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Abstract

We exploit the apparent similarity between (discrete-time) stream
processing and (continuous-time) signal processing and transfer
a deductive verification framework from the former to the latter.
Our development is based on rigorous semantics that relies on
nonstandard analysis (NSA).

Specifically, we start with a discrete framework consisting of a
Lustre-like stream processing language, its Kahn-style fixed point
semantics, and a program logic (in the form of a type system)
for partial correctness guarantees. This stream framework is trans-
ferred as it is to one for hyperstreams—streams of streams, that
typically arise from sampling (continuous-time) signals with pro-
gressively smaller intervals—via the logical infrastructure of NSA.
Under a certain continuity assumption we identify hyperstreams
with signals; our final outcome thus obtained is a deductive verifi-
cation framework of signals. In it one verifies properties of signals
using the (conventionally discrete) proof principles, like fixed point
induction.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logics of programs; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Denotational
semantics

Keywords hybrid system; stream processing; signal processing;
type system; nonstandard analysis

1. Introduction

Signal By signals we mean values that depend on continuous
time, that is, functions s : R≥0 → C.1 Signals are everywhere in
the real world: they are the most straightforward model of physical
quantities like position, velocity, voltage, etc. Signals have been
studied extensively in the theory of dynamical systems, or more
recently from the engineering viewpoint of control theory.

1 The use of complex numbers C—instead of R—as the range is due to our
use of i (the imaginary unit) in our leading example in §6. This choice is not

important: our theory behaves the same for both C∼= R2 and R.
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Hybrid system In the mod-
ern world where more and
more physical systems are
under the control of comput-
ers (cars, plants, pacemakers,
etc.), signals that are not en-
tirely smooth—with discrete jumps caused by digital control—have
gained their significance. They play an important role in the study
of hybrid systems, an aspect of the more general topic of cyber-
physical systems. Simulink, an industry-standard tool for modeling
and simulation of hybrid systems, supports the design of a hybrid
system as a signal processing system composed of interconnected
blocks (above right). A signal processing system is one that re-
ceives, processes and outputs signals.

Stream processing Study of formal verification—or computer
science in general—has traditionally been focused on discrete data
(this is changing rapidly, though). There stream processing sys-
tem is a heavily studied notion, together with related notions like
dataflow network and reactive programming [29]. A stream is an
infinite sequence (a0,a1, . . .) of data; thus it is a time-varying value
s : N→ C with a discrete notion of time. It bears an obvious simi-
larity to the notion of signal. Moreover, common graphical presen-
tations of stream processing systems look very much like Simulink
block diagrams.

This similarity is the starting point of the current work. The dif-
ference between signals and streams is whether the time domain is
continuous (R≥0) or discrete (N). If one can unify this difference,
the discrete techniques for streams that have been accumulated in
computer science can be readily applied to signals. This is what we
do, by the mathematical vehicle of nonstandard analysis (NSA).
NSA allows us to think of continuous-time flow dynamics as if it
is a succession of discrete-time jumps each of which is infinitely
small.

Nonstandard Analysis NSA is an alternative formalization of
analysis—convergence, continuity, differentiation, etc.—that uses
the explicit notion of infinitesimal (i.e. infinitely small) number.
Leibniz’s original formulation of analysis was based on infinites-
imals; but a naive use of such immediately leads to a contradiction.
It was Robinson [24] who gave a logically rigorous foundation for
infinitesimals using the notion of ultrafilter.

In our previous work [13, 30] we used NSA to represent flow
dynamics by means of while loops—each iteration of a loop
changes values infinitesimally. What is remarkable about NSA is
its logical infrastructure: its famous result called the transfer prin-
ciple states that a formula is valid for real numbers if and only if
it is valid for hyperreals (i.e. reals extended with infinitesimals).
Therefore, reals vs. hyperreals (i.e. discrete vs. continuous, in the
setting of [13, 30]) are the same from a logical point of view. This



allowed us in [13, 30] to transfer a logical (i.e. deductive) verifica-
tion technique for discrete programs as it is to hybrid systems.

In the current work we use the same idea to fill in the gap be-
tween signal processing and stream processing. We similarly trans-
fer a deductive verification method, too. In it we employ the for-
malism of a (first-order functional) stream processing language
SPROC—it is modeled after the widely-accepted language Lus-
tre [9]—to represent stream processing systems.

NSA is in fact not only about “analysis”: its use is found in many
branches of mathematics, such as general topology [14, Chap. III]
and posets [35]. In this paper we present another instance of such,
namely domain theory upgraded with NSA (Appendix B, part of
which already appeared in [3]). We use it in the definition of
denotational semantics of SPROC

dt.

(Conti.) signal |=? safety

hyperstream |=? safety

hyperstream sampling

SPROC
dt + type system

Deductive verification

SPROC + type system

Sectionwise execution

(1)

Overview of the technical develop-
ment On the right, in (1), is the
overview of our development. It is
centered around two key ideas: hy-
perstream sampling and sectionwise
execution.

Hyperstream sampling Typically,
a computer science approach to
the study of continuous-time signals
starts off with sampling a signal f . A
sampling interval δ > 0 results in a
stream ( f (iδ ))i∈N =

(

f (0), f (δ ), f (2δ ), . . .
)

. Obviously such sam-
pling cannot be exact—we cannot know what happens to f during
δ seconds of the sampling interval.

Then a natural idea is to consider infinitely
many sampling intervals that are progressively
small, as shown on the right. This results in a

stream of streams
(

(

f ( i
j+1 )

)

i∈N

)

j∈N
, that is









(

f (0), f (1), f (2), . . .
)

,
(

f (0), f ( 1
2 ), f (1), . . .

)

,
(

f (0), f ( 1
3 ), f ( 2

3 ), . . .
)

,
. . .









. (2)

Roughly a hyperstream is such a stream of
streams.

This hyperstream sampling still cannot be ex-
act for all signals f : after all, there are only count-
ably many sampling points, while R≥0 is uncountable. However, if
f satisfies some continuity assumption, we could reconstruct the
value f (t) for t ∈R≥0 as a certain limit of sampled values. Specifi-
cally, based on the figure below on the right, we “vertically” collect
the following values from the sampling result (2).

f (⌈t⌉), f (
⌈2t⌉

2 ), f (
⌈3t⌉

3 ), . . . −→ f (t) (3)

This construction is called smoothing; here ⌈ ⌉ is “rounding up.”
We will formalize these sampling and smooth-

ing operations (Smp and Smth) in §5. There we
propose a class of functions (i.e. a continuity re-
quirement) that makes hyperstream sampling in-
deed exact, that is, Smth ◦ Smp= id.

In this paper in fact we use a refined no-
tion of hyperstream: it is not simply a stream
of streams (described above) but is the *-
transform of the notion of stream. The intuition
behind this refined notion is: a hyperstream is
a stream ( f (0), f (dt), f (2dt), . . .) with an in-
finitesimal sampling interval dt. The j-th stream
(

f (0), f ( 1
j+1 ), f ( 2

j+1 ), . . .
)

in (2) then occurs as

its j-th approximation. *-transform is an NSA

construction; its benefit is that we can transfer a
logical theory of streams as it is to that of hyper-
streams, via the celebrated transfer principle in NSA.

This idea of using an infinitesimal sampling interval is already
presented in [3, §2.3], where they establish Smth ◦ Smp = id
for functions f : R≥0 → R that are everywhere continuous (they
also hint an extension to piecewise continuity). Since we aim at
hybrid applications, our class of functions (Def. 5.1) is broader and
contains some Zeno examples such as a bouncing ball.

Sectionwise execution The second key idea is about integrating
NSA into program semantics and transferring the latter from dis-
crete to continuous/hybrid. For this purpose we use the idea called
sectionwise execution; it was first used in our previous work [13,
30] for a language with while loops. Here we briefly review the
idea as presented in [13, 30], adapting it later to the current setting
of stream processing.

t := 0 ;
while t ≤ 1 do

t := t +dt

Its very first example is the program celapse
on the right. Here dt is a constant that denotes
an infinitesimal value; if that is the case the
while loop will not terminate within finitely many steps. Never-
theless it is somehow intuitive to imagine the “execution” of the
program to increase t from 0 to 1, in a smooth and continuous man-
ner.

t := 0 ;
while t ≤ 1 do

t := t + 1
i+1

To put this intuition into rigorous program
semantics, we think of the following section-
wise execution. For each natural number i we
consider the i-th section of the program celapse, that is denoted by
celapse|i and shown on the right. Concretely, celapse|i is obtained

by replacing the infinitesimal dt in celapse with 1
i+1 . Informally

celapse|i is the “i-th approximation” of the original celapse.
A section celapse|i does terminate within finite steps and yields

1+ 1
i+1 as the value of t. Now we collect the outcome of section-

wise execution and obtain a sequence

(1+1, 1+ 1
2 , 1+ 1

3 , . . . , 1+ 1
i , . . .) (4)

which is intuitively thought of as a progressive approximation of
the actual outcome of the original program celapse. Indeed, in the
language of NSA, the sequence (4) represents a hyperreal number
r that is infinitesimally close to 1.

In [30], based on this idea, we presented a framework for mod-
eling and verification of hybrid systems. It consists of an imper-
ative language WHILE and a Hoare-style program logic HOARE,
augmented with a constant dt and called WHILEdt and HOAREdt.
Exploiting the transfer principle in NSA—which roughly states that
reals and hyperreals are “logically the same”—we showed that the
rules of HOAREdt (precisely the same as those of HOARE) are
sound and relatively complete. Underlying is the denotational se-
mantics of programs defined in the above sectionwise way. In [13]
we applied several static analysis techniques (mainly for invariant
discovery) to this setting. We also implemented an automated veri-
fication tool.2

It was speculated in [13, 30] that the use of dt is not only
for while programs but is probably a general methodology for
transferring a discrete verification framework to continuous/hybrid.
Our current work is one such example: the framework of a stream
processing language and a program logic (in the form of a type
system) is transferred to the one for hyperstream processing. Here
“sectionwise execution” takes the following concrete form. As a
hyperstream processing language we introduce SPROC

dt; it is a

2 We note that “programs” in WHILEdt are not executable in general; this
is already clear in the example of celapse. We rather think of WHILEdt as a
modeling language, on which we can carry out static, deductive verification.

The same is true of the language SPROC
dt introduced in the current paper.



stream processing language SPROC, augmented with a constant dt
for an infinitesimal interval. The denotation JpK of an SPROC

dt

program p—say p takes a hyperstream and returns a hyperstream—
is defined by

JpK
(

(

(ai, j)i

)

j

)

:=
(

Jp| jK
(

(ai, j)i

)

)

j
; (5)

that is, the section p| j (an SPROC program) is applied to the j-th
stream of the input hyperstream, and their outcome is bundled up.

Example 1.1 (The sine curve). Here is a program pgSine in
SPROC

dt.
node Sine() returns (s)
where s = 0fby1 (s+ c×dt); c = 1fby1 (c− s×dt)

node Main() returns (proj1 Sine())

(6)

The third line (declaring Main) is bureaucracy and can be ignored
for the moment. The core part is the mutual recursive definition
of the hyperstreams s and c, whose intuition we now explain. The
operator fby1 means delay by one step (i.e. dt seconds):

(a0,a1, . . .)fby
1 (b0,b1, . . .) = (a0,b0,b1, . . .) .

Therefore the (recursive) equation s= 0fby1 (s+c×dt) means,
for each n (that in fact ranges over hypernatural numbers),

s(n) =

{

0 if n = 0,

s(n−1)+ c(n−1)×dt otherwise.

This yields the following equations.

s(0) = 0
s(n)−s(n−1)

dt
= c(n−1) (7)

The value s(n−1) is that of one step before s(n), i.e. dt seconds be-
fore s(n). Thus the equations (7) are identified with the differential
equation sin′(t) = cos(t) with the initial value sin(0) = 0.
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dt = 1/1.5
dt = 1/3

sin(x)

Intuitively, the section-
wise execution of pgSine
realizes the sine curve
as the limit of the ap-
proximations with dt =
1, 1

2 ,
1
3 , . . . . This is like the

graphs on the right.
In the current work we

employ a more advanced
part of NSA than used
in [13, 30]. It allows us to transfer statements not only on arith-
metic facts but also on set-theoretical ones. More precisely, we can
now transfer formulas of the first-order language LX (Def. 2.5) that
has ∈ as a binary predicate. The details of this part of NSA is rather
complicated but most of them are not needed; in §2.2 we list the
minimal set of necessarily definitions and results.

A usage scenario Our technical framework summarized in (1) is
supposed to be used in the following way.

We are given two data: a continuous-time signal f and a safety
property P. The goal is to verify that f satisfies P. Towards that
goal, one first models f by an SPROC

dt program pg f . Typically we
are not given f as a mathematical entity (i.e. a function f : R≥0 →
C), but we get its formal specification written in some formalism
like ODEs and Simulink diagrams. In this case, modeling of f
amounts to translation of a specification (say in ODEs) into an
SPROC

dt program. This modeling part is briefly discussed in §5.3
but a more extensive treatment is left as future work.

The question then becomes whether the SPROC
dt program pg f

satisfies the safety property P. For that we can use a type system
for SPROC

dt: P is translated into a suitable type νP; and we try
to derive a judgment pg f ⊢ νP using the typing rules. The typing
rules include the well-established proof principle of fixed point
induction.

Once the derivation is done, by type soundness (Thm. 4.20)
it guarantees that the hyperstream Jpg f K denoted by pg f satisfies

νP. Finally by Thm. 5.12 it implies that the signal Smth(Jpg f K)

satisfies P. Thus we are done, under the condition that the SPROC
dt

modeling of f is correct (i.e. Smth(Jpg f K) = f ).
Note that the last paragraph is all about the metatheory. The ac-

tual verification task is derivation of a type judgment, and this is
done in the same deductive style as the verification of (discrete-
time) stream processing. In its course the NSA metatheory is com-
pletely concealed.

Organization of the paper In §2 we list the definitions and results
of NSA that are used later. A prototype stream language SPROC

is introduced in §3, together with its Kahn-style denotational se-
mantics and a type system for safety guarantee. It is modeled after
Lustre and is nothing novel; but the SPROC framework is carefully
designed so that it allows the transfer to SPROC

dt in §4. Finally
in §5 we translate signals into hyperstreams, and also the safety
guarantee for hyperstreams (obtained by the SPROC

dt type sys-
tem) to that for signals. §6 is devoted to a verification example.
Our intention is to use the current framework for hybrid systems
(as mentioned above)—definitions like Def. 5.1 are worked out so
that it accommodates many common hybrid dynamics. Our leading
example (Example 1.1, which is used in §6) is however a totally
continuous one; this is due to the limited space. In §7 we conclude.

We defer most of the proofs to the extended version [31]. In this
paper we sometimes refer to “Appendix”; it is found in [31].

Related work The current work shares with [4] the observation
of the similarity between signal processing and stream process-
ing. In [4] they extend Lustre by ODEs. They go on to a compi-
lation framework that separates discrete and continuous parts of
a program, passing the latter to an external solver to approximate
continuous dynamics. For the correctness of the compilation they
introduce NSA-based formal semantics [5], which like ours takes
continuous dynamics as a succession of infinitesimal jumps. They
also employ a type system for the separation of discrete and con-
tinuous parts of a program. Despite these similarities, the current
work’s objective is quite different from theirs—we aim to exploit
NSA’s logical infrastructure to transfer deductive (i.e. logical) ver-
ification from discrete stream processing to continuous-time signal
processing. The extension of Lustre by ODEs in [5] is not designed
towards this objective.

Formal verification of Simulink diagrams has been studied e.g.
in [10, 28, 33]. In [28] Simulink diagrams are translated into hy-
brid automata, which are amenable to model checking. In [33]
translation of a discrete fragment of Simulink into Lustre is pre-
sented. [10] combines symbolic analysis and numerical simulation,
towards the goal of enhanced simulation coverage. All these papers
agree on one point: Simulink lacks formal semantics. In [7, 10]
Simulink semantics is defined “operationally” by formalizing the
simulation algorithms used in the implementation of Simulink. We
hope our hyperstream modeling will serve as a basis of denotational
semantics of Simulink.

Turning to the purely discrete world, formal verification of
stream processing systems is studied often in the abstract interpre-
tation community [11]. Application of these results to our current
deductive approach is an interesting direction of future work.

For hybrid systems in general, there have been extensive re-
search efforts from the formal verification community. Unlike the
current work where we turn flow into jump via dt, most of them
feature acute distinction between flow- and jump-dynamics. These
include: model-checking approaches based on hybrid automata [2];
deductive approaches, one of the most notable of which is a recent
series of work by Platzer and his colleagues (including [21, 23]).
Interestingly in [23] it is argued that being hybrid imposes no addi-



tional burden to deductive verification. This concurs with our NSA
view that being discrete and being continuous/hybrid are “logically
the same.”

Some verification techniques from the static analysis commu-
nity have been successfully used in hybrid applications (modeled
with explicit differential equations) [17, 25–27]. The basic idea of
the current work—also of our previous [13, 30]—is to transfer dis-
crete verification techniques as they are to continuous/hybrid set-
tings.

It is never our intention to champion the superiority of discrete
techniques to continuous ones. The formal verification community
has worked out a stock of discrete techniques; our case is that their
application domain can be pushed further to continuous/hybrid. In-
deed we see ODEs as an extremely efficient formalism for contin-
uous dynamics. We plan to incorporate them into our NSA frame-
work.

The use of NSA as a foundation of hybrid system modeling
is not proposed for the first time; see e.g. [3, 5, 6]. Compared to
this existing body of work, we claim our novelty is the use of
NSA’s logical infrastructure (especially the transfer principle) for
deductive verification, based on a concrete modeling language.

In particular, the basic idea of the current paper (namely, stream
processing + NSA = signal processing) as well as two important
technical ideas (namely: infinitesimal sampling intervals and do-
main theory in NSA) are already in [3]. Unlike the current paper
where we introduce a concrete programming (or modeling) lan-
guage SPROC

dt, in [3] they work with an abstract (graphical) lan-
guage of string diagrams for monoidal categories.

Notations and terminology The syntactic equality is denoted by
≡.

An infinite stream s = (a0,a1, . . .) over S is identified with a
function s : N→ S. We write s(i) for its i-th element, i.e. s(i) = ai.

For a nonnegative real r ∈R≥0, ⌈r⌉ ∈N denotes the least natural
number that is not smaller than r, that is, r ≤ ⌈r⌉< r+1.

In this paper we use some domain theory, for which our princi-
pal reference is [1]. We will be using ω-cpo’s—calling them sim-
ply “cpo’s”—while in [1] most results are formulated in terms of
directed cpo’s. The equivalence between these two “cpo’s” is found
in [1, Prop. 2.1.15]. We also assume the least element ⊥ in cpo’s.

2. A Nonstandard Analysis Primer

Here we list the minimal set of necessary definitions and results in
nonstandard analysis (NSA). More details are found e.g. in [12, 14].

2.1 Infinitesimals in NSA

First we present an elementary part of NSA. We fix an index set
I = N, and an ultrafilter F ⊆ P(I) that extends the cofinite filter
Fc := {S ⊆ I | I \S is finite}. Its properties to be noted: 1) for any
S ⊆ I, exactly one of S and I \S belongs to F ; 2) if S is cofinite (i.e.
I \S is finite), then S belongs to F .

Definition 2.1 (Hypernumber d ∈ ∗X). For a base set X (typi-
cally it is N, R or C), we define the set ∗X of hypernumbers by
∗X := X I/∼F . It is the set of infinite sequences on X modulo the
following equivalence ∼F : we define (a0,a1, . . .)∼F (a′0,a

′
1, . . .)

by

{i ∈ I | ai = a′i} ∈ F , (8)

for which we say “ai = a′i for almost every i.”

Therefore, given that two sequences (ai)i and (a′i)i coincide except
for finitely many indices i, they represent the same hypernumber.
The predicates other than = (such as <) are defined in the same
way. A notable consequence is the existence of an infinitesimal

number: a hyperreal ω−1 := [(1, 1
2 ,

1
3 , . . .) ] is positive (0 < ω−1)

but is smaller than any (standard) positive real r = [(r,r, . . .)].

Definition 2.2 (Shadow). A hyperreal r is limited if it is not
infinite, i.e. if there is a standard positive real K ∈ R such that
−K < r <K. It is well-known (see [12, 14]) that a limited hyperreal
r has a unique standard real that is infinitely close to r. This
standard real is called the shadow of r and denoted by sh(r).

The notion of shadow is a generalization of that of limit: if (ai)i

converges then sh
(

[(a0,a1, . . .)]
)

= limi→∞ ai. See e.g. [12, 14].

Remark 2.3. It is common in NSA to take an index set I that
is bigger than N, and an ultrafilter F ⊆ P(I) over I. The merit
of doing so is that the resulting monomorphism ∗( ) (§2.2) can
be chosen to be an enlargement; see [14, Chap. II]. In this paper,
however, we favor concreteness and choose I = N as the index set.

2.2 NSA in Superstructure

What we need from the logical machinery of NSA goes beyond
the elementary fragment presented above. It employs a set theory-
like formal language LX and a so-called superstructure as a model.
The definitions and results listed below are all well-established and
commonly used in NSA. We follow [14, Chap. II], in which more
details can be found.

Superstructure A superstructure is a “universe,” constructed step
by step from a certain base set X . We assume N⊆ X .

Definition 2.4 (Superstructure). A superstructure V (X) over X is:

V (X) :=
⋃

n∈NVn(X) , where
V0(X) := X and Vn+1(X) :=Vn(X)∪P(Vn(X)) .

(Ordered) pairs (a,b) and tuples (a1, . . . ,am) are defined in
V (X) as is usually done in set theory, e.g. (a,b) := {{a},{a,b}}.
The set V (X) is closed under many set formation operations. For
example the function space a → b is thought of as a collection of
special binary relations (a → b ⊆ P(a×b)), hence is in V (X).

*-Transform We use the following predicate logic LX .

Definition 2.5 (The language LX ). Terms in LX consist of: vari-
ables x,y,x1,x2, . . . ; and a constant a for each entity a ∈V (X).

Formulas in LX are constructed as follows.

• The predicate symbols are = and ∈; both are binary. The atomic
formulas are of the form s = t or s ∈ t (where s and t are terms).

• Any Boolean combination of formulas is a formula. We use the
symbols ∧,∨,¬ and ⇒.

• Given a formula A, a variable x and a term s, the expressions
∀x ∈ s.A and ∃x ∈ s.A are formulas.

Note that quantifiers always come with a bound s. The language
LX depends on the choice of X (it determines the set of constants).
We shall also use the following syntax sugars in LX , as is common
in NSA. Their translation into proper LX formulas is straightfor-
ward.

(s, t) pair (s1, . . . ,sm) tuple
s× t direct product
s ⊆ t inclusion, short for ∀x ∈ s.x ∈ t
s(t) function application; short for x s.t. (t,x) ∈ s
s ◦ t function composition, (s ◦ t)(x) = s(t(x))
s ≤ t inequality in N; short for (s, t) ∈ ≤ where ≤⊆ N2

Remark 2.6. We note that LX resides on a different level from the
languages that we introduce later, such as SPROC, SPROC

dt and
their assertion languages. LX is used to define the semantics of
those object-level languages, and is a meta language in this sense.

Definition 2.7 (Semantics of LX ). We interpret LX in the super-
structure V (X) in the obvious way. Let A be a closed formula; we
say A is valid if A is true in V (X).



Validity is defined only for closed formulas.
The so-called ultrapower construction yields a canonical map

∗( ) : V (X)−→V (∗X) , a 7−→ ∗a (9)

that is called the *-transform. It is a map from the universe V (X)
of standard entities to V (∗X) of nonstandard entities. We skip the
details of its construction; later in this section we take a closer look.

The map ∗( ) becomes a monomorphism, a notion in NSA.
Most notably it satisfies the transfer principle (Lem. 2.9).

Definition 2.8 (*-transform of formulas). Let A be a formula in
LX . The *-transform of A, denoted by ∗A, is a formula in L∗X

obtained by replacing each constant a occurring in A with the
constant ∗a that designates the element ∗a ∈V (∗X).

Lemma 2.9 (The transfer principle). For any closed formula A in
LX , A is valid (in V (X)) if and only if ∗A is valid (in V (∗X)).

The transfer principle is a powerful result and we will totally rely
on it in the semantics of SPROC

dt. Here are the first examples of
its use.

Lemma 2.10. 1. For a ∈V (X)\X we obtain an injective map

∗( ) : a −→ ∗a , (b ∈ a) 7−→ (∗b ∈ ∗a) (10)

as a restriction of ∗( ) in (9).

2. If a is a finite set, the map (10) is an isomorphism a
∼=→ ∗a.

3. Let a → b be the set of functions from a to b. We have
∗(a → b)⊆ ∗a → ∗b.

4. ∗(a1 ×·· ·×am) =
∗a1 ×·· ·× ∗am; and ∗(a1 ∪· · ·∪am) =

∗a1 ∪
· · ·∪ ∗am.

5. For a binary relation r ⊆ a×a, we have ∗r ⊆ ∗a× ∗a. Moreover,
r is an order if and only if ∗r is an order.

Internal Sets The distinction between internal and external enti-
ties is central in NSA. In this paper however it is much of formality,
since all the entities we use are internal. Here we present only the
relevant definitions, leaving their intuitions to [14, §II.6]. In Ap-
pendix B, especially Rem. B.8, we will see that being internal is
crucial for transfer.

Definition 2.11 (Internal entity). An element b ∈V (∗X) is internal
with respect to ∗( ) : V (X)→V (∗X) if there is a ∈V (X) such that
b ∈ ∗a. It is external if it is not internal.

Lemma 2.12. f : ∗a → ∗b is internal if and only if f ∈ ∗(a → b).

The ultrapower construction We collect some necessary facts
about the ultrapower construction of the monomorphism ∗( )
in (9). Its details are beyond our scope; they are found in [14,
§II.4].

The map ∗( ) in fact factorizes into the following three steps.

V (X)
∗( )

( )

V (∗X)

⋃

n∈N

(

Vn(X)\Vn−1(X)
)I

[ ]
∏0

F V (X)

M (11)

The first factor ( ) maps a ∈V (X) to the constant function a such
that a(i) = a for each i ∈ I; recall that we have chosen I = N

(Rem. 2.3). The second [ ] takes a quotient modulo the ultrafilter
F ; finally the third factor M is the so-called Mostowski collapse.

For an intuition let us exhibit these maps in the simple set-

ting of §2.1. The first factor ( ) corresponds to forming constant
streams: a 7→ a = (a,a, . . .). The second [ ] is quotienting modulo
∼F of (8). The third map M does nothing—it is a book-keeping
function that is only needed in the extended setting of superstruc-
tures.

The next result [14, Thm. 4.5] is about “starting from the lower-
left corner” in (11). It follows from the definition of M and is
a crucial step in the proof of the transfer principle (Lem. 2.9).
It serves as an important lemma, too, later for the semantics of
SPROC

dt.

Lemma 2.13 (Łoś’ theorem). Let A be a formula in LX with
its free variables contained in {x1, . . . ,xm}; and a1, . . . ,am ∈
⋃

n∈N

(

Vn(X)\Vn−1(X)
)I

. Then

∗A
[

M[a1]/x1, . . . ,M[am]/xm

]

is valid

⇐⇒
{

i ∈ I | A[a1(i)/x1, . . . ,am(i)/xm] is valid
}

∈ F .

As a special case, let S ∈V (X), then

M[a] ∈ ∗S ⇐⇒ a(i) ∈ S for almost every i.

Corollary 2.14. Let a,b ∈ V (X); and for each i ∈ I, fi ∈ (a → b)
and xi ∈ a. Then M[( fi)i∈I ] is an internal function ∗a → ∗b; and
M[(xi)i∈I ] ∈

∗a. Moreover,

M[( fi(xi))i∈I ] =
(

M[( fi)i∈I ]
)(

M[(xi)i∈I ]
)

.

3. The Stream Processing Language SPROC

In this section we introduce the language SPROC for stream pro-
cessing, together with its denotational semantics and a type sys-
tem. The last is much like a Hoare-style program logic for partial
correctness. The whole framework is nothing surprising: SPROC

is modeled after Lustre [9]; its semantics is defined as usual, fol-
lowing Kahn [15]; and the type system is rudimentary with a lim-
ited expressive power. The point is their clean logical foundations,
which allow us to transfer the whole framework—via NSA—to
SPROC

dt (§4).

3.1 SPROC: Syntax

For an example of an SPROC program, see Example 1.1. It is an
SPROC

dt program, but the two languages are very close.

Definition 3.1 (SPROC). We fix a set SVar of stream variables
and, for each m,n ∈ N, a set NdNamem,n of node names of arity
(m,n). These sets are assumed to be disjoint. The syntax of SPROC

is defined in Table 1. Some of its details are in order.
The set SExpC consists of the C-stream expressions. A constant

c ∈ C stands for the C-stream (c,c, . . .). The operator ∧ is for the

power: (a0,a1, . . .)
∧ (b0,b1, . . .) = (ab0

0 ,ab1

1 , . . .). For each j ∈ N

we have an operator fby j (“followed by”). It means

(a0,a1, . . .)fby
j (b0,b1, . . .) = (a0, . . . ,a j−1,b0,b1, . . .) . (12)

The expression projk f (e1, . . . ,em) invokes the node whose name
is f (declared elsewhere in the same program), feeds it with the
input (e1, . . . ,em), and returns the k-th component of its output.

The set SExpB consists of the expressions for streams in the
Boolean values B= {tt, ff}. The operators =, isReal and < are the

obvious extensions of = : C2 → B, isReal : C→ B and < : C2 →
B. The last is defined by

c1 < c2 :=

{

tt if c1,c2 ∈ R and c1 < c2,

ff otherwise.
(13)

Each node nd ∈ Nodes comes with a certain arity (m,n) and its
name f is chosen from NdNamem,n. It takes m-many C-streams
as input and returns n-many C-streams as output. In the node nd
in Table 1, the variable xi is for an input stream; and the local
variable yi is used in the (mutually) recursive computation inside
the node (specified by y1 = e′1; . . . ;yl = e′l). These xi’s and yi’s
together constitute the set of bound variables in nd. The restriction
in Table 1 dictates that only these variables are allowed to occur in
nd.



Finally, a program of SPROC is a finite sequence of nodes,
with the last one designated as the main node. The restriction in
Table 1 means that we can invoke a node only if it is declared in the
program.

3.2 SPROC: Denotational Semantics

We define the semantics of SPROC in the denotational style, ex-
ploiting the cpo structure of streams. This approach to the de-
notational semantics of stream processing systems dates back to
Kahn [15]. Specifically, our semantic domains are as follows.

Definition 3.2 (C∞,B∞). By C∞ we denote the set of finite and
infinite streams over C. That is, C∞ := C∗ ∪CN. We also define
B∞ for B= {tt, ff} by B∞ := B∗∪BN.

Notation 3.3. In what follows it is convenient to regard a finite
stream as if it is an infinite stream. Using ⊥ (“undefined”), we
identify (a0,a1, . . . ,am) with an infinite stream

(a0,a1, . . . ,am,⊥,⊥, . . .) .

The intuition is: “production of the element am+1 never termi-
nated; thus the elements henceforth never got produced.” Hence
in (an)n∈N ∈ C∞, if am =⊥ then am′ =⊥ for any m′ ≥ m.

The following result underpins Kahn’s approach [15].

Lemma 3.4. The prefix order ⊑ on C∞ makes it a cpo, that is,
any ascending chain s0 ⊑ s1 ⊑ ·· · has a supremum

⊔

i si. Its least
element is the empty stream ε . The same holds for B∞ too.

Based on this observation, we introduce the semantics as fol-
lows.

Definition 3.5 (Variable/node environment). A (stream) variable
environment is a function J : SVar → C∞ that assigns J(x) ∈ C∞

to each stream variable x. A node environment K assigns, to each
node name f ∈ NdName, a continuous function

K( f ) ∈
(

(C∞)m f →ct (C
∞)n f

)

. (14)

Here (m f ,n f ) is the arity of f ; and the set (C∞)m f →ct (C
∞)n f

is that of continuous (i.e.
⊔

-preserving, but not necessarily ⊥-
preserving) functions from (C∞)m f to (C∞)n f , with respect to the
order ⊑ in Lem. 3.4. Therefore K is an element of the following
set.

K ∈ ∏ f∈NdName

(

(C∞)m f →ct (C
∞)n f

)

. (15)

We denote the sets of (stream) variable environments and node
environments by SVarEnv and NdEnv, respectively.

Lemma 3.6. The sets SVarEnv and NdEnv are cpo’s, with the
pointwise extension of the order structure of C∞. Specifically, be-
tween K,K′ ∈ NdEnv, we have K ⊑ K′ if and only if

∀m,n ∈ N.∀ f ∈ NdNamem,n.∀~s ∈ (C∞)m.
∀k ∈ [1,n]. πk

(

K( f )(~s)
)

⊑ πk

(

K′( f )(~s)
)

.

Here πk is the k-th projection πk : (C∞)n → C∞. The order on
SVarEnv is similar.

Using these environments we define the semantics of SPROC

expressions as follows. We go step by step.

Definition 3.7 (JeKJ,K and JbKJ,K). In Table 2 we define the de-
notation JeKJ,K ∈ C∞ of a C-stream expression e ∈ SExpC, under
variable and node environments J and K.

Here the definition of Je1 aope2KJ,K simply says that aop is ap-
plied elementwise. Recall that a finite stream (a0 . . .am) is identi-
fied with (a0, . . . ,am,⊥,⊥, . . .); the operator aop⊥ returns ⊥ if any
of its arguments is ⊥. This is the same for if⊥ . . .then . . .else . . . ,
∧⊥, ¬⊥, etc. that appear later in Table 2. The definition of
Je1 fby

j e2KJ,K is the equation (12) put in formal terms. Recall
that ⊥ means “nontermination” (Notation 3.3). In the definition of

Jprojk f (e1, . . . ,em)KJ,K , recall that πk is the k-th projection (see
Lem. 3.6); also note the type of K (see (14)).

We simultaneously interpret B-stream expressions, as in Ta-
ble 2. Recall our definition of < between complex numbers
(see (13)).

The semantics of intra/inter-node recursion is by least fixed
points.

Definition 3.8 (JndKK). Let nd be a node

nd :≡

[

node f (x1, . . . ,xm) returns (e1, . . . ,en)
where y1 = e′1; . . . ;yl = e′l

]

(16)

of arity (m,n). We define its denotation

JndKK : (C∞)m −→ (C∞)n (17)

as follows. Given~s = (s1, . . . ,sm) ∈ (C∞)m as input, first we solve
the following recursive equation, and obtain a variable environment
J0 as its least solution.

J0 = J0

[

x1 7→ s1, . . . , xm 7→ sm,
y1 7→ Je′1KJ0 ,K , . . . , yl 7→ Je′lKJ0 ,K

]

(18)

On the right-hand side, [x1 7→ s1, . . . ] means a function update. The
variable environment J0 thus obtained is used in:

JndKK(s1, . . . ,sm) := (Je1KJ0 ,K , . . . , JenKJ0 ,K ) ∈ (C∞)n .

Definition 3.9 (JpgK). Let pg be a program [nd1, . . . ,ndN ;ndMain];
f1, . . . , fN and fMain be the names of nd1, . . . ,ndN and ndMain; and
(mMain,nMain) be the arity of ndMain. We define the denotation
JpgK : (C∞)mMain → (C∞)nMain as follows. We define a node envi-
ronment K0 to be the least solution of the following recursive equa-
tion.

K0 = K0

[

f1 7→ Jnd1KK0
, . . . , fN 7→ JndNKK0

,
fMain 7→ JndMainKK0

]

(19)

The node environment K0 thus obtained is used in the following.
(Note the type; see (17))

JpgK := JndMainKK0
: (C∞)mMain → (C∞)nMain

We need the following lemmas for Def. 3.8–3.9 to make sense.
These follow from the fact that all the constructs in the denotational
semantics are continuous, which is proved in Appendix A.

Lemma 3.10. For any node nd and any K ∈ NdEnv, the function
JndKK : (C∞)m → (C∞)n is continuous. Therefore the function on
the right-hand side of (19) is indeed a node environment.

Lemma 3.11. The recursive equations (18–19) have least solu-
tions.

Proof. By the continuity of the relevant operations, including

Φ : SVarEnv −→ SVarEnv ,

J 7−→ J

[

x1 7→ s1, . . . , xm 7→ sm,
y1 7→ Je′1KJ,K , . . . , yl 7→ Je′lKJ,K

]

,
(20)

and Lem. 3.6.

3.3 SPROC: Type System for Safety Guarantee

We now present a “program logic” for SPROC. SPROC is a first-
order functional language; therefore, as usual, our logic takes the
form of a type system. There we identify types with predicates.

Our type system is rather restricted and is aimed (solely) at the
partial guarantee of safety, that is, it gives no guarantee in the
case of nontermination. Our focus on partial safety is influenced
by [18]; and is much like common Hoare-style program logics. We
leave as future work verification of liveness properties; the latter
necessarily involves the analysis of termination (i.e. productivity in
stream processing).



SExpC ∋ e ::= x | c | e1 + e2 | e1 × e2 | e1
∧ e2 | e1 fby

j e2 | if b then e1 else e2 | projk f (e1, . . . ,em)
where x ∈ SVar; c ∈ C; j ∈ N; b ∈ SExpB; f ∈ NdNamem,n; and k ∈ [1,n]

SExpB ∋ b ::= true | false | b1 ∧b2 | ¬b | e1 = e2 | isReal(e) | e1 < e2 where e,ei ∈ SExpC

Nodes ∋ nd ::=

[

node f (x1, . . . ,xm) returns (e1, . . . ,en)
where y1 = e′1;y2 = e′2; . . . ;yl = e′l

] where f ∈ NdNamem,n; xi,yi ∈ SVar; ei,e
′
i ∈ SExpC;

x1, . . . ,xm,y1, . . . ,yn are all distinct; and the variables occurring
in ei,e

′
i are restricted to xi and yi

Programs ∋ pg ::= [nd1,nd2, . . . ,ndm;ndMain] where ndi,ndMain ∈ Nodes; and the node names occurring in ndi or ndMain

are restricted to f1, . . . , fm and fMain, the (distinct) names of nd1, . . . ,ndm and ndMain

Table 1. Syntax of SPROC

JxKJ,K := J(x) JcKJ,K := (c,c, . . .) Je1 aop e2KJ,K :=
(

Je1KJ,K(n)aop⊥ Je2KJ,K(n)
)

n∈N
where aop ∈ {+,×,∧}

Je1 fby
j e2KJ,K :=

{

(

Je1KJ,K(0),Je1KJ,K(1), . . . ,Je1KJ,K( j−1),Je2KJ,K(0),Je2KJ,K(1), . . .
)

if the length of Je1KJ,K is at least j
(

Je1KJ,K(0),Je1KJ,K(1), . . . ,Je1KJ,K(k−1),⊥,⊥ . . .
)

if the length of Je1KJ,K is k and k < j

Jif b then e1 else e2KJ,K :=
(

if⊥ JbKJ,K(n) then Je1KJ,K(n) else Je2KJ,K(n)
)

n∈N

Jprojk f (e1, . . . ,em)KJ,K := πk

(

K( f )
(

Je1KJ,K , . . . ,JemKJ,K

)

)

JtrueKJ,K := (tt, tt, . . .) JfalseKJ,K := (ff, ff, . . .) Jb1 ∧b2KJ,K :=
(

Jb1KJ,K(n)∧⊥ Jb2KJ,K(n)
)

n∈N
J¬bKJ,K :=

(

¬⊥JbKJ,K(n)
)

n∈N

Je1 = e2KJ,K :=
(

Je1KJ,K(n) =⊥ Je2KJ,K(n)
)

n∈N
JisReal(e)KJ,K :=

(

isReal⊥
(

JeKJ,K(n)
)

)

n∈N

Je1 < e2KJ,K(n) :=

{

Je1KJ,K(n)<⊥ Je2KJ,K(n) if n = 0 or Je1 < e2KJ,K(n−1) 6=⊥

⊥ if Je1 < e2KJ,K(n−1) =⊥

Table 2. Denotation JeKJ,K , JbKJ,K

Remark 3.12. For functional stream processing languages, Nakano’s
type system [20] with the • modality is well-known. Its concern is
for the productivity (i.e. totality, termination) of stream computa-
tion; this is orthogonal to ours (partial safety). In [16] semantics
of stream processing subject to Nakano’s types is proposed using
ultrametric spaces—as an alternative to the Kahn-style cpo seman-
tics which we have used—with its merit being that one can form
a semantic domain consisting solely of total streams (i.e. CN in-
stead of C∞). Application of these results to SPROC, and further to
SPROC

dt, is left as future work.

3.3.1 SPROC: Type Syntax

Our type syntax is borrowed from that of dependent type systems.
The latter are known for their expressiveness and have been used
for verification of higher-order programs (e.g. in [32]). Our type
system, as a feasibility study of the methodology, is much more
restricted. See Example 3.14.

AExp ∋ a ::= v | c | a1 +a2 | a1 ×a2 | a1
∧ a2 | ⌈a1⌉

where v ∈ Var and c ∈ C

Fml ∋ P ::= true | false | P1 ∧P2 | P1 ∨P2 | ¬P |
a1 = a2 | isReal(a) | a1 < a2 | a1 ≤ a2 |
∀v ∈ N.P | ∀v ∈ C.P

where v ∈ Var and a,ai ∈ SExpC

STypeC ∋ τ ::= ∏v∈N{u ∈ C | P} where u,v ∈ Var,
P ∈ Fml and FV(P)⊆ {u,v}

STypeB ∋ β ::= ∏v∈N P where v ∈ Var,
P ∈ Fml and FV(P)⊆ {v}

NdTypem,n ∋ ν ::= (τ1, . . . ,τm)→ (τ ′1, . . . ,τ
′
n)

where τi,τ
′
i ∈ STypeC

Table 3. Type Syntax for SPROC

Definition 3.13 (Types for SPROC). The syntax of our type system
for SPROC is shown in Table 3.

The set AExp is that of arithmetic expressions, each of which
denotes a number in C. We assume a countable set Var of variables;
note that this is different from the set SVar of stream variables. The
rounding up operation ⌈ ⌉ (see §1) is included for a later use. The
set Fml is that of assertion formulas; it follows the usual syntax of
first-order predicate logic.

A type τ ∈ STypeC for C-streams is an expression ∏v∈N{u ∈
C | P}. It consists of variables u,v, a formula P, and the delimiter

∏ ∈N{ ∈ C | }. Its informal meaning is

{u ∈ C | P[0/v]}×{u ∈ C | P[1/v]}×{u ∈ C | P[2/v]}× · · · ;

that is, the set of streams s such that its n-th element u = s(n) and
v = n satisfy P, for each n ∈ N. A type β ∈ STypeB for B-streams
is similar: t |= ∏v∈N P if t(n) is equivalent to P, with v = n, for each
n ∈ N.

A node type ν ≡ (τ1, . . . ,τm)→ (τ ′1, . . . ,τ
′
n) ∈ NdTypem,n rep-

resents the set of nodes of arity (m,n) that, when fed with streams
satisfying τ1, . . . ,τm, output streams satisfying τ ′1, . . . ,τ

′
n.

In the expression ∏v∈N{u ∈ C | P} ∈ STypeC, the variables
u and v are bound. We identify types modulo renaming of these
bound variables. The same is true of v in ∏v∈N P ∈ STypeC.

Example 3.14. The C-stream type ∏v∈N{u | v ≥ 3 ⇒ u ≤ 1}
specifies that the elements s(3),s(4), . . . of a stream s are real and
≤ 1. Our types can thus express rudimentary safety properties.

Regarding the limitation of the expressive power, it is straight-
forward to extend the type system with stream types of arity k > 1:

∏v∈N

{

(u1, . . . ,uk)
∣

∣P
}

, where FV(P)⊆{u1, . . . ,uk,v}. This exten-
sion allows us to speak about correlations among distinct streams.
So can we about correlations between input and output: we can pre-
pare auxiliary output streams that copy input streams, and compare
them with the output. Furthermore we can express temporal prop-
erties: to see if a stream s is increasing, we can check if the pair
(0 fby1 s,s) satisfies the binary type ∏v∈N{(u1,u2) | u1 < u2}. In
this paper we restrict the presentation to unary stream types for the
sake of simplicity.

This is not to say that the type system is amply expressive. For
example, the type judgment ∆;x : τ,y : σ ⊢ if x = y then y else x :
τ (whose validity is not hard to see) cannot be derived by the
typing rules. In its derivation one would need a B-stream type

∏v∈N{x(v) = y(v)}, which is prohibited due to the free variables
x,y in it.

Anyway, the syntactic restrictions in Table 3—compared to a
fully-fledged dependent type system—simplify the type system
drastically. For example, we do not need the well-formedness con-
dition of type environments, which is usually needed in dependent



type systems (see e.g. [32]). Relaxing these restrictions is future
work.

3.3.2 SPROC: Type Semantics

Definition 3.15 (Valuation). A valuation is either ⊥ (“undefined”)
or a function L : Var → C. The set of valuations is denoted by Val,
that is, Val = (Var → C)∪{⊥}.

The function update L[u1 7→ c1, . . . ,um 7→ cm], with L ∈ Val,
ui ∈ Var and ci ∈ C∪{⊥}, is defined by:

L[~u 7→~c] :=

{

⊥ if any of ci is ⊥

(the usual function update) otherwise.
(21)

Therefore: if the length of s ∈ C∞ is not more than n, valuation
L[u 7→ s(n)] is defined to be ⊥.

Definition 3.16 (Semantics of AExp, Fml). The denotation JaKL ∈
C∪{⊥}, of an arithmetic expression a ∈ AExp under a valuation
L ∈ Val, is defined in the usual manner. We define |= between
valuations and formulas in the usual manner, too. For example,

L |= isReal(a)
def.
⇐⇒ L =⊥ or JaKL ∈ R ,

L |= ∀v ∈ N.P
def.
⇐⇒ L =⊥ or L[v 7→ n] |= P for any n ∈ N ,

and so on. In particular, the valuation ⊥∈Val satisfies any formula.
A formula P is valid (|= P) if L |= P for any L ∈ Val.

Definition 3.17 (Semantics of types). Between a C-stream s ∈C∞

and a C-stream type τ ∈ STypeC, s |= τ is defined by

s |= ∏v∈N{u ∈ C | P}
def.
⇐⇒

L[v 7→ n,u 7→ s(n)] |= P for each n ∈ N and L ∈ Val.

Note that the valuation L in the definition is vacuous, because of the
restriction that FV(P)⊆ {u,v}. Note also that when s(n) =⊥, then
L[v 7→ n,u 7→ s(n)] is ⊥ (Def. 3.15), which satisfies P. This reflects
our focus on partial correctness: when the computation does not
terminate—i.e. when the length of s ∈ C∞ is l, and its (l + 1)-th
element never gets produced—it does not matter what the type τ
specifies about the (l +1)-th and later elements of s.

Similarly, between a B-stream t ∈ B∞ and a B-stream type
β ∈ STypeB, the satisfaction relation t |= β is defined as follows.

t |= ∏v∈N P
def.
⇐⇒ for each n ∈ N, t(n) =⊥ or

(

t(n) = tt ⇔ L[v 7→ n] |= P for each L ∈ Val
)

That is, “t(n) if and only if P[n/v].”
Finally, between a continuous function g : (C∞)m →ct (C

∞)n

and a node type ν ∈ NdTypem,n, the satisfaction relation |= is:

g |= (τ1, . . . ,τm)→ (τ ′1, . . . ,τ
′
n)

def.
⇐⇒

∀s1, . . . ,sm,s
′
1, . . . ,s

′
n ∈ C∞.

[

s1 |= τ1 ∧·· ·∧ sm |= τm ∧ (s′1, . . . ,s
′
n) = g(s1, . . . ,sm)

=⇒ s′1 |= τ ′1 ∧·· ·∧ s′n |= τ ′n

]

3.3.3 SPROC: Type Derivation

In type judgments we have two kinds of environments.

Definition 3.18 (Type environment). A stream type environment
Γ = {x1 : τ1, . . . ,xm : τm} is a finite set of pairs of a stream variable
xi ∈ SVar and a C-stream type τi ∈ STypeC. We require x1, . . . ,xm

to be distinct.
Similarly, a node type environment ∆ = { f1 : ν1, . . . , fm : νm} is

a finite set, where fi ∈ NdName is a node name and ν ∈ NdType
is a node type with the same arity.

We denote the sets of stream and node type environments by
STEnv and NdTEnv, respectively.

Notation 3.19. We sometimes write Γ(x). In this case it is assumed
that x : τ is in Γ with some τ; and Γ(x) denotes this (unique) τ .

Definition 3.20 (Type judgment). In our type system for SPROC

we have four classes of type judgments. Here ⊢ is a (mere) delim-
iter.

• ∆;Γ ⊢ e : τ , meaning: the C-stream expression e is of the type
τ if the variables denote the streams conforming to Γ and the
node names denote the nodes conforming to ∆.

• ∆;Γ ⊢ b : τb, meaning the same, between B-stream expressions
and B-stream types.

• ∆ ⊢ nd : ν , meaning: the node nd is of the node type ν if the
node names denote the nodes that conform to ∆.

• ⊢ pg : ν , meaning: pg’s main node ndMain is of the node type
ν .

Definition 3.21 (Type derivation). The typing rules for SPROC are
as shown in Table 4. We write 
 J if the type judgment J is
derivable.

3.3.4 SPROC: Type Soundness

Definition 3.22. Between a stream variable environment J ∈
SVarEnv = (SVar → C∞) and a stream type environment Γ =
{x1 : τ1, . . . ,xm : τm} ∈ STEnv, we define J |= Γ by

J |= Γ
def.
⇐⇒ J(xi) |= τi for each i ∈ [1,m].

Here the latter |= is as defined in Def. 3.17.
Similarly, between a node environment K ∈ NdEnv and a node

type environment ∆ = { f1 : ν1, . . . , fm : νm} ∈ NdTEnv, we define
K |= ∆ if and only if K( fi) |= νi for each i ∈ [1,m].

Lemma 3.23. The C-stream ⊥ ∈ C∞ (i.e. the empty stream) satis-
fies any type τ , that is, ⊥ |= τ . The same for ⊥ ∈ B∞. Similarly we
have ⊥ |= Γ for ⊥ ∈ SVarEnv; and ⊥ |= ∆ for ⊥ ∈ NdEnv.

Definition 3.24 (Validity of type judgments). We say a type judg-
ment ∆;Γ ⊢ e : τ is valid, and write |= ∆;Γ ⊢ e : τ , if for any
J ∈ SVarEnv and K ∈ NdEnv, J |= Γ and K |= ∆ imply JeKJ,K |= τ .
The validity of the other three classes of type judgments is defined
in the same manner.

Theorem 3.25 (Type soundness). A derivable type judgment is
valid, that is, 
 J implies |= J .

Proof. The proof is mostly straightforward by induction. In Ap-
pendix D we show some exemplary cases. The cases (NODE) and
(PROG) involve the principle of fixed point induction.

4. The Hyperstream Processing Language

SPROC
dt

4.1 SPROC
dt: Syntax

Definition 4.1 (SPROC
dt). The syntax of SPROC

dt is the same
as that of SPROC (Table 1), except that we have two additional

constructs—dt and fby
r
dt —in the set SExpC.

SExpC ∋ e ::= x | c | e1 + e2 | · · · (The same as in Table 1)

| dt | e1 fby
r
dt e2 where r ∈ R≥0

In SPROC
dt we call the elements of SExpC C-hyperstream expres-

sions. The same for SExpB, too. Intuitively, the stream expression
dt represents the constant stream (dt,dt, . . .); each dt therein is
thought of as a positive infinitesimal sampling interval. In addi-

tion to fby j for the delay by j steps, we now have fby
r
dt for delay

by infinite steps. With dt being the sampling interval, 1/dt is the
sampling frequency. Therefore delay by r

dt steps means delay “by
r seconds.”

For the semantics of SPROC
dt we use the second key idea of

sectionwise execution (see §1). In it an SPROC
dt program is first

split up into its sections; each section is an SPROC program and



∆;Γ ⊢ x : Γ(x)
(SVAR)

∆;Γ ⊢ c : ∏v∈N{u ∈ C | u = c}
(CONST)

∆;Γ ⊢ ei : ∏v∈N{ui ∈ C | Pi} for i = 1,2 |= ∀v ∈ N.∀u1,u2,u ∈ C.(P1 ∧P2 ∧u = (u1 aopu2) ⇒ P)

∆;Γ ⊢ e1 aop e2 : ∏v∈N{u ∈ C | P}
(AOP) (aop ∈ {+,×,∧})

∆;Γ ⊢ ei : ∏v∈N{u ∈ C | Pi} for i = 1,2 |= ∀v ∈ N.∀u ∈ C.
(

(v < j∧P1 ⇒ P)∧ (v ≥ j∧P2[v− j/v] ⇒ P)
)

∆;Γ ⊢ e1 fby
j e2 : ∏v∈N{u ∈ C | P}

(FBY j)

∆;Γ ⊢ b : ∏v∈N Pb ∆;Γ ⊢ ei : ∏v∈N{u ∈ C | Pi} for i = 1,2 |= ∀v ∈ N.∀u ∈ C.(Pb ∧P1 ⇒ P)∧ (Pb ∧P2 ⇒ P)

∆;Γ ⊢ if b then e1 else e2 : ∏v∈N{u ∈ C | P}
(IF)

∆;Γ ⊢ ei : τi for i ∈ [1,m] ∆( f ) = (τ1, . . . ,τm)→ (τ ′1, . . . ,τ
′
n)

∆;Γ ⊢ projk f (e1, . . . ,em) : τ ′k
(NDCALL)

∆;Γ ⊢ e : ∏v∈N{u ∈ C | P′} |= ∀v ∈ N.∀u ∈ C.P′ ⇒ P

∆;Γ ⊢ e : ∏v∈N{u ∈ C | P}
(CSTCONSEQ)

∆;Γ ⊢ bi : ∏v∈N Pi for i = 1,2

∆;Γ ⊢ b1 ∧b2 : ∏v∈N(P1 ∧P2) for i = 1,2
(AND) (TRUE), (FALSE), (NEG) are similar

∆;Γ ⊢ ei : ∏v∈N{ui ∈ C | Pi} for i = 1,2 |= ∀v ∈ N.∀u1,u2 ∈ C.
(

P1 ∧P2 ⇒ (P ⇔ u1 = u2)
)

∆;Γ ⊢ e1 = e2 : ∏v∈N P
(EQUAL)

∆;Γ ⊢ e : ∏v∈N{u ∈ C | P′} |= ∀v ∈ N.∀u ∈ C.
(

P′ ⇒ (P ⇔ isReal(u))
)

∆;Γ ⊢ isReal(e) : ∏v∈N P
(ISREAL)

∆;Γ ⊢ ei : ∏v∈N{ui ∈ C | Pi} for i = 1,2 |= ∀v ∈ N.∀u1,u2 ∈ C.
(

P1 ∧P2 ⇒ (P ⇔ (isReal(u1)∧isReal(u2)∧u1 < u2))
)

∆;Γ ⊢ e1 < e2 : ∏v∈N P
(LESS)

∆;Γ ⊢ b : ∏v∈N P′ |= ∀v ∈ N.P′ ⇔ P

∆;Γ ⊢ b : ∏v∈N P
(BSTCONSEQ)

Γ(xi)≡ τi for i ∈ [1,m] ∆;Γ ⊢ e′j : Γ(y j) for j ∈ [1, l] ∆;Γ ⊢ ek : τ ′′k for k ∈ [1,n]

∆ ⊢

[

node f (x1, . . . ,xm) returns (e1, . . . ,en)
where y1 = e′1; . . . ;yl = e′l

]

: (τ1, . . . ,τm)→ (τ ′′1 , . . . ,τ
′′
n )

(NODE)

∆ ⊢ nd : (τ ′1, . . . ,τ
′
m)→ (σ ′

1, . . . ,σ
′
n)

|= ∀v ∈ N.∀u ∈ C.Pi ⇒ P′
i for i ∈ [1,m] |= ∀v ∈ N.∀u ∈ C.Q′

j ⇒ Q j for j ∈ [1,n]
(

where τi ≡ ∏v∈N{u ∈ C | Pi}, τ ′i ≡ ∏v∈N{u ∈ C | P′
i }, σ j ≡ ∏v∈N{u ∈ C | Q j}, σ ′

j ≡ ∏v∈N{u ∈ C | Q′
j}
)

∆ ⊢ nd : (τ1, . . . ,τm)→ (σ1, . . . ,σn)
(NDCONSEQ)

∆ ⊢ ndi : ∆( fi) for i ∈ [1,m] ∆ ⊢ ndMain : ν

⊢ [nd1, . . . ,ndm;ndMain] : ν
(PROG) ( fi is the name of the nodes ndi)

Table 4. Typing rules for SPROC

hence is interpreted in a usual manner (§3.2). The outcome of each
section is bundled up and constitutes the outcome of the original
SPROC

dt program. In §4.2 we formalize this idea in the NSA terms
of §2.2.

Definition 4.2 (Section e|i of SPROC
dt expressions). Let p be

an SPROC
dt expression. For each i ∈ N, its i-th section p|i is the

SPROC expression obtained from p, by replacing 1) the stream

expression dt with 1
i+1 ; 2) the operator fby

r
dt with fby⌈r(i+1)⌉.

4.2 SPROC
dt: Semantics

We repeat the development of the semantics of SPROC—replacing
streams with hyperstreams, via *-transform—and interpret SPROC

dt.
Here we rely on domain theory formulated in an NSA setting. Its
details are found in Appendix B (part of which already appeared
in [3]).

Definition 4.3 (Variable/node environment for SPROC
dt). The set

of (stream) variable environments for SPROC
dt is the *-transform

∗SVarEnv of SVarEnv for SPROC. Recall that SVarEnv=(SVar→
C∞); by Lem. 2.12, a variable environment for SPROC

dt is pre-
cisely an internal function J : ∗SVar → ∗(C∞).

Similarly, the set of node environments for SPROC
dt is the *-

transform ∗NdEnv of that for SPROC.

We shall first define the denotation JeKJ,K ∈ ∗(C∞) of a hyper-

stream expression e ∈ SExpC in SPROC
dt, under J ∈ ∗SVarEnv

and K ∈ ∗NdEnv. This is done sectionwise; we proceed exploiting
the NSA machinery in §2.2, finally leading to Def. 4.4.

Given e ∈ SExpC in SPROC
dt, each section e|i (Def. 4.2) is an

SPROC expression. Its denotation (Def. 3.7) yields a function

Je|iK : SVarEnv×NdEnv −→ct C
∞ ;

its continuity is proved in Lem. A.3. We collect Je|iK for each i; this
results, using Lem. 2.13, in the following function.

M
[(

Je|iK
)

i∈N

]

∈ ∗(SVarEnv×NdEnv →ct C
∞)

Lem. B.6 & 2.10
= (∗SVarEnv× ∗NdEnv →∗ct

∗(C∞))
(22)

The last denotes the space of *-continuous functions (Def. B.5),
whose details can safely be skipped for the moment.

Definition 4.4 (JeK,JbK). The denotation JeK, of a C-hyperstream
expression e∈ SExpC in SPROC

dt, is defined as follows using (22).

JeK := M
[(

Je|iK
)

i∈N

]

: ∗SVarEnv× ∗NdEnv →∗ct
∗(C∞)

The denotation JbK : ∗SVarEnv×∗NdEnv→∗ct
∗(B∞) of b∈ SExpB

in SPROC
dt is defined in the same manner.

We now interpret nodes and programs in SPROC
dt. There are

two equivalent ways to do so; here we present the “sectionwise”
definition that is similar to Def. 4.4. This is more convenient for the
later use in §4.3; see Rem. 4.6 for the other definition.



Definition 4.5 (JndK,JpgK). Given a node nd in SPROC
dt of arity

(m,n), its denotation JndK is defined by

JndK := M
[(

Jnd|iK
)

i∈N

]

:
∗NdEnv →∗ct

(

∗(C∞)m →∗ct
∗(C∞)n

)

,

where Jnd|iK : NdEnv →ct ((C
∞)m →ct (C

∞)n) is as defined in
Def. 3.8 (its continuity is proved in Lem. A.6).

For a program pg in SPROC
dt of arity (m,n), its denotation JpgK

is defined similarly by

JpgK := M
[(

Jpg|iK
)

i∈N

]

: ∗(C∞)mMain →∗ct
∗(C∞)nMain .

Remark 4.6. A drawback of the sectionwise definition of JndK
(Def. 4.5) is that the relationship between JndK and JeK (for e
occurring in nd) is not visible at all. Conceptually this is unnatural.

In fact, we can define JndK directly from JeK—like we did
in §3.2—by solving a “hyperdomain equation” in the hyperdomain
∗SVarEnv. For the latter we use the technique presented in [3];
see Appendix B, especially Lem. B.7. The two definitions indeed
coincide; see Appendix C for details.

4.3 SPROC
dt: Type System for Safety Guarantee

We introduce a type system for SPROC
dt as a “*-transform” of

that for SPROC. It might be hard at this stage to make sense of
a hyperstream s satisfying a type τ; it will be used in our main
theorem (Thm. 5.12).

4.3.1 SPROC
dt: Type Syntax

AExp ∋ a ::= v | c | a1 +a2 | a1 ×a2 | a1
∧ a2 | ⌈a1⌉ |

dt | 1
dt

where v ∈ Var and c ∈ C

Fml ∋ P ::= true | false | P1 ∧P2 | P1 ∨P2 | ¬P |
a1 = a2 | isReal(a) | a1 < a2 | a1 ≤ a2 |
∀v ∈ ∗N.P | ∀v ∈ ∗C.P

where v ∈ Var and a,ai ∈ AExp
STypeC ∋ τ ::= ∏v∈∗N{u ∈ ∗C | P} where u,v ∈ Var,

P ∈ Fml and FV(P)⊆ {u,v}
STypeB ∋ β ::= ∏v∈∗N P where v ∈ Var,

P ∈ Fml and FV(P)⊆ {v}
NdTypem,n ∋ ν ::= (τ1, . . . ,τm)→ (τ ′1, . . . ,τ

′
n)

where τi,τ
′
i ∈ STypeC

Table 5. Type Syntax for SPROC
dt

Definition 4.7 (Types for SPROC
dt). The syntax of the SPROC

dt

type system is in Table 5. It is almost the same as that for SPROC

(Table 3). The differences are: 1) we have dt ∈ AExp that repre-
sents an infinitesimal sampling interval; 2) quantifiers in Fml and
stream types are taken over hypernumbers ∗N,∗C, instead of stan-
dard numbers.

We define sections of type expressions. This is like Def. 4.2.

Definition 4.8 (Section of type expressions). The i-th section p|i
of an SPROC

dt type expression p is obtained from p by: 1) replac-

ing dt with 1
i+1 ; 2) replacing 1

dt with i+ 1; 3) replacing hyper-

quantifiers ∀v ∈ ∗D (where D ∈ {N,C}) with standard quantifiers
∀v ∈ D; and 4) replacing hyperquantifiers v ∈ ∗N and u ∈ ∗C in the
stream types ∏v∈∗N{u ∈ ∗C | P} and ∏v∈∗N P by the correspond-
ing standard quantifiers. A section p|i is obviously an SPROC type
expression.

4.3.2 SPROC
dt: Type Semantics

Definition 4.9 (Valuation for SPROC
dt). The set of valuations for

SPROC
dt is ∗Val, the *-transform of the set Val=(Var→C)∪{⊥}

in Def. 3.15. By 2.10, a valuation for SPROC
dt is either an internal

function L : ∗Var → ∗C, or L =⊥.

The function update L[−→ui 7→
−→ci ], with L ∈ ∗Val, ui ∈ Var and

ci ∈
∗C∪{⊥}, is the *-transform of the corresponding operation in

SPROC (Def. 3.15). Namely, the latter induces a function (by (21))

Θ : Val×
(

Var× (C∪{⊥})
)m

→ Val,

(L′,
−−−→
(u′,c′)) 7→ L′[~u′ 7→ ~c′].

(23)

Its *-transform under ∗( ) in (9) is an internal function ∗Θ :
∗Val×

(

∗Var× (∗C∪ {⊥})
)m

→ ∗Val. We precompose the injec-
tion Var →֒ ∗Var from Lem. 2.10.1, and obtain

Θ′ : ∗Val×
(

Var× (∗C∪{⊥})
)m

−→ ∗Val .

We define the function update by L[~u 7→~c] := Θ′(L,
−−→
(u,c)).

Definition 4.10 (Semantics of AExp, Fml). The denotation JaKL ∈
∗C∪ {⊥} of a ∈ AExp under a valuation L ∈ ∗Val is defined as
follows. It is ⊥ when L =⊥; otherwise

JvKL := L(∗v) , JcKL := ∗c ,
JdtKL := M

[

( 1
i+1 )i∈I

]

= [(1, 1
2 ,

1
3 , . . .)] ,

Ja1 aopa2KL := Ja1KL
∗aop Ja2KL where aop ∈ {+,×,∧}.

In the first line, ∗( ) : Var → ∗Var and ∗( ) : C → ∗C are from
Lem. 2.10.1. In the second line recall that I = N (Rem. 2.3); thus
JdtKL is in fact the infinitesimal number ω−1 exhibited in §2.1. In

the last line, ∗aop : (∗C)2 → ∗C is the *-transform of aop.
The satisfaction relation L |= P between L ∈ ∗Val and P ∈ Fml

is defined in the usual manner. For example,

L |= a1 < a2
def.
⇐⇒

L =⊥ or
(

Ja1KL,Ja2KL ∈ ∗R ∧ Ja1KL
∗<⊥Ja2KL

)

.

A formula P is valid (written |= P) if L |= P for any L ∈ ∗Val.

We shall characterize this semantics in a sectionwise manner,
so that we can later apply Łoś’ theorem (Lem. 2.13). For each
a ∈ AExp in SPROC

dt, its section a|i determines by Def. 3.16 a
function Ja|iK : Val → C∪{⊥}. Thus by Lem. 2.13 we have

M
[

(Ja|iK)i∈I

]

∈ ∗(Val → C∪{⊥})
Lem. 2.10

⊆ (∗Val → ∗C∪{⊥}) . (24)

Similarly, a formula P ∈ Fml for SPROC
dt determine

M
[

( |= P|i )i∈I

]

∈ ∗(Val → B)⊆ (∗Val → B) ,

M
[

( |= P|i )i∈I

]

∈ ∗B
∼=→ B.

(25)

Lemma 4.11. Between Def. 4.10 and (24–25), the following hold.

JaKL =
(

M[(Ja|iK)i∈I ]
)

(L)
L |= P ⇐⇒

(

M
[

( |= P|i )i∈I

])

(L) = tt

|= P ⇐⇒ M
[

( |= P|i )i∈I

]

= tt

The next definition is parallel to Def. 3.17.

Definition 4.12. The satisfaction relation |= between a hyper-
stream

s ∈ ∗(C∞)⊆ (∗N→ ∗C∪{⊥}) (where ⊆ is due to Lem. B.3)

and a C-hyperstream type τ ≡ ∏v∈∗N{u ∈ ∗C | P} is defined by:

s |= ∏v∈∗N{u ∈ ∗C | P}
def.
⇐⇒

L[v 7→ n,u 7→ s(n)] |= P for each n ∈ ∗N and L ∈ ∗Val.

In the setting of the previous definition, each section τ|i ≡
∏v∈N{u ∈ C | P|i} determines a function (by Def. 3.17)

(

|= ∏v∈N{u ∈ C | P|i}
)

: C∞ −→ B ;

therefore by Lem. 2.13 we obtain

M
[(

|= ∏v∈N{u ∈ C | P|i}
)

i∈I

]

: ∗(C∞)−→ B . (26)

Lemma 4.13. Between Def. 4.12 and (26), the following holds.

s |= τ ⇐⇒
(

M
[(

|= ∏v∈N{u ∈ C | P|i}
)

i∈I

]

)

(s) = tt



Similarly, for B-hyperstream types and node types, the satis-
faction relations |= are defined much like in Def. 3.17. See Ap-
pendix D.6. They have the following sectionwise characterizations,
too.

Lemma 4.14.

t |= ∏v∈∗N P ⇐⇒
(

M
[(

|= ∏v∈N P|i
)

i∈I

]

)

(t) = tt ;

g |= (~τ)→ (~τ ′) ⇐⇒
(

M
[(

|= (
−→
τ|i)→ (

−→
τ ′|i)

)

i∈I

]

)

(g) = tt .

4.3.3 SPROC
dt: Type Derivation

Typing rules in SPROC
dt are almost the same as in SPROC. In

particular the use of hypernumbers is transparent; this reflects the
NSA idea that standard numbers and hypernumbers are logically
the same.

Definition 4.15 (Type environment). A stream type environment

and a node type environment for SPROC
dt are defined in the same

way as in SPROC (Def. 3.18): the former is a finite subset Γ = {xi :
τi} ⊆ Var×STypeC. We denote the sets of stream and node type
environments by STEnv and NdTEnv, respectively.

Definition 4.16 (Type derivation). The type judgments and the
typing rules for SPROC

dt are the same as for SPROC (Table 4),
except for:

• they are *-transformed, that is, the quantifiers (∏v∈N{u ∈ C |
}, ∀x ∈C, etc.) are replaced by the corresponding hyperquan-

tifiers (∏v∈∗N{u ∈ ∗C | }, ∀x ∈ ∗C, etc.);

• we have the following two additional rules. (FBY
r
dt ) is similar

to (FBY j); there ⌈ r
dt⌉ is short for ⌈r× 1

dt⌉.

∆;Γ ⊢ dt : ∏v∈N{u ∈ C | u = dt}
(dt)

∆;Γ ⊢ e1 : ∏v{u | P1} ∆;Γ ⊢ e2 : ∏v{u | P2}
|= ∀v ∈ ∗N.∀u ∈ ∗C.

(

(v < r
dt

∧P1 ⇒ P)∧
(v ≥ r

dt
∧P2[(v−⌈ r

dt
⌉)/v] ⇒ P)

)

∆;Γ ⊢ e1 fby
r
dt e2 : ∏v∈∗N{u ∈ ∗C | P}

(FBY
r
dt )

4.3.4 SPROC
dt: Type Soundness

Definition 4.17. The satisfaction relation J |= Γ between J ∈
∗SVarEnv (Def. 4.3) and Γ ∈ STEnv (Def. 4.15) is

J |= Γ
def.
⇐⇒ J(∗xi) |= Γ(xi) for each i ∈ [1,m],

where ∗xi is the image under ∗( ) : Var → ∗Var (Lem. 2.10.1). The
satisfaction relation K |=∆ between K ∈ ∗NdEnv and ∆∈NdTEnv
is defined in the same way.

Definition 4.18 (Validity of type judgments). We say a type judg-
ment ∆;Γ ⊢ e : τ is valid, and write |= ∆;Γ ⊢ e : τ , if for any J ∈
∗SVarEnv and K ∈ ∗NdEnv, J |= Γ and K |= ∆ imply JeKJ,K |= τ .
The validity of the other three classes of type judgments is defined
in the same manner.

Lemma 4.19. Validity of a judgment is determined sectionwise:

|= ∆;Γ ⊢ e : τ ⇐⇒ M
[

(|= ∆|i;Γ|i ⊢ e|i : τ|i)i∈I

]

= tt .

Finally we come to soundness. Its proof is totally modular,
exploiting the sectionwise characterizations of |=’s. It is notable
that the content of rules does not matter, as long as they are sound
for SPROC.

Theorem 4.20 (Type soundness of SPROC
dt). A derivable type

judgment is valid in SPROC
dt, that is, 
 J implies |= J .

5. Signals as Hyperstreams

We introduce a translation between (continuous-time) signals and
hyperstreams. This enables SPROC

dt to model signals, and its type

system to provide signals’ safety guarantees. Such signals cannot
just be any function f : R≥0 → C; we introduce a certain class of
functions that makes the translation work (Def. 5.1). The class is
closed under common operations like integration and differentia-
tion, too.

The basic idea of a translation between signals and hyper-
streams (§5.2) is already in [3], where they establish the correct-
ness of their translation for functions f : R≥0 → R that are every-
where continuous (they also hint an extension to piecewise conti-
nuity). Since we aim at hybrid applications, our class of functions
(Def. 5.1) is broader and contains some Zeno examples such as a
bouncing ball.

In §5.1–5.2, for simplicity, we prove results for the R-valued
signals and streams. Extension to C-valued ones is straightforward—
we can separate real and imaginary parts and identify C with R2.

5.1 Signals

Functions that are right continuous with left limits everywhere play
an important role in the theory of stochastic processes. They are
called càdlàg; our class of (continuous enough) signal is based on
this.

Definition 5.1 (Signal). A function f : R≥0 → R is of class
Càdlàgn if: 1) it is right differentiable; 2) it has left limits lim

t→t0−0
f (t)

for each t0 ∈ R>0; and 3) its right derivative f r is of class
Càdlàgn−1. A function f : R≥0 → R is of class Càdlàg0 if it is
right continuous and has left limits everywhere. A function f is of
class Càdlàg∞ if it is of class Càdlàgn for all n ∈ N.

A function f : R≥0 → R is said to be a signal if it is of class
Càdlàg∞ and, for any t ∈R≥0, there is ε > 0 such that f is of class
C∞ in the interval (t, t + ε). Signals denotes the set of signals.

t

f

O t

f r

O

t

(f r)r

O t

((f r)r)r

O

Many common hybrid dynamics are
indeed signals in our sense; but not all of
them. A bouncing ball—a first example
of the Zeno behavior—is modeled as a
signal (on the right). However, if we re-
verse time and flip horizontally, the re-
sulting is not a signal: the halting point
t0 has no interval (t0, t0 + ε) in which the
function is of class C∞.

Another nonexample arises from the compare-to-constant oper-
ation in Simulink. The function

f (t) = e−
1
t sin 1

t (if t > 0) ; 0 (if t ≤ 0)

oscillates around t = 0 very fast but very small (due to the factor

e−
1
t ); it is a signal. However, comparison with 0 results in a non-

signal—it is clearly not right continuous at t = 0.
Our notion of signal still has reasonable closure properties.

Lemma 5.2. A signal f ∈ Signals is right differentiable and Rie-
mann integrable, resulting again in signals.

Remark 5.3. The notion of càdlàg function is used mostly in the
context of stochastic systems. This is also the case in the hybrid
system literature [8, 22]. Our use of the notion suggests it might
also be related to the question of samplability (see e.g. [34]), though
the details are yet to be worked out.

5.2 Signals as Hyperstreams

Signals Smp
∗(R∞)

Smth
(R≥0 →

∗R∪{⊥})

We define the (hyperstream) sam-
pling map Smp and the smoothing
map Smth, and show that they form
faithful translation of signals into
hyperstreams, that is roughly, Smth(Smp( f )) = f . Recall that
in §5.1–5.2 we are restricting to R-valued hyperstreams.



Definition 5.4 (Smp). Smp : Signals → ∗(R∞) is defined by

Smp( f ) := M
[(

( f ( j
i+1 )) j∈N

)

i∈I

]

.

This is exactly the hyperstream sampling (2) put in the NSA terms.

Here ( f ( j
i+1 )) j∈N is in R∞, for each i ∈ I =N; hence by Lem. 2.13

we have M
[(

( f ( j
i+1 )) j∈N

)

i∈I

]

belong to ∗(R∞).
The converse smoothing operation (3) need not yield a signal,

or even a function R≥0 → R. The stream in (3) need not converge;

that is, in the NSA terms, the hyperreal
[(

f (⌈t⌉), f (
⌈2t⌉

2 ), . . .
)]

can be an infinite number. This results in the extended output type
R≥0 →

∗R∪{⊥} in the following definition of Smth.

Definition 5.5 (Smth). The mapping Smth : ∗(R∞) → (R≥0 →
∗R∪{⊥}) is defined as follows. Let h ∈ ∗(R∞) and t ∈ R≥0; the
latter induces a function (⌈(i+1)t⌉)i∈I from I =N to N. Lem. 2.13
yields M

[

(⌈(i+ 1)t⌉)i∈I

]

as an element of ∗N; this is fed to h ∈
∗(R∞)⊆ (∗N→ ∗R∪{⊥}) (Lem. B.3) and we define

Smth(h)(t) := h
(

M
[

(⌈(i+1)t⌉)i∈I

]

)

.

“Smth ◦ Smp= id” is put precise using shadow (Def. 2.2).

Theorem 5.6. For each f ∈ Signals and t ∈ R≥0, the hyperreal

Smth(Smp( f ))(t) is limited and sh
(

Smth(Smp( f ))(t)
)

= f (t).

5.3 Modeling Signals in SPROC
dt

From this point on we are back in the C-valued setting. We rely on
the definitions and results in §5.1–5.2 extended from R to C.

Soundness of signal verification via SPROC
dt relies on the cor-

rect modeling of a signal f as an SPROC
dt program pg f (cf. the

usage scenario in §1). Its extensive treatment—especially the trans-
lation of ODEs and Simulink diagrams into SPROC

dt programs—
will be presented in another venue. Here we present some basic
results.

Definition 5.7 (SPROC
dt model). Let f ∈ Signals. A hyperstream

expression e ∈ SExpC in SPROC
dt is said to be a model of f under

J,K, if sh
(

Smth(JeKJ,K)(t)
)

= f (t) for all t ∈ R≥0. It is similarly

defined for an SPROC
dt program pg to be a model of f .

Proposition 5.8. Let e1,e2 be models of signals f1, f2 under J,K.

1. For each c ∈ C, the constant symbol c ∈ SExpC is a model of
the constant signal c(t) = c.

2. (e1 aop e2) is a model of the signal ( f1 aop f2) (computed
pointwise) under J,K, for aop ∈ {+,×,∧}.

3. (e1 fby
r
dt e2) is a model, under J,K, of the signal ( f1 fby

r sec.

f2). The latter is defined below; it is easily seen to be a signal.

(

f1 fby
r sec. f2

)

(t) :=

{

f1(t) if t < r,

f2(t − r) if t ≥ r.

As to Lem. 5.2, we also have SPROC
dt programs for right

differentiation and Riemann integration. We leave them to another
venue.

In Example 1.1 we have used an SPROC
dt model (6) of the sine

curve, where the latter is defined using an ODE. Its (intuitively ob-
vious) correctness can be proved by showing that Smth(JpgSineK)
is a solution of the ODE defining the sine curve.

5.4 Safety Guarantee for Signals

In translating safety guarantees from SPROC
dt to signals, the prop-

erty τ ≡∏v{u | P} cannot be just anything—after all, Smp samples
only countably many t ∈ R. A sufficient condition is given by τ’s
being (topologically) closed. It means that the set {(u,v) | |= P} is

closed in C2. The type syntax for signals is restricted accordingly;
in particular, adding <, ¬ or ∃ makes topological closedness fail.

Definition 5.9 (Type Syntax for Signals).

AExp ∋ a ::= v | c | a1 aopa2

where v ∈ Var, c ∈ C, aop ∈ {+,×,∧}
Fml ∋ P ::= true | false | P1 ∨P2 | P1 ∧P2 | a1 = a2 |

isReal(a) | a1 ≤ a2 | ∀v ∈ C.P
where v ∈ Var, a,ai ∈ AExp

SgType ∋ τ ::= ∏w∈R≥0
{u ∈ C | P} where u,w ∈ Var,

P ∈ Fml and FV(P)⊆ {u,w}
SgPrTypem,n ∋ ν ::= (τ1, . . . ,τm)→ (τ ′1, . . . ,τ

′
n)

where τi,τ
′
i ∈ SgType

The set SgType is that of signal types.

Definition 5.10 (Semantics of Signal Types). A valuation L is the
same as in Def. 3.15; L |= P with P ∈ Fml is defined as usual, too.

Between f ∈ Signals and τ ∈ SgType, f |= τ is defined by:

f |= ∏w∈R≥0
{u ∈ C | P}

def.
⇐⇒

∀t ∈ R≥0.∀L ∈ Val. L[w 7→ t,u 7→ f (t)] |= P .

As in Def. 3.17, L in the above is vacuous since FV(P)⊆ {u,w}.

Definition 5.11 (Translation pHS of types). To each type expres-
sion p for signals (Def. 5.9), we assign an SPROC

dt type expression
pHS. It is defined by replacing: 1) the signal type ∏w∈R≥0

{u ∈ C |

P} with the hyperstream type ∏v∈∗N{u ∈ C | PHS[(v×dt)/w]}; 2)
quantifiers ∀v ∈ C with hyperquantifiers ∀v ∈ ∗C.

The idea of pHS is to represent time w in P by the step number v
multiplied by the sampling interval dt.

Theorem 5.12 (Soundness). Let f ∈ Signals be a signal, and
τ ≡ ∏w∈R≥0

{u ∈C | P} ∈ SgType be a signal type. Assume further

that an SPROC
dt program pg is a model of f (Def. 5.7). Then:


 ⊢ pg : ()→ (τHS) =⇒ f |= τ .

We expect the opposite direction ⇐ of the theorem to fail in
general—the left-hand side guarantees safety also for a time t that
is infinitely large. We also note that, while the signal type syntax
(Def. 5.9) is more restricted than that of SPROC

dt (§4.3), in de-
riving the left-hand side of the theorem one can safely use the full
SPROC

dt type system.

6. An Example: The Sine Curve

We verify the range of the sine curve. Specifically, we show that
pgSine in Example 1.1 satisfies, for any real constants t0 > 0 and
ε > 0,

JpgSineK |= ∏w∈R≥0
{u ∈ C | t0 ≤ w∨u ≤ 1+ ε} . (27)

Our intuition of the formula in (27) is w< t0 ⇒ u≤ 1+ε; due to the
restricted syntax of signal types (Def. 5.9) it is written as in (27). By
Thm. 5.12, it suffices to derive the following type judgment using
the typing rules of SPROC

dt.

⊢ pgSine : ()→ (τgoal) , where
τgoal :≡ ∏v∈∗N{u ∈ ∗C | t0 ≤ v×dt∨u ≤ 1+ ε} .

(28)

In its derivation, the most significant step (below) uses the principle
of fixed point induction to deal with the intra-node recursion (s and
c) in pgSine. This step is an instance of the (NODE) rule (Table 4):

(a) ∆0;{s : τs-inv,c : τc-inv} ⊢ 0fby1 (s+ c×dt) : τs-inv

(b) ∆0;{s : τs-inv,c : τc-inv} ⊢ 1fby1 (c− s×dt) : τc-inv

(c) ∆0;{s : τs-inv,c : τc-inv} ⊢ s : τs-inv

∆0;

{

s : τs-inv

c : τc-inv

}

⊢





node Sine() returns (s)
where s = 0fby1 (s+ c×dt);

c = 1fby1 (c− s×dt)



 :
()→
(τs-inv)

(29)



Here the type environment Γinv := {s : τs-inv,c : τc-inv} plays the
role of an invariant. The types are concretely as follows.

τs-inv ≡ ∏v∈∗N{u ∈ ∗C | u = 1
2 i(1− i ·dt)v − 1

2 i(1+ i ·dt)v}

τc-inv ≡ ∏v∈∗N{u ∈ ∗C | u = 1
2 (1− i ·dt)v + 1

2 (1+ i ·dt)v}

Here i is the imaginary unit. ∆0 in (29) is {Sine : ()→ τgoal}.
It is straightforward to derive the assumptions (a–c) of (29).

The derivation of (a) is in Appendix D.12. (b) is similar; (c) is by
(SVAR).

Therefore we have derived the conclusion of (29). To it we
apply the (NDCONSEQ) and (PROG) rules and derive our final goal
⊢ pgSine : ()→ (τgoal). The former requires the side condition

|= ∀v ∈ ∗N.∀u ∈ ∗C.
(

u = 1
2 i(1− i ·dt)v − 1

2 i(1+ i ·dt)v

⇒ (t0 ≤ v×dt∨u ≤ 1+ ε)
)

.
(30)

Its is proved in a discrete manner, using Lem. 2.13. See Ap-
pendix D.

As is always with the Hoare-style logics, invariant discovery is
the hardest part in SPROC

dt type derivation. In this example we
discovered the invariants τs-inv, τc-inv by solving the recurrence re-
lations derived from the program. This is a totally discrete business.

7. Conclusions and Future Work

Starting from a familiar framework of a stream processing language
SPROC, its Kahn-style denotational semantics and a type system as
a program logic, we extended it with a constant dt and obtained
a framework for hyperstreams. Translation of signals into hyper-
streams enables us to use deductive verification in SPROC

dt for
certain safety guarantees of signals. The logical infrastructure of
NSA provides the framework with a rigorous mathematical basis.

Some directions of future work are mentioned in the related
work part of §1; here we add a couple. In this paper we have made
one discretization technique (namely discrete sampling) “hyper”
and thus exact. We are interested in use of NSA in other discretiza-
tion techniques such as the Fourier transform.

Type inference for SPROC
dt is future work. Due to its character

as a program logic, the situation would be much like with Hoare-
style logics: even type checking (i.e. proof search) would be unde-
cidable; and the biggest challenge would be in invariant discovery.
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