proceedings of

ACM SIGPLAN Conference on Programming Language Design and Implementation, pages

338–349, 2003.

[10] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proceedings

of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages, pages

238–252, 1977.

[11] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level soft-

ware. In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 59–69, 2001.

[12] Robert DeLine and Manuel Fähndrich. Adoption and focus: Practical linear types for

imperative programming. In Proceedings of ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2002.

[13] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection using semantic inconsis-

tency inference. In Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation, June 2007.

[14] Cormac Flanagan and Mart́ın Abadi. Object types against races. In CONCUR’99, volume

1664 of Lecture Notes in Computer Science, pages 288–303. Springer-Verlag, 1999.

[15] Cormac Flanagan and Mart́ın Abadi. Types for safe locking. In Proceedings of 8the Euro-

pean Symposium on Programming (ESOP’99), volume 1576 of Lecture Notes in Computer

Science, pages 91–108, March 1999.

[16] Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken. Flow-insensitive type

qualifiers. ACM Transactions on Programming Languages and Systems, 28(6):1035–1087,

November 2006.

[17] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In

Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 1–12, 2002.

[18] Cédric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free confor-

mance. In CAV’04, volume 3114 of Lecture Notes in Computer Science, pages 242–254.

Springer-Verlag, 2004.

[19] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,

Third Edition. Addison-Wesley Professional, June 2005.

85



[20] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-modular

abstraction refinement. In Proceedings of the 15th International Conference on Computer-

Aided Verification (CAV), pages 262–274, 2003.

[21] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-

ing, 23(5):279–295, May 1997.

[22] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow.

In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming

Languages, pages 81–92, 2002.

[23] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theo-

retical Computer Science, 311(1-3):121–163, 2004.

[24] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Transactions on Pro-

gramming Languages and Systems, 27(2):264–313, 2005. Preliminary summary appeared

in Proceedings of POPL 2002.

[25] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press, May 2003.

[26] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell. In Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL 1996), pages 295–308, January 1996.

[27] Daisuke Kikuchi and Naoki Kobayashi. Type-based verification of correspondence asser-

tions for communication protocols. In Proceedings of the Fifth ASIAN Symposium on

Programming Languages and Systems, November 2007.

[28] Naoki Kobayashi. Typical: A type-based static analyzer for the pi-calculus. Tool available

at http://www.kb.ecei.tohoku.ac.jp/~koba/typical/.

[29] Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions on

Programming Languages and Systems, 20(2):436–482, 1998.

[30] Naoki Kobayashi. Quasi-linear types. Technical Report 98-02, Department of Information

Science, University of Tokyo, 1998. Available through http://www.yl.is.s.u-tokyo.ac.

jp/~koba/publications.html.

[31] Naoki Kobayashi. A type system for lock-free processes. Information and Computation,

177:122–159, 2002.

86



[32] Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Infor-

matica, 42(4–5):291–347, 2005.

[33] Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Infor-

matica, 42(4-5):291–347, 2005.

[34] Naoki Kobayashi. A new type system for deadlock-free processes. In Proceedings of the

17th International Conference on Concurrency Theory, volume 4137 of Lecture Notes in

Computer Science, pages 233–247, August 2006.

[35] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free process

calculus. In Proceedings of CONCUR2000, volume 1877 of Lecture Notes in Computer

Science, pages 489–503. Springer-Verlag, August 2000.

[36] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free pro-

cess calculus. Technical Report TR00-01, Dept. Info. Sci., Univ. of Tokyo, January 2000.

Available from http://www.kb.cs.titech.ac.jp/~kobayasi/. A summary has appeared

in Proceedings of CONCUR 2000, Springer LNCS1877, pp.489-503, 2000.

[37] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage analysis for the

π-calculus. Logical Methods in Computer Science, 2(3), 2006.

[38] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. The

Objective-Caml system, release 3.10: Documentation and user’s manual. Institut National

de Recherche en Informatique et en Automatique, France, May 2007. http://caml.inria.

fr/pub/docs/manual-ocaml/index.html.

[39] Simon Marlow, Simon Peyton Jones, and Andrew Moran. Asynchronous exceptions in

haskell. In Proceedings of ACM SIGPLAN 2001 Conference on Programming Language

Design and Implementation (PLDI 2001), June 2001.

[40] Kim Marriott, Peter J. Stuckey, and Martin Sulzmann. Resource usage verification. In Pro-

ceedings of the First Asian Symposium on Programming Languages and Systems (APLAS

2003), volume 2895 of Lecture Notes in Computer Science, pages 212–229, 2003.

[41] Hiroya Matsuba and Yutaka Ishikawa. Single IP address cluster for internet servers. In

Proceedings of 21st IEEE International Parallel and Distributed Processing Symposium

(IPDPS2007), March 2007.

[42] Laurent Mauborgne. ASTRÉE: Verification of absence of run-time error. In René Jacquart,

editor, Building the information Society (18th IFIP World Computer Congress), pages 384–

87



392. The International Federation for Information Processing, Kluwer Academic Publishers,

Aug 2004.

[43] Ernst W. Mayr. An algorithm for the general petri net reachability problem. SIAM Journal

on Computing, 13(3):441–461, 1984.

[44] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[45] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Stan-

dard ML (Revised). The MIT Press, 1997.

[46] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to

typed assembly language. ACM Transactions on Programming Languages and Systems,

21(3):527–568, 1999.

[47] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detection.

In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming

Languages, January 2007.

[48] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java. In

Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, June 2006.

[49] George Necula, Scott McPeak, Westley Weimer, Ben Liblit, and Matt Harren. CIL –

Infrastructure for C Program Analysis and Transformation. California, USA. http://

manju.cs.berkeley.edu/cil/.

[50] George C. Necula. Proof-carrying code. In Proceedings of ACM SIGPLAN/SIGACT Sym-

posium on Principles of Programming Languages, pages 106–119, 1997.

[51] Nicholas Nguyen and Julian Rathke. Typed static analysis for concurrent, policy-based,

resource access control. draft.

[52] Jens Palsberg and Di Ma. A typed interrupt calculus. In Proceedings of 7th International

Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems, volume 2469

of Lecture Notes in Computer Science, pages 291–310, September 2002.

[53] Elisabeth Pelz. Closure properties of deterministic petri nets. In STACS 87: 4th Annual

Symposium on Theoretical Aspects of Computer Science, volume 247 of Lecture Notes in

Computer Science, pages 371–382. Springer-Verlag, 1987.

[54] Pratibha Permandla, Michael Roberson, and Chandrasekhar Boyapati. A type system for

preventing data races and deadlocks in the Java virtual machine language. In Proceedings of

88



the 2007 ACM SIGPLAN/SIGBED conference on languages compilers and tools, page 10,

2007.

[55] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[56] Benjamin C. Pierce. Types and Programming Languages. MIT Press, February 2002.

[57] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT

Press, December 2004.

[58] Sriram K. Rajamani and Jakob Rehof. Models for contract conformance. In ISOLA2004,

First International Symposium on Leveraging Applications of Formal Methods, 2004.

[59] Christian Skalka and Scott Smith. History effects and verification. In Proceedings of the

First Asian Symposium on Programming Languages and Systems (APLAS 2004), volume

3302 of Lecture Notes in Computer Science, pages 107–128, 2004.

[60] Kohei Suenaga and Naoki Kobayashi. Type-based analysis of deadlock for a concurrent

calculus with interrupts. In Proceedings of 16th European Symposium on Programming

(ESOP 2007), pages 490–504, March 2006.

[61] Tachio Terauchi. Types for Deterministic Concurrency. PhD thesis, Electrical Engineering

and Computer Sciences, University of California at Berkeley, August 2006.

[62] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In Proceedings

of Functional Programming Languages and Computer Architecture, pages 1–11, San Diego,

California, 1995.

[63] Willem Visser, Klaus Havelund, and Seungjoon Park. Model checking programs. Automated

Software Engineering, 10:203–232, 2003.

[64] Philip Wadler. Linear types can change the world! In Programming Concepts and Methods.

North Holland, 1990.

[65] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings

of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages, pages

214–227, 1999.

[66] Yichen Xie and Alex Aiken. Saturn: A scalable framework for error detection using boolean

satisfiability. ACM Transactions on Programming Languages and Systems, 29(3):1–43, May

2007.

89



[67] Eran Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic.

In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming

Languages, pages 27–40, January 2001.

[68] Nobuko Yoshida. Graph types for monadic mobile processes. In FST/TCS’16, volume

1180 of Lecture Notes in Computer Science, pages 371–387. Springer-Verlag, 1996.

[69] Nobuko Yoshida. Type-based liveness guarantee in the presence of nontermination and

nondeterminism. Technical Report 2002-20, MSC Technical Report, University of Leicester,

April 2002.

90



Appendix A

Proofs of Lemma 2.2 and 2.3

Lemma A.1 (Weakening) If Γ ` M : τ & ϕ and Γ′ ⊇ Γ, then Γ′ ` M : τ & ϕ.

Proof A.1 By induction on the derivation of Γ ` M : τ & ϕ.

Lemma A.2 Suppose Γ ` v : τ & ∅, then

• if τ = bool, then v = true or v = false or v = x for some x

• if τ = unit, then v = () or v = x for some x

• if τ = τ̃ ′ ϕ→ τ ′ or τ = τ ′ ref or τ = lock(lev), then v is a variable.

Proof A.2 Case analysis on the rule use for deriving Γ ` v : τ & ∅.

Lemma A.3 (Substitution) If Γ, x1 : τ1, . . . , xn : τn ` M : τ & ϕ and Γ ` vi : τi & ∅ for

i = 1, . . . , n, then Γ ` [ṽ/x̃]M : τ & ϕ.

Proof A.3 By induction on the derivation of Γ, x1 : τ1, . . . , xn : τn ` M : τ & ϕ. We perform

case analysis on the last rule used for deriving Γ, x1 : τ1, . . . , xn : τn ` M : τ & ϕ. We show

only important cases. Other cases are similar.

• Case (T-Var): In this case, M = y and y : τ ∈ {Γ, x̃ : τ̃}. If y ∈ Dom(Γ), then

[ṽ/x̃]M = y. From (T-Var), Γ ` y : τ & ϕ follows as required.

Suppose that y : xi for some i. In this case, [ṽ/x̃]M = vi and τ = τi. Thus, Γ ` [ṽ/x̃]M :

τ & ϕ follows from Γ ` vi : τi & ∅.

• Case (T-App): In this case, M = x(v′1, . . . , v
′
m). Thus, x : (τ ′1, . . . , τ

′
m)

ϕ→ τ ∈ {Γ, x1 : τ1, . . . , xn : τn}
and Γ, x1 : τ1, . . . , xn : τn ` v′i : τ ′i & ∅ for 1 ≤ i ≤ m. From I.H., we have Γ ` [ṽ/x̃]v′i :

τ ′i & ∅. If x ∈ Dom(Γ), then Γ ` [ṽ/x̃]M : τ & ϕ follows immediately. If x = xi for

some i, then Γ ` vi : (τ ′1, . . . , τ
′
m)

ϕ→ τ & ∅. From Lemma A.2, vi = y for some y. From

Γ ` vi : τi & ∅, we have y ∈ Dom(Γ). Thus, Γ ` [ṽ/x̃]M : τ & ϕ as required.

91



Proof of Lemma 2.2. From (D̃, H, L, I, M) → (D̃′,H ′, L′, I ′,M ′), M = E[M1] and M ′ =

E[M ′
1] for some E,M1 and M ′

1. We perform case analysis on the rule used for deriving

(D̃, H,L, I, E[M1]) → (D̃′, H ′, L′, I ′, E[M ′
1]). We examine only important cases.

• (E-Lock): L′ = L[x 7→ acquired] and M ′ = E[in sync x in M ′′
1 ]. Thus, it is suffi-

cient to show AckIn(x,M ′), which immediately follows from the definition of AckIn and

wellformed(L, I, M). Note that the latter implies that in sync x does not occur in E or

M ′′
1 .

• (E-Unlock): L′ = L[x 7→ released] and M ′ = E[v]. Thus, it is sufficient to show that

E does not contain in sync x, which immediately follows from wellformed(L, I, E[M1])

and L(x) = acquired.

• (E-DisableInterrupt1): M ′ = E[in disable int M ′′] and I ′ = disabled. Thus, it

is sufficient to show that E and M ′′ do not contain in disable int, which immediately

follows from wellformed(L, I, E[M1]).

• (E-DisableInterrupt2): M = E[disable int M ′′] and I = disabled. From wellformed(L,disabled,M),

there exists E′ and E′′ such that E = E′[in disable int E′′] and neither E′ nor E′′[disable int M ′′]

contain in disable int. Thus, from I ′ = disabled and M ′ = E[M ′′] = E′[in disable int E′′[M ′′]],

wellformed(L′, I ′,M ′) holds as required.

• (E-EnableInterrupt): In this case M = E[in disable int v] and M ′ = E[v]. From

I = disabled, E does not contain in disable int. Thus, wellformed(L′, I ′,M ′) holds as

required.

Proof of Lemma 2.3. We prove the following proposition which is stronger than Lemma 2.3.

Proposition A.1 If `Env (D̃,H, L) : Γ and Γ ` M : τ & ϕ and (D̃, H, L, I, M) → (D̃′,H ′, L′, I ′,M ′),

then `Env (D̃′, H ′, L′) : Γ′ and Γ′ ` M ′ : τ & ϕ′ and Γ′ ⊇ Γ and ϕ′ ≤ ϕ

From (D̃, H,L, I,M) → (D̃′,H ′, L′, I ′,M ′), there exist E and M1 such that M = E[M1].

We perform induction on the structure of E.

• Case E = [ ]: We perform case analysis on the rule used for deriving (D̃, H, L, I, M) →
(D̃′,H ′, L′, I ′,M ′). We show only interesting cases. Other cases are similar.

– Case (E-App):

In this case,

∗ (1) M1 = x(v1, . . . , vn) and

92



∗ (2) x(ỹ) = M ′
1 ∈ D̃.

Γ ` M : τ & ϕ must have been derived using (T-App). Thus, we have

∗ (3) x : (τ1, . . . , τn)
ϕ→ τ ∈ Γ and

∗ (4) Γ ` vi : τi & ∅ (i = 1, . . . , n).

From (2), (3), (T-Env) and (T-Fundef), we have

∗ (5) Γ, y1 : τ1, . . . , yn : τn ` M ′
1 : τ & ϕ′ and

∗ (6) ϕ′ ≤ ϕ.

Thus, we have Γ ` [ṽ/ỹ]M ′
1 : τ & ϕ′ and ϕ′ ≤ ϕ as required. from (4), (5), (6) and

Lemma A.3.

– Case (E-Interrupt): In this case,

∗ (1) M1 = M ′
1 ¤ M ′

2 and

∗ (2) I = enabled

for some M ′
1 and M ′

2. Γ ` M : τ & ϕ must have been derived using (T-InstHandler).

Thus, we have

∗ (3) Γ ` M ′
1 : τ & (lev1, lev ′1),

∗ (4) Γ ` M ′
2 : unit & (lev2, lev ′2)

∗ (5) lev ′1 < lev2

∗ (6) ϕ = (lev1, lev ′1) t (lev2, lev ′2)

for some lev ′1, lev
′′
1, lev

′
2 and lev ′′2. Thus, from (3), (4), (5), (6) and (T-InInterrupt),

we have Γ ` M1 JM2 M2 : τ & ϕ as required.

• E = M2 JM3 E′: In this case, (1) M = M2 JM3 E′[M1] and (2) (D̃, H, L, I, E′[M1]) →
(D̃′,H ′, L′, I ′,M ′

1). Γ ` M : τ & ϕ must have been derived by (T-InInterrupt). Thus,

we have

– (3) Γ ` M2 : τ & (lev1, lev ′1)

– (4) Γ ` E′[M1] : unit & (lev2, lev ′2)

– (5) Γ ` M3 : unit & (lev3, lev ′3)

– (6) lev ′1 < lev2

– (7) lev ′3 < lev2 and

– (8) ϕ = (lev1, lev ′1) t (lev2, lev ′2) t (lev3, lev ′3)

for some lock levels. From (2), (4) and I.H., we have

– (9) Γ′ ` M ′
1 : unit & (lev4, lev ′4)

93



– (10) `Env (D̃′,H ′, L′) : Γ′

– (11) Γ′ ⊇ Γ and

– (12) (lev4, lev ′4) ≤ (lev2, lev ′2).

From (11), (3), (5) and Lemma A.1, we have

– (13) Γ′ ` M2 : τ & (lev1, lev ′1)

– (14) Γ′ ` M3 : unit & (lev3, lev ′3)

From (6), (7) and (12), we have lev ′1 < lev4 and lev ′3 < lev4. Thus, we have Γ′ ` M ′ :

τ & (lev1, lev ′1) t (lev4, lev ′4) t (lev3, lev ′3). From (12), ϕ′ ≤ ϕ as required.

94



Appendix B

Proof of Lemma 2.4

This chapter proves Lemma 2.4.

Lemma B.1 If Γ ` E[M ] : τ & (lev1, lev2), then Γ ` M : τ ′ & (lev ′1, lev
′
2) and lev1 ≤ lev ′1 for

some τ ′, lev ′1 and lev ′2.

Proof Sketch. Γ ` E[M ] : τ ′ & (lev ′1, lev
′
2) follows from induction on the structure of E. To prove

lev1 ≤ lev ′1, note that in every typing rule, first components of effect parts of type judgments

are monotonic.

Lemma B.2 If Γ ` M : τ & ϕ and Γ contains only reference types, function types and lock

types, then M = v for some v or M = E[i] for some E and i.

Proof Sketch. Induction on the derivation of Γ ` M : τ & ϕ.

Lemma B.3 If wellformed(L, I, E[M1 JM ′ M2]), then M1 does not contain in disable int.

Proof B.1 If I = enabled, M1 does not contain in disable int because wellformed(L, I,E[M1 JM ′ M2]).

Suppose I = disabled. In this case E[M1 JM ′ M2] = E′′[in disable int M ′′′] for some E′′

and M ′′′ and neither E′′ nor M ′′′ contain in disable int. From the definition of evaluation

contexts, M1 is contained in E′′ or M ′′′. Thus, M1 does not contain in disable int as required.

Lemma B.4 If Γ, x : lock(lev) ` M1 : τ & (lev1, lev2) and AckIn(x,M1) and wellformed(L, I,M1 JM M2)

hold, then lev ≤ lev2.

Proof Sketch. Induction on the derivation of AckIn(x,M1). From AckIn(x,M1), we have

M1 = E[in sync x in M ′] or M1 = E[M ′
1 JM ′ M ′

2] for some E, M ′
1,M

′ and M ′
2. Here, E

does not contain in disable int E′ from Lemma B.3. Thus, by noting that the second com-

ponents of effects are monotonic in the typing rules other than (T-DisableInterrupt) and

(T-InDisableInterrupt), we have lev ≤ lev2.

95



Proof of Lemma 2.4. From `C (D̃, H, L, I, M) : τ , we have `Env (D̃, H, L) : Γ and Γ ` M :

τ & (lev1, lev2). Let La be the set {y ∈ Dom(L)|L(y) = acquired}. and let y ∈ La be a lock

whose level lev in Γ is maximum among the levels of the locks in La. From L(y) = acquired

and wellformed(L, I,M), we have AckIn(y, M). We perform case-analysis on the last rule that

derives AckIn(y,M).

• Case (AckIn-Base): We have M = E[in sync y in M ′] for some E and M ′. Thus,

from Lemma B.1, we have Γ ` in sync y in M ′ : τ ′ & (lev ′1, lev
′
2). That judgment must

have been derived by (T-Insync). Thus, we have (1) Γ ` M ′ : τ ′ & (lev ′′1, lev
′′
2) and (2)

lev < lev ′′1. From Lemma B.2, we have M ′ = v for some v or M ′ = E′[i] for some E′

and i. (Note that Γ contains only reference types, function types and lock types because

`Env (D̃,H, L) : Γ is derived by (T-Env).)

– If M ′ = v, then ¬deadlocked(L,M) because M = E[in sync y in v].

– Suppose that M ′ = E′[i].

∗ If i 6= sync y′ in M ′′, then ¬deadlocked(L,M) because M = E1[i] where E1 =

E[in sync y′ in E′] and i 6= sync y′ in M ′′.

∗ Suppose that i = sync y′ in M ′′ for some y′ and M ′′. From Lemma B.1 and

(1), we have (3) Γ ` sync y′ in M ′′ : τ ′′ & (lev ′′′1 , lev ′′′2 ) and (4) lev ′′1 ≤ lev ′′′1 .

(3) must have been derived by (T-Sync). Thus, we have (5) Γ(y′) = lock(lev ′)

and (6) lev ′ = lev ′′′1 . From (2), (4) and (6), we have lev < lev ′. Since lev is the

maximum level of acquired locks, y′ is not acquired. Thus, ¬deadlocked(L,M)

holds because M = E[in sync y in E′[sync y′ in M ′′]] where L(y′) = released.

• Case (AckIn-Interrupt): M = E[M1 JM ′ M2] and AckIn(y,M1) for some E, M1,M
′

and M2. Thus, from Lemma B.1, we have Γ ` M1 JM ′ M2 : τ ′ & ϕ. Since that judgment

must have been derived by (T-InInterrupt), we have (1) Γ ` M1 : τ ′ & (lev ′1, lev
′
2) and

(2) Γ ` M2 : unit & (lev ′′1, lev
′′
2) and (3) lev ′2 < lev ′′1. From Lemma B.2, M2 = v for some

v or M2 = E′[i] for some E′ and i.

– Case M2 = v: ¬deadlocked(L,M) because M = E[M1 JM ′ v].

– Case M2 = E′[i]: If i 6= sync y′ in M ′′, then ¬deadlocked(L,M). Consider the case

i = sync y′ in M ′′. From (2) and Lemma B.1, we have (4) y′ : lock(lev ′) ∈ Γ and (5)

Γ ` sync y′ in M ′′ : τ ′ & (lev ′1, lev
′′′
2 ) and (6) lev ′′1 ≤ lev ′. From wellformed(L, I, M)

and AckIn(y, M1) and (1), we have (7) lev ≤ lev ′2. From (3), (6) and (7), we have

lev < lev ′. Since lev is the maximum level among acquired locks, y′ is not acquired.

Thus, we have ¬deadlocked(L,M).

96



Appendix C

Properties of the Subtyping Relation

This section states and proves the properties of the subtyping relation, which are used in the

proof of type soundness (Theorems 3.1 and 3.3, in particular the proofs of the lemmas in

Appendix D), and in the type inference algorithm described in Section 3.3 (in particular, for

transforming constraints on behavioral types).

Actually, there are two subtyping relations; the basic one in Definition 3.10 and the extended

one in Definition 3.20. Since the proofs are almost the same, we state and prove the properties

of the basic and extended ones simultaneously. In a few places, we have an additional condition

to check for the extended case. Such places will be marked by “Extended case only.” When

we are discussing the basic case, attributes attached to actions should be ignored. We also omit

them even for the extended case when they are not important.

Lemma C.1 (Simulation relation)

1. The subtyping relation is reflexive and transitive.

2. (Simulation-up-to) Let R be a relation on behavioral types such that whenever A1RA2

then (i) A1
l→ A′1 implies A2

l=⇒ A′2 and A′1R≤A′2 for some A′2 and (ii) disabled(A1, S)

implies disabled(A2, S). Then R ⊆ ≤ . Condition (ii) is required only for the extended

case.

Proof C.1 Part 1 is trivial by the definition. To show Part 2, suppose R is a simulation

up to. We show that R′ = (R≤ ) ∪ R is a simulation, i.e., whenever A1R′A2, (i) A1
l−→ A′1

implies A2
l=⇒ A′2 and A′1R′A′2 for some A′2 and (Extended case only) (ii) disabled(A1, S)

implies disabled(A2, S). Suppose A1R′A2. The case where A1RA2 is trivial by the definition

of the simulation-up-to. To check the other case, suppose A1RA3 ≤ A2. To show (i), suppose

also that A1
l−→ A′1. Since R is a simulation up to, there exists A′3 such that A3

l=⇒ A′3 and

A′1 R≤ A′3. By A3
l=⇒ A′3 and A3 ≤ A2, we have A′2 such that A2

l=⇒ A′2 and A′3 ≤ A′2.

Since ≤ is transitive, we have A′1 R≤ A′2, which implies A′1R′A′2.

97



Extended case only: To show (ii), suppose disabled(A1, S). Since R is a simulation up to,

we have disabled(A3, S), which implies disabled(A2, S).

Lemma C.2 (Structural congruence)

1. A|0 ≈ A

2. A|B ≈ B|A

3. A|(B|C) ≈ (A|B)|C

4. A⊕B ≈ B⊕A

5. A⊕(B⊕C) ≈ (A⊕B)⊕C

6. ∗A ≈ A|∗A

7. (νx)(A|B) ≈ (νx)A |B if x /∈ FV(B)

8. (νx)(A⊕B) ≈ (νx)A⊕B if x /∈ FV(B)

9. [µα.A/α]A ≈ µα.A

Proof C.2 These proofs are all standard.

We next show that ≤ is a precongruence. We first show it for some basic type constructors.

Lemma C.3 (Precongruence, simple cases) If A ≤ A′ then

1. A|B ≤ A′|B′ if B ≤ B′

2. 〈x/y〉A ≤ 〈x/y〉A′

3. (νx)A ≤ (νx)A′

4. A↑S ≤ A′↑S

5. A↓S ≤ A′↓S

Proof C.3 These follow from the fact that the following relations are all simulations-up-to.

R1= {(A |B, A′ |B′) | A ≤ A′, B ≤ B′}
R2= {(〈ỹ/x̃〉A, 〈ỹ/x̃〉A′) | A ≤ A′}
R3= {((νx) A, (νx) A′) | A ≤ A′}
R4= {(A↑S , A′↑S) | A ≤ A′}
R5= {(A↓S , A′↓S) | A ≤ A′}

98



We now show that ≤ is closed under arbitrary type constructors. FTV(B) below is the set

of free (i.e., not bound by µ) behavioral type variables.

Lemma C.4 (Precongruence, general cases) If A ≤ A′ and FTV(B) ⊆ {α}, then [A/α]B ≤
[A′/α]B.

Proof C.4 Let R= {([A/α]B, [A′/α]B)}. We will prove (i) if [A/α]B l−→ B1 then [A′/α]B l=⇒
B′

1 with B1 R≤ B′
1, by induction on the derivation of [A′/α]B l−→ B′

1. We will also prove

(ii) disabled([A/α]B, S) implies disabled([A′/α]B,S), by induction on the structure of B in the

extended case. In other words, R is a simulation-up-to. Hence (Lemma C.1.2) it is in ≤ .

We start with (i), with case analysis on the last rule used. If B = α, then the required

condition follows immediately from A ≤ A′. So we consider the case B 6= α below.

1. Case (TR-Act). In this case, B = l.Bx, so

[A/α]B = l.[A/α]Bx
l−→ [A/α]Bx = B1.

We also have

[A′/α]B = l.[A/α]Bx
l−→ [A′/α]Bx = B′

1.

By construction of R, we have B1 R B′
1 ≤ B′

1 as required.

2. Case (Tr-Par1). We show only the left case. B = Bx|By and we assumed [A/α]Bx
l−→

Bx1 to make

[A/α]B = [A/α]Bx|[A/α]By
l−→ Bx1|[A/α]By = B1.

By the induction hypothesis, [A′/α]Bx
l=⇒ B′

x1 with Bx1 R≤ B′
x1. (Note that α is not

free in Bx1 or B′
x1. ) That gives

[A′/α]B = [A′/α]Bx|[A′/α]By
l=⇒ B′

x1|[A′/α]By = B′
1.

It remains to prove B1 R≤ B′
1. By the condition Bx1 R≤ B′

x1, there exists C such that

Bx1 = [A/α]C [A′/α]C ≤ B′
x1

So, we get:
B1 = [A/α](C |By) R [A′/α](C |By)

= [A′/α]C | [A′/α]By ≤ B′
x1 | [A′/α]By = B′

1.

Here, we have used Lemma C.3, Part 1.

3. Case (Tr-Par2). We show only the left case. B = Bx|By and we assumed [A/α]Bx
x−→

Bx1 and [A/α]By
y−→ By1 to make

[A/α]B = [A/α]Bx|[A/α]By
{x,y}−→ Bx1|By1 = B1.

99



By the induction hypothesis, [A′/α]Bx
x=⇒ B′

x1 and [A′/α]By
x=⇒ B′

y1 with Bx1 R≤ B′
x1

and By1 R≤ B′
y1. That gives

[A′/α]B = [A′/α]Bx | [A′/α]By
{x,y}
=⇒ B′

x1 |B′
y1 = B′

1.

It remains to prove B1 R≤ B′
1. From Bx1 R≤ B′

x1 and By1 R≤ B′
y1, there exist Cx

and Cy such that

Bx1 = [A/α]Cx [A′/α]Cx ≤ B′
x1

By1 = [A/α]Cy [A′/α]Cy ≤ B′
y1

Hence, B1 = [A/α](Cx |Cy) R [A′/α](Cx |Cy) ≤ B′
1.

4. Cases (Tr-Com) and (Tr-Or). These cases follow immediately from the induction hy-

pothesis.

5. Case (Tr-Rep). Then B = ∗Bx and [A/α]B = ∗[A/α]Bx
l−→. [A/α]B l−→ B1 must

have been derived from

[A/α](Bx | ∗Bx) = [A/α]Bx | ∗[A/α]Bx
l−→ B1.

By the induction hypothesis, There exists B′
1 such that B1 R≤ B′

1 and [A′/α](Bx | ∗Bx) l=⇒
B′

1. Using (Tr-Rep), we get [A′/α]B l=⇒ B′
1 as required.

6. Case (Tr-Rec). Then, we have B = µβ.Bx to make

[A/α]B = µβ.[A/α]Bx
l−→ B1

where we assumed [µβ.[A/α]Bx/β][A/α]Bx
l−→ B1. But β does not clash with A or α so

these two substitutions swap around, giving

[A/α][µβ.Bx/β]Bx
l−→ B1.

By the induction hypothesis,

[A′/α][µβ.Bx/β]Bx
l=⇒ B′

1

with B1 R≤ B′
1. Hence

[A′/α]B = µβ.[A′/α]Bx
l=⇒ B′

1

as required.

7. Case (Tr-Rename). Then, B = 〈ỹ/x̃〉Bx. [A/α]B
[ey/ex]l−→ 〈ỹ/x̃〉Bx1 = B1 must have been

derived from [A/α]Bx
l−→ Bx1. From the induction hypothesis, we get

[A′/α]Bx
l−→ B′

x1 Bx1 R≤ B′
x1.

100



Let B′
1 = 〈ỹ/x̃〉B′

x1. It remains to prove B1 R≤ B′
1. By Bx1 R≤ B′

x1, there exists C

such that

Bx1 = [A/α]C [A′/α]C ≤ B′
x1.

So, we have:
B1 = [A/α]〈ỹ/x̃〉C R [A′/α]〈ỹ/x̃〉C

= 〈ỹ/x̃〉[A′/α]C ≤ 〈ỹ/x̃〉B′
x1 = B′

1.

Here, we used the fact that ≤ is preserved by 〈ỹ/x̃〉 (Lemma C.3, Part 2).

8. Cases (Tr-Hiding), (Tr-Exclude), and (Tr-Project): Similar to (Tr-Rename).

We use the fact that ≤ is preserved by ν, ·↓S, and ·↑S (Lemma C.3).

Extended case only: We also need to show disabled([A/α]B, S) implies disabled([A′/α]B, S).

This follows by straightforward induction on the structure of B.

Lemma C.5 (Substitution)

1. 〈ỹ/x̃〉0 ≈ 0

2. 〈ỹ/x̃〉(a.A) ≈ ([ỹ/x̃]a).〈ỹ/x̃〉A

3. 〈ỹ/x̃〉(zξ.A) ≈ ([ỹ/x̃]z)ξ.〈ỹ/x̃〉A

4. 〈ỹ/x̃〉(A|B) ≈ 〈ỹ/x̃〉A | 〈ỹ/x̃〉B

5. 〈ỹ/x̃〉(A⊕B) ≈ 〈ỹ/x̃〉A ⊕ 〈ỹ/x̃〉B

6. 〈ỹ/x̃〉(∗A) ≈ ∗(〈ỹ/x̃〉A)

7. 〈ỹ/x̃〉〈b/a〉A ≈ 〈[ỹ/x̃]b/a〉〈ỹ/x̃〉A if target(a)∩{x̃, ỹ}=∅

8. 〈ỹ/x̃〉(νz)A ≈ (νz)(〈ỹ/x̃〉A) if {z}∩{x, y}=∅

9. 〈ỹ/x̃〉(A↑S) ≈ (〈ỹ/x̃〉A)↑S, and

〈ỹ/x̃〉(A↓S) ≈ 〈ỹ/x̃〉A↓S ≈ A↓S,

if S∩{x, y}=∅

10. 〈ỹ/x̃〉(A↑S) ≈ A↑S, if {x̃} ⊆ S

Proof C.5 Most parts are straightforward, although Part 4 is non-obvious in the case of labels

{x, y}. For Part 4, we construct a relation S = {(〈ỹ/x̃〉(A|B), 〈ỹ/x̃〉A|〈ỹ/x̃〉B)} and prove S
and S−1 are simulations. The interesting case is when we infer

〈ỹ/x̃〉A|〈ỹ/x̃〉B τ→ 〈ỹ/x̃〉A′|〈ỹ/x̃〉B′

101



from

A
z1→ A′ B

z2→ B′ [ỹ/x̃]z1 = [ỹ/x̃]z2.

This gives

A|B {z1,z2}→ A′|B′.

Hence

〈ỹ/x̃〉(A|B)
{[ey/ex]z1,[ey/ex]z2}−→ 〈ỹ/x̃〉(A′|B′).

And hence as required

〈ỹ/x̃〉(A|B) τ→ 〈ỹ/x̃〉(A′|B′).

Part 9. Here we construct S = {( 〈ỹ/x̃〉(A↑S), (〈ỹ/x̃〉A)↑S )} where S does not clash with

{x̃, ỹ}, and we prove that S and S−1 are simulations. We focus on two cases.

1. Suppose (〈ỹ/x̃〉A)↑S
[ey/ex]l−→ (〈ỹ/x̃〉A′)↑S is inferred from A

l→ A′ and target([ỹ/x̃]l)∩S = ∅.
We must infer that 〈ỹ/x̃〉(A↑S)

[ey/ex]l−→ 〈ỹ/x̃〉(A′↑S). This requires target(l)∩S = ∅, which

we prove as follows. It is assumed that S does not clash, so {x̃, ỹ}∩S = ∅. We also have

target([ỹ/x̃]l)∩S = ∅, and so [ỹ/x̃](target(l))∩S = ∅. Let T = target(l). Suppose z ∈ T .

Then either z ∈ x̃ so z /∈ S, or z ∈ ỹ so z /∈ S, or z /∈ {x̃, ỹ} so z ∈ [ỹ/x̃]T so z /∈ S. In

all cases z /∈ S, so T∩S = ∅ as required.

2. Suppose (〈ỹ/x̃〉A)↑S
τ→ (〈ỹ/x̃〉A′)↑S is inferred from A

l→ A′ and target([ỹ/x̃]l) ⊆ S. We

must infer 〈ỹ/x̃〉(A↑S) τ→ 〈ỹ/x̃〉(A′↑S). This requires target(l) ⊆ S, which we prove as

follows. Once again let T = target(l). We have {x̃, ỹ}∩S = ∅ and [ỹ/x̃]T ⊆ S. Suppose

z ∈ T . Then [ỹ/x̃]z ∈ [ỹ/x̃]T , and [ỹ/x̃]z ∈ S. Either z ∈ x̃ so y ∈ S, which is a

contradiction. Or z 6∈ x̃, so [ỹ/x̃]z = z ∈ S. Hence T ⊆ S as required.

Lemma C.6 (Exclusion and Projection)

1. 0↑S≈0 0↓S≈0

2. (at.A)↑S≈at.(A↑S) (at.A)↓S≈τt.(A↓S) if target(a)∩S=∅

3. (at.A)↑S≈τt.A↑S (at.A)↓S≈at.A↓S if target(a)⊆S

4. (zξ.A)↑S≈zξ.(A↑S) (zξ.A)↓S≈τc.A↓S if target(zξ)∩S=∅

5. (zξ.A)↑S≈τc.A↑S (zξ.A)↓S≈zξ.(A↓S) if target(zξ)⊆S

6. (A|B)↑S≈A↑S | B↑S (A|B)↓S≈A↓S | B↓S

7. (A⊕B)↑S≈A↑S⊕B↑S (A⊕B)↓S≈A↓S⊕B↓S

8. (∗A)↑S≈∗(A↑S) (∗A)↓S≈∗(A↓S)

102



9. (A↑S)↑T≈A↑S∪T (A↓S)↓T≈A↓S∩T

10. A↑S≈A A↓S ≤0 if FV(A)∩S=∅

11. A↑S ≤0 A↓S≈A if FV(A)⊆S

Proof C.6 Straightforward.

Lemma C.7 (Simulation)

1. If A1 ≤ A2 then tracesx(A1) ⊆ tracesx(A2) for any x.

2. If A
{x,y}−→ A′ then A

x→ y→ A′.

3. A ≤ A⊕B

4. A⊕A ≤ A

5. A ≤ A↑S | A↓S

6. If [B/α]A ≤ B then µα.A ≤ B

7. B1⊕B2 ≤ A if and only if B1 ≤ A and B2 ≤ A

Proof C.7 These proofs are largely standard.

Part 1 follows immediately from the definitions of subtyping and traces.

Part 6. Suppose [B/α]A ≤ B. Let R be

{([µα.A/α]A′, [B/α]A′) | FTV(A′) = {α}}.

By Lemma C.3.2, It suffices to prove that R is a simulation up to.

Suppose that [µα.A/α]A′ R [B/α]A′ and [µα.A/α]A′ l−→ A′′. We show that there exists B′

such that [B/α]A′ l=⇒ B′ and A′′ R≤ B′ by induction on the derivation of [µα.A/α]A′ l−→ A′′,

with case analysis on the last rule used. We show main cases; the other cases are similar or

straightforward.

• Case (TR-Act): [µα.A/α]A′ l−→ A′′ is derived from

l. [µα.A/α]A1
l−→ [µα.A/α]A1 where A′ = l. A1 and A′′ = [µα.A/α]A1. Thus, [B/α]A′ =

l. [B/α]A1
l−→ [B/α]A1.

• Case (TR-Par1): [µα.A/α]A′ l−→ A′′ is derived from

[µα.A/α]A1
l−→ A′1 where A′ = A1 |A2 and A′′ = A′1 | [µα.A/α]A2. By the induction

hypothesis, there exists B′
1 such that [B/α]A1

l=⇒ B′
1 and A′1 R≤ B′

1. Thus, we have

103



[B/α]A′ l=⇒ B′
1 | [B/α]A2. It remains to show A′′ = A′1 | [µα.A/α]A2 R≤ B′

1 | [B/α]A2.

From A′1 R≤ B′
1, we get

A′1 = [µα.A/α]C [B/α]C ≤ B′
1

for some C. So,

A′′ = A′1 | [µα.A/α]A2 = [µα.A/α](C |A2)

R [B/α](C |A2) = [B/α]C | [B/α]A2 ≤ B′
1 | [B/α]A2

• Case (TR-Par2): [µα.A/α]A′
{x,y}−→ A′′ is derived from [µα.A/α]A1

x−→ A′1 and [µα.A/α]A2
y−→

A′2 where A′ = A1 |A2 and A′′ = A′1 |A′2. From the induction hypothesis, there ex-

ist B′
1 and B′

2 such that [B/α]A1
x=⇒ B′

1 and A′1 R≤ B′
1 and [B/α]A2

y
=⇒ B′

2 and

A′2 R≤ B′
2. Thus, we have [B/α]A′

{x,y}
=⇒ B′

1 |B′
2. From A′1 R≤ B′

1 and A′2 R≤ B′
2, we

get A′1 |A′2 R≤ B′
1 |B′

2 as required.

• Case (TR-Rec):

– Case A′ = µβ.A1: [µα.A/α]A′ l−→ A′′ is derived from

[µα.A/α][µβ.A1/β]A1

= [µβ.[µα.A/α]A1/β][µα.A/α]A1
l−→ A′′.

Here, we assumed without loss of generality that β is not free in A and B. Thus, by

the induction hypothesis, there exists B′ such that

[µβ.[B/α]A1/β][B/α]A1 = [B/α][µβ.A1/β]A1
l=⇒ B′

and A′′ R≤ B′. Using (Tr-Rec), we obtain [B/α]A′ = µβ.[B/α]A1
l=⇒ B′ as

required.

– Case A′ = α: [µα.A/α]A′ is equal to µα.A. From µα.A ≤ B, there exists B′ such

that B
l=⇒ B′ and A′′ ≤ B′ as required.

Extended case only: We also need to prove that disabled([µα.A/α]A′, S) implies disabled([B/α]A′, S)

for any A′. This is proved by induction on the derivation of disabled([µα.A/α]A′, S). We show

the only non-trivial case, where disabled([µα.A/α]A′, S) has been derived by using the last rule

in Figure 3.7. The other cases follow immediately from the induction hypothesis.

There are two cases to consider.

• Case where A′ = α: Then, [µα.A/α]A′ = µα.A and disabled(µα.A, S) must have been

deduced from

disabled([µα.A/α]A,S). By the induction hypothesis, we have disabled([B/α]A, S). By

the assumption [B/α]A ≤ B, we have disabled(B,S) as required (note that [B/α]A′ = B

in this case).

104



• Case where A′ = µβ.C. Let C ′ be [µα.A/α]C. Then, [µα.A/α]A′ = µβ.C ′, and disabled(µβ.C ′, S)

must have been derived from disabled([µβ.C ′/β]C ′, S). Here, we note

[µβ.C ′/β]C ′ = [µα.A/α][µβ.C/β]C.

So, from the induction hypothesis, we get

disabled([B/α][µβ.C/β]C, S), i.e.,

disabled([µβ.[B/α]C/β][B/α]C, S).

By using the last rule of Figure 3.7, we get disabled([B/α]A′, S) as required.

105



Appendix D

Proof of the Subject Reduction Property

In this section, we prove the subject reduction property used in the proofs of Theorems 3.1

and 3.3. As in Appendix C, we prove it for the basic and extended cases simultaneously.

Lemma D.1 (Weakening) 1. If Γ . v : σ and x 6∈ dom(Γ), then Γ, x : σ′ . v : τ .

2. If Γ . P :A and x /∈ FV(P ) and x not in dom(Γ) or FV(A) then Γ, x : σ . P :A.

Proof D.1 Part 1 is straightforward. Part 2 is proved by straightforward induction on the

derivation of Γ . P : A.

Lemma D.2 (Judgement substitution)

1. (For values) If Γ, x̃ : σ̃ . y : σ and Γ . ṽ : σ̃ then Γ . [ṽ/x̃]y : σ.

2. (For processes) If Γ, x̃ : σ̃ . P :A and Γ . ṽ : σ̃ then Γ . [ṽ/x̃]P : 〈ṽ/x̃〉A.

Proof D.2 Part 1. Either y = xi for some i, in which case [ṽ/x̃]y = vi and σ = σi, so that

the result follows from Γ. ṽ : σ̃. Or y /∈ x̃, in which case [ṽ/x̃]y = y and y : σ is in Γ. We remark

that types σ never have free names.

Part 2. By induction on the derivation of Γ .P : A. Most cases follow straightforwardly on

Lemma C.5. We consider four particular cases.

1. Case (T-Sub), where Γ, x̃ : τ̃ . P : A is inferred from

Γ, x̃ : τ̃ . P : A′ A′ ≤ A

From the induction hypothesis, Γ . [ṽ/x̃]P : 〈ṽ/x̃〉A′. By Lemma C.3.2 and assumption

A′ ≤ A we get 〈ṽ/x̃〉A′ ≤ 〈ṽ/x̃〉A, and hence as required Γ . [ṽ/x̃]P : 〈ṽ/x̃〉A.

2. Case (T-NewR), where Γ, x̃ : τ̃ . (NΦz)P : A↑{z} is inferred from

Γ, x̃ : τ̃ , z : res . P :A tracesz(A) ⊆ Φ

106



Assume by alpha-renaming that z does not clash with x̃ or ṽ. From Lemma C.5.9 we get

A↓{z} ≈ (〈ṽ/x̃〉A)↓{z}, giving tracesz(A) = tracesz(〈ṽ/x̃〉A) and hence tracesz(〈ṽ/x̃〉A) ⊆
Φ. From Γ . ṽ : τ̃ and Lemma D.1, we get Γ, z : res . ṽ : τ̃ . So, by the induction hypothesis,

Γ, z : res . [ṽ/x̃]P : 〈ṽ/x̃〉A. These two together give

Γ . (NΦz)[ṽ/x̃]P : (〈ṽ/x̃〉A)↑{z}.

For the process (NΦz)[ṽ/x̃]P , we can push the substitution out by definition of the substitu-

tion operator and because z 6∈ {x̃, ṽ}. For the behavior (〈ṽ/x̃〉A)↑{z} we use Lemma C.5.9

to push it out. Hence as required,

Γ . [ṽ/x̃](NΦz)P : 〈ṽ/x̃〉(A↑{z}).

Extended case only: Just replace traces with etraces in the above reasoning.

3. Case (T-Out), where Γ, x̃ : τ̃ . z〈w〉. P : z. (〈w̃/ỹ〉A1|A2) is inferred from

Γ, x̃ : τ̃ . P : A2 Γ, x̃ : τ̃ . w̃ : σ̃

Γ, x̃ : τ̃ . z : chan〈(ỹ : σ̃)A1〉
Part 1 implies Γ . [ṽ/x̃]w̃ : σ̃ and Γ . [ṽ/x̃]z : chan〈(ỹ : σ̃)A1〉. From the induction hypoth-

esis, we get Γ . [ṽ/x̃]P : 〈ṽ/x̃〉A2. These three give

Γ . [ṽ/x̃]z〈[ṽ/x̃]w̃〉. [ṽ/x̃]P : [ṽ/x̃]z. (〈[ṽ/x̃]w̃/ỹ〉A1|〈ṽ/x̃〉A2)

For the process we push the substitution out by definition of the substitution operator. For

the behavior we push it out using several parts of Lemma C.5.

4. Case (T-In), where Γ, x̃ : τ̃ . z(ỹ). P : z. (A2↑{ey}) is inferred from

Γ, ỹ : σ̃, x̃ : τ̃ . P : A2 Γ, x̃ : τ̃ . z : chan〈(ỹ : σ̃)A1〉
A2↓{ey} ≤ A1

We use three deductions. First from Part 1 we get

Γ. [ṽ/x̃]z : chan〈(ỹ : σ̃)A1〉. Second, from assumption A2↓{ey} ≤ A1 and Lemma C.3.2 we

get 〈ṽ/x̃〉(A2↓{ey}) ≤ 〈ṽ/x̃〉A1. The substitution on the right disappears because FV(A1) ⊆
{ỹ} and we can assume by alpha-renaming that ỹ does not clash with {x̃, ṽ}. The substitu-

tion on the left can be pushed inside by Lemma C.5.9. These together give (〈ṽ/x̃〉A2)↓{ey} ≤
A1. And third, from the induction hypothesis we get Γ, ỹ : σ̃ . [ṽ/x̃]P : 〈ṽ/x̃〉A2. These three

give

Γ . [ṽ/x̃]z(ỹ). [ṽ/x̃]P : [ṽ/x̃]z. ((〈ṽ/x̃〉A2)↑{ey})
As in the previous case we push the substitution out in the process and the behavior to get,

as required,

Γ . [ṽ/x̃](z(ỹ). P ) : 〈ṽ/x̃〉(z. (A2↑{ey})).

107



Lemma D.3 (Subject-reduction)

1. If Γ . P :A and P ¹ Q then Γ . Q : A.

2. (Subject-reduction) If P
L→ P ′ and Γ . P : A then A

L=⇒ A′ and Γ . P ′ :A′ for some A′.

Proof D.3 Part 1. By induction on the derivation of P ¹ Q. Most cases use Lemma C.2.

The case for (νx)P |Q ¹ (νx) (P |Q) uses Lemma D.1. The only interesting case is that for

(NΦx)P |Q ¹ (NΦx)(P |Q) with x /∈ FV(Q). The judgement Γ . (NΦx)P |Q : A must have been

inferred from
Γ, x : res . P :A3 tracesx(A3) ⊆ Φ A3↑{x} ≤ A1

Γ . Q : A2 A1|A2 ≤ A

From these and Lemma D.1, we infer

Γ, x : res . P |Q :A3|A2.

By alpha-renaming assume x /∈ FV(A2). By Lemmas C.6.6 and C.6.11 we get (A3|A2)↓{x} ≈
A3↓{x}|A2↓{x} ≤ A3↓{x}, and then by Lemma C.7.1 we get tracesx(A3|A2) ⊆ tracesx(A3),

and so tracesx(A3|A2) ⊆ Φ. This gives

Γ . (NΦx)(P |Q) : (A3|A2)↑{x}.

Finally (A3|A2)↑{x} ≤ A3↑{x}|A2 ≤ A1 |A2 ≤ A. This gives as required

Γ . (NΦx)(P |Q) : A.

Extended case only: Just replace traces with etraces in the above reasoning.

Part 2. By induction on the derivation of P
L−→ P ′. We show main cases. The other cases

are straightforward.

• Case (R-Com): We are given

Γ . x〈ṽ〉. P1 |x(ỹ). P2 : A.

This must have been deduced from

Γ . x〈ṽ〉. P1 : A1

Γ . x(ỹ). P2 : A2

A1|A2 ≤ A. (D.1)

108



Γ . x〈ṽ〉. P1 : A1 and Γ . x(ỹ). P2 : A2 must have been deduced from

Γ . P1 : A3 (D.2)

Γ . x : chan〈(ỹ : σ̃)A4〉 (D.3)

Γ . vi : σi (D.4)

x. (〈ṽ/ỹ〉A4 |A3) ≤ A1 (D.5)

and

Γ, ỹ : σ̃ . P2 : A5 (D.6)

Γ . x : chan〈(ỹ : σ̃)A4〉
A5↓{ey} ≤ A4 (D.7)

x. (A5↑{ey}) ≤ A2 (D.8)

respectively. We must show A ⇒ A′ and Γ.P1|[ṽ/ỹ]P2 : A′ for some A′. We pick some A′

such that A ⇒ A′ and A′ ≥ 〈ṽ/ỹ〉A4|A3|A5↑{ey}. The existence of such A′ is guaranteed

by A ≥ x. (〈ṽ/ỹ〉A4|A3)|x. (A5↑{ey}) −→ 〈ṽ/ỹ〉A4|A3|A5↑{ey}, which follows from (B.1) and

(B.5) and (B.8), and the definition of the subtyping relation (Definition 3.10). It remains

to prove Γ . P1|[ṽ/ỹ]P2 :A′. We start with the judgment (B.6),

Γ, ỹ : σ̃ . P2 : A5.

By Lemma D.2.2,

Γ . [ṽ/ỹ]P2 : 〈ṽ/ỹ〉A5.

Hence

Γ . P1|[ṽ/ỹ]P2 :A3|〈ṽ/ỹ〉A5.

Therefore, the required result Γ.P1 | [ṽ/ỹ]P2 : A′ follows by (T-Sub), if we show A3 | 〈ṽ/ỹ〉A5 ≤
A′. It follows by:

A3 | 〈ṽ/ỹ〉A5 ≤ A3 | 〈ṽ/ỹ〉(A5↓{ey} |A5↑{ey}) (Lemma C.7.5)

≤ A3 | 〈ṽ/ỹ〉(A5↓{ey}) | 〈ṽ/ỹ〉(A5↑{ey}) (Lemma C.5.4)

≤ A3 | 〈ṽ/ỹ〉(A5↓{ey}) |A5↑{ey} (Lemma C.5.10)

≤ A3 | 〈ṽ/ỹ〉A4|A5↑{ey} (assumption B.7 above)

≤ A′ (the definition of A′).

• Case (R-Acc): We are given Γ . accξ(x).P1 : A. This must have been derived from

– Γ . P1 :A1

– Γ . x : res

109



– xξ.A1 ≤ A.

We have to show that

– Γ . P1 :A′

– A
xξ

=⇒ A′.

Let A′ be a behavioral type that satisfies A
xξ

=⇒ A′ and A′ ≥ A1. Such A′ is guaranteed

to exist by A ≥ xξ.A1
xξ−→ A1. Then, Γ . P1 : A′ follows from Γ . P1 :A1 and A′ ≥ A1.

• Case (R-NewR1): We are given Γ . (NΦx)P1 :A This must have been derived from

– Γ, x : res . P1 : A1

– tracesx(A1) ⊆ Φ

– A ≥ A1↑{x}.

We have to show that there exists A′ such that

– Γ . (NΦ−ξ
x)P ′

1 : A′

– A =⇒ A′

where P1
xξ−→ P ′

1.

By the induction hypothesis, there exists A′1 that satisfies Γ, x : res.P ′
1 : A′1 and A1

xξ

=⇒ A′1.

Using (Tr-Project), we get A1↓{x} xξ

=⇒ A′1↓{x}. So, from the definition of traces

and tracesx(A1) ⊆ Φ, we get tracesx(A′1) ⊆ Φ−ξ. By using (T-NewR), we get Γ .

(NΦ−ξ
x)P ′

1 : A′1↑{x}.
It remains to show there exists A′ such that A′1↑{x} ≤ A′ and A =⇒ A′. That follows

from A ≥ A1↑{x} =⇒ A′1↑{x}. Here, the latter relation follows from A1
xξ

=⇒ A′1 and rule

(Tr-Exclude).

Extended case only: Just replace traces with etraces in the above reasoning.

• Case (R-SP): This follows immediately from Part 1 and the induction hypothesis.

110



Appendix E

Proofs of the Lemma for Theorem 3.3

This chapter gives a proof of the lemma “Disabled” used in the proof of Theorem 3.3.

Lemma E.1 (Disabled) If well annotated(P ) and Γ .pl P : A with bool 6∈ codom(Γ), then

P 6−→ implies disabled(A,S) for any S.

Proof E.1 We first note that well annotated(P ) and P 6−→ imply ¬active(P ) by the definition

of well annotated(P ). So, it is sufficient to show (i)Γ .pl P :A, (ii)P 6−→, (iii)¬active(P ), and

(iv) bool 6∈ codom(Γ) imply disabled(A,S) for any S. We prove this by induction on the

derivation of Γ .pl P : A, with case analysis on the last rule.

• Case (T-Zero): In this case, A = 0, so we have disabled(A,S) for any S.

• Case (T-Out): In this case, P = xt〈ṽ〉. P1 and

A = xt. (〈ṽ/ỹ〉A1 |A2). Since ¬active(P ), t = ∅. So, we have disabled(A,S) for any S.

• Case (T-In): In this case, P = xt(ỹ). P1 and A = xt. (A2↑{ey}). Since ¬active(P ), t = ∅.
So, we have disabled(A,S) for any S.

• Case (T-Par): In this case, P = P1 |P2 and A = A1 |A2 with Γ .pl P1 : A1 and Γ .pl

P2 :A2. Note that P 6−→ implies P1 6−→ and P2 6−→. ¬active(P ) implies ¬active(P1) and

¬active(P2). So, by the induction hypothesis, we get disabled(A1, S) and disabled(A2, S)

for any S, which implies disabled(A,S).

• Case (T-Rep): In this case, P = ∗P1 and A = ∗A1, with Γ .pl P1 :A1. ¬active(P ) and

P 6−→ imply ¬active(P1) and P1 6−→. So, by the induction hypothesis, we get disabled(A1, S)

for any S, which also implies disabled(A,S) as required.

• Case (T-If): This case cannot happen; by the condition (iv), P must be of the form

if true then P1 else P2

or if false then P1 else P2 , which contradicts with P 6−→.

111



• Case (T-New): In this case, P = (νx) P1, A = (νx) A2, and Γ, x : chan〈(ỹ : σ̃)A1〉 .

P1 :A2. ¬active(P ) and P 6−→ imply ¬active(P1) and P1 6−→. So, by the induction

hypothesis, we get disabled(A2, S) for any S. By the definition of disabled(·, S), we get

disabled(A,S).

• Case (T-Acc): This case cannot happen, since P must be of the form accξ(x).P1, which

contradicts with P 6−→.

• Case (T-NewR): Similar to the case for (T-New).

• Case (T-Sub): Γ .pl P : A must be derived from Γ .pl P :A′ for some A′ ≤ A. By the

induction hypothesis, for any S, we get disabled(A′, S). By the condition A′ ≤ A, we

have disabled(A,S) for any S.

112



Appendix F

Computing a Basis of Behavioral Type

This section is an appendix for Section 3.3.4. Let A be a behavioral type of the form (νỹ) B,

where B does not contain any ν-prefix. Such A can be obtained by pushing all the ν-prefixes

out to the top-level, as described in Section 3.3.4. We show how to compute a basis of A below.

The constructor ·↑S can be eliminated by running the algorithm ElimUp∅,∅(B, ∅) below.

ElimUpF,D(0, S) = 0

ElimUpF,D(α, S) =



A if F (α, S) = A

µβ.ElimUpF{(α,S)7→β},D(D(α), S) if (α, S) 6∈ dom(F )

ElimUpF,D(l.A, S) = (l\S).ElimUpF,D(A,S)

ElimUpF,D(A1 |A2, S) = ElimUpF,D(A1, S) |ElimUpF,D(A2, S)

ElimUpF,D(A1 ⊕A2, S) =

ElimUpF,D(A1, S)⊕ ElimUpF,D(A2, S)

ElimUpF,D(∗A,S) = ∗ElimUpF,D(A,S)

ElimUpF,D(〈ỹ/x̃〉A,S) = ElimUpF,D(A, {z | [ỹ/x̃]z ∈ S})
ElimUpF,D(µα.A, S) = µα.ElimUpF{(α,S)7→α},D{α 7→A}(A,S)

ElimUpF,D(A↑S1
, S) = ElimUpF,D(A, S ∪ S1)

ElimUpF,D(A↓S1
, S) = ElimUpF,D(A, S)↓S1

Here, l\S is τ if target(l) ⊆ S and l otherwise. D keeps recursive definitions and F is a cache

for avoiding repeated computation. If A does not contain ν-prefixes, ElimUp∅,∅(B, ∅) always

terminates since S can range over a finite set (which is the powerset of FV(B)). The constructor

·↓S can be removed in the same manner.

113



We can further eliminate the renaming constructor 〈ỹ/x̃〉 by using the following algorithm.

ElimRenF,D(0, θ) = 0

ElimRenF,D(α, θ) =



A if F (α, θ) = A

µβ.ElimRenF{(α,θ)7→β},D(D(α), θ) if (α, θ) 6∈ dom(F )

ElimRenF,D(l.A, θ) = θl.ElimRenF,D(A, θ)

ElimRenF,D(A1 |A2, θ) = ElimRenF,D(A1, θ) |ElimRenF,D(A2, θ)

ElimRenF,D(A1 ⊕A2, θ) =

ElimRenF,D(A1, θ)⊕ ElimRenF,D(A2, θ)

ElimRenF,D(∗A, θ) = ∗ElimRenF,D(A, θ)

ElimRenF,D(〈ỹ/x̃〉A, θ) = ElimRenF,D(A, θ ◦ [ỹ/x̃])

ElimRenF,D(µα.A, θ) = µα.ElimRenF{(α,θ)7→α},D{α 7→A}(A, θ)

By applying the above algorithms to A = (νỹ) B, we obtain an equivalent type A′ = (νỹ) B′,

where B′ does not contain any ν-prefixes, ·↓S , ·↑S , or 〈ỹ/x̃〉. So, only elements of Atoms(B′)

defined below (modulo folding/unfolding of recursive types) can appear in transitions of B. So,

({ỹ},Atoms(B′)) forms a basis of A.

Definition F.1 Let A be a behavioral type that does not contain any ν-prefix, ·↓S, ·↑S, or

〈ỹ/x̃〉. The set of atoms Atoms(A) is the least set that satisfies the following conditions.

Atoms(l.A) ⊇ {l.A} ∪Atoms(A)

Atoms(A1 |A2) ⊇ Atoms(A1) ∪Atoms(A2)

Atoms(A1 ⊕A2) ⊇ {A1 ⊕A2} ∪Atoms(A1) ∪Atoms(A2)

Atoms(∗A) ⊇ {∗A} ∪Atoms(A)

Atoms(µα.A) ⊇ {µα.A} ∪Atoms([µα.A/α]A)

114


