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Abstract. We propose a simple theory of expressions which is intended
to be used as a foundational syntactic structure for the Natural Frame-
work (NF). We define expression formally and give a simple proof of the
decidability of a-equivalence. We use this new theory of expressions to
define judgments and derivations formally, and we give concrete exam-
ples of derivation games to show a flavor of NF.

1 Introduction

Abstraction and instantiation are two basic operations on expressions. Although
the intuitive meanings of an abstract like B = (z)A(z) and its instance A(¢)
(which is obtained from A(x) by substituting ¢ for =) are clear, the actual process
of computing the expression A(t) from B is very subtle as it sometimes requires
the renaming of bound variables in B to avoid the capturing of free variables in
t during the process of instantiation.

In this paper, we will present a simple theory of expressions in which expres-
sions form a structure equipped with the operations of abstraction and instan-
tiation. The novelty of the structure is that the instantiation operation can be
carried out without renaming bound variables. Because of this property, we can
define a-equivalence of expressions without relying on renaming of variables, and
the proof of the decidability of a-equivalence becomes very simple. We remark
that, as pointed out by Vestergaard [7], to give a rigorous proof of it is a delicate
problem. We will give an informal account of the theory of expressions in 2 and
give a formal presentation of the theory in 3.

We will then use the theory of expressions to reformulate the theory of judg-
ments and derivations introduced in [5]. This theory forms the basis of the Nat-
ural Framework (NF), and in NF we can define various mathematical systems
in a uniform and convenient way using derivation games. In 4, we will define
the concepts of judgments, derivations and derivations, and will show that these
concepts can be rigorously defined by using the higher-order abstract syntax
provided by the simple theory of expressions.

2 Informal theory of expressions

In this section we present our theory of expression in an informal way. The
presentation is informal only because we will take the notion of a-equivalence



for granted. As we usually take this notion for granted, the reader should be able
to grasp the essence of the theory by reading this section.

2.1 Expressions

For each n (n = 0,1,2,---), we assume a countably infinite set V,, of variables
(z,y,z). For each n (n = 0,1,2,--+), we assume a countably infinite set C,, of
constants (¢, d). We assume that all these sets are mutually disjoint, so that given
any variable z (or constant ¢) we can uniquely determine a natural number such
that z € V,, (¢ € C,,, resp.).

We will say that a variable (constant) is of arity n if it is in V,, (C,,, resp.).
A variable is higher-order if its arity is positive and it is first-order if its arity is
0, and similarly for a constant.

We define expressions as follows, where e : exp will mean that e is an expres-
siomn.

We identify a-equivalent expressions.

r€V, ai:exp -+ ap:exp
var
xlay,...,a,):exp
ceC, arp:exp -+ ay:exp
const
clay, ... an]:exp
xreV, a:exp
————— abs
(x)a : exp
We will understand that z[aq,...,a,] (c[a1,...,a,]) stands for z (c, resp.)
when n = 0. We will write (z1,---,2y)a for (z1) - (z,,)a, and when n = 0, this

stands for a. We will also write () [a] for (x)a when we wish to emphasize that
x is the binding variable and its scope is a.

Note that a variable standing by itself is not an expression if its arity is
positive. For each variable x € V,,, we associate an expression x* : exp as follows.

1. x*:=xifn=0.
2. %= (x1,...,x0)x[T1,. .., 2y) if n >0, where 21,...,x, are all of arity 0.

We will sometimes simply write = as a short hand for x*.

2.2 Environments

We define environments which are used to instantiate abstract expressions and
also to define substitution. Let x be an n-ary variable. We say that an expression
e is substitutable for x if e is of the form (z1,...,z,)a where x1,...,z, are all
0-ary variables. So, any expression is substitutable for a 0-ary variable, but,
only expressions of the form (z,y)e (x,y are 0-ary) are substitutable for 2-ary
variables.

If = is a variable of arity n and e is substitutable for x, then x = e is a
definition, and a set of definitions p = {z1 = e1,...,2, = e} is an environment
if x1,..., 2, are distinct variables, and its domain |p| is {z1, ...,z }.



2.3 Instantiation

Given an expression e and an environment p, we define an expression |[e] p s
follows. We choose fresh local variables as necessary.

L [z],:=eif z is of arity 0 and x = ¢ € p.

2. [m[al, csan]], =le }{mlz[al]p,...,mn:[an]p} ifn>0and x = (z1,...,2,)e € p.
3. [zlar, ... an]], = 2llad] ... [an] ] i 2 & [p].

4. [clai,. .., ]]p = cfla1] - - - an] )]

5. [(@) [al], = (@) [[a] ].

We can check the well-definedness of the above definition as follows.

An environment p is first-order if all the variables in |p| are first-order, and
it is higher-order if |p| contains at least one higher-order variable. If the given
environment is first-order, then the above definition is an ordinary inductive
definition. Now, since we know that the above definition is well-defined for first-
order environments, we can carry out the above definition for higher-order envi-
ronments.

It is essential to distinguish first-order variables and higher-order variables.
Without the distinction, evaluation of expressions may fail to terminate as can
be seen by the following example.

[l o= = W=ttt = W y=wpwtny =

However, since we do have the distinction of first-order and higher-order vari-
ables, the above computation is not possible. Namely, by our definition of en-
vironment, y must be of arity 0, since y occurs as a binder in (y)y[y]. But y
must be also of arity 1 because of the first occurrence of y in y[y]. This is a
contradiction.

3 Formal theory of expressions

We now present our theory of expressions formally. To do this, we first extend
the notion of variables as follows.

3.1 Variable references

If z € V,, and k € N, where N is the set of natural numbers, then #*z is a variable
reference and k is called the level of the variable reference. In particular, if £ = 0,
then #*x is the variable z. We use the letter r as a meta variable ranging over
variable references.

For each arity n we choose and fix an n-ary variable and write it as v,,.



3.2 Expressions

We define expressions inductively as follows. If the judgment e:exp can be derived
by the following rules, e is said to be a expression.

keN zeV, aj:exp -+ ap:exp
% varref
fozlay, ... a,] exp
ceC, ar:exp -+ ay:exp
const
clay, ... an]:exp

xeV, a:exp

(x)a : exp abs

For a variable reference r = ¥z (z € V,,) we define an expression r* as follows.

k ﬁk 1fn:0,
()" { ool o],

(T1,...,2n .yxy] if n > 0, where z; = vy (1 <i < n).
For each expression a we assign its size, |a|, as follows.

L oo, anll = lar| + -+ fan] + 1.
2. |clar, ... an)| = lar| + -+ |an| + 1.
3. |(x)a| :=]a|] + 1.

For each variable reference r and expression a we associate a set occ(r,a) of
free occurrences of r in a as follows. An occurrence is represented by a string in
N*. If SCN*andn € Nweput n-S:={n-o| o € S}, where n-o denotes the
concatenation of the natural number n (regarded as a character) with the string
.

1. occ(tFz, tylay, . . an])
{0jut- occ(]j x, al) U---Un-occ(f*z,a,)if k= and z =y,
1-occ(ffz,a)U---Un- occ(ﬁkx an) otherwise.

2. occ(t*z, cla, ..., a,]) :=1-occ(tfz,a1)U---Un-occ(f*z,ay,).
occ(t*x,a) if z =y,

(e
3. oce(fz, (y)a) = occ(ffz,a) if x #Zy.

For example, assuming that c is a binary constant and d is a 4-ary constant, we
have

oce(x, clz, (x)d[z, i1z, 2, y]]) = {1,2- 2},
oce(t', cla, (v)d[z, 'z, %2, y]]) = {2- 3}
occ(t2x, c[z, (z)d[z, t x, 122, y]]) = 0 and

oce(y, clz, (x)d[z, 81z, 2, y]]) = {2 - 4}

We put FV(a) := {r | occ(r,a) # 0} and call it the set of free variable
occurrences in a.

An expression a is closed if FV(a) = ). For example, (z)f2x is an expression
but is not closed since FV((z)4?z) = {#'z}, and (z)z is a closed expression since

FV((z)z) = 0.



3.3 Environments

We modify the notion of environments and define it as follows. Firstly, a defini-
tion is defined in the same way as before. Namely, a definition is an expression of
the form = = (z1,...,2,)a where z € V,, and 21, ..., z, are all arity 0 variables.
Secondly, we will call any variable x a declaration. Then an environment is a list
of definitions and declarations of the form:

P = (‘rl =a1,...,Tk :akvyla"'aye) (k7€€ N)

If Kk =1=0, then p = () is called the empty environment. An environment is
said to be first-order if x is of arity 0 for any definition x = a in the environment,
and it is said to be higher-order otherwise.

We will also modify the process of instantiation, and for that we first define
the process of pushing an expression through a variable reference. Namely, for
any expression a and any variable reference ¥z, we define an expression a T ¥z
as follows and call it the result of pushing a through *z.

tmala; T852,...,a, T8F2] ifm <kand z = 2,
L. tmzay,...,a,) T2 =< 17 2fay 1852, . a, T8F2]if m >k and = = 2,
tmafay 1852, ... a, THR2]  if o # 2.
2. clay,...,an] Tt 2 :=clay T8*2,...,a, T 8*2].

@) laltFtz]ife=2
k., .— )
3 (@ lal T4 Z"{(:g) [a1t2] ifx 2.
Next, given an environment p and a variable reference t*x we define p(t¥z)
as follows and call it the value of #*z in p.

2. (p,2)(#Fx) =< p(tF12) T 2if k>0 and z = 2,
p(tkz) T2 ifx # 2.
a if k=0and z = z,
3. (p,z=a)(t*z) =< p(t*12)if k> 0and x = 2,
p(tkz) if x # 2.

We note that the actual value is computed by (1) the first item of the above
definition, or by (2) the first subcase of the second item, or by (3) the first
subcase of the third item. If it is computed by (1), then #*x is said to be free in
p, and if computed by (2), then it is said to be declared in p, and if computed
by (3), then it is said to be defined in p,

3.4 Instantiation and substitution

Now, given an expression ¢ and an environment p, we can define the instantiation
la],, of a in the environment p as follows. [a] , is also called the p-instance of a.



y if tFz is defined in p and p(t*z) = (21,...,2,)b,

|
tmallai],, ... [an],] if tkz is free or declared in p and p(#*z) = f™a.
2. [clar, ... an]], = cllaa] ;- [an] ]
3. (@ [b]], = @) [[b], 1

It should be noted that because of item 3, we have to extend the notion of
environment by allowing declarations to be its part, and also that the definition
in item 3 does not rely on the notion of a-equivalence. The above definition can
be seen to be well-defined, by first considering the case where the environment p
is first-order, and then considering the case where p is higher-order. It can also
be seen that [a], is an expression for any environment p.

If x and y are variables of the same arity, then we can easily see that for
any expression a, [[a],_,.)| = |a|. If b is an expression and a is an expression
subsitutable for x, then [b](x= «) 18 called the result of substituting a for x in b.

3.5 «-equivalence

In this subsection, we define the notion of a-equivalence and show that it is a
decidable relation with the expected property that a-equivalence is preserved by
substitution.

The judgment a =, b which is characterized by the following rules will be
read ‘a is a-equivalent to b’. Two expressions a and b are a-equivalent if and
only if the judgment a =, b can be derived by the following rules.

keN zeV, a1=.b1 - apn=ab, ¢
rr
thxfay, ..., an) =a tF2lb1, ..., by varre
CGCn ay Eabl anEabn const
clay,...,an] =q clb1, ..., by

z,y €V occ(z,a) =occ(y,b) [a],_, « Za [b],—y, -
(z)a=a (y)b

We can show that the a-equivalence is indeed an equivalence relation in a straight
forward way by induction on the size of expressions. The inductive argument
works for the abs-rule case since [[a] ,_, .)| = |a|. We can similarly show that
the a-equivalence relation is a decidable relation.

We give two simple examples of derivations assuming that x and y are distinct
variables of arity 0. In the second example below, we note that [(z)§'x]
x.

abs

(z=vo*) =

0eN v eV
x,y € Vo occe(z,z) = oce(y,y) = {0} Vo =4 Vo

(z)z =0 (Y)Y

var

abs



0eN xze€ VO
x,y € Vo occ(z, fta) = occ(y, z) = 0 T=q T

(2)t'e =0 (y)z

We can also prove the basic theorem which establishes that a-equivalence is
preserved by substitution of a-equivalent expressions.

var

abs

Theorem 1. Ifa=q,b and a' =, V', then [a],_,/) =a [b] .-
Proof. The theorem is obtained as a corollary to the following lemma.

Lemma 1. If (z1,...,2m)S=a (Y1,-- -, Ym)t, p = (T1 = a1,...,Tm = am),
c=W1=b1, -, Ym =bm) and a; =4 b; (1 <i < m), then [s]p =, [t],-

Proof. We first prove the lemma for the case where p is an essentially first-order
environment by induction on |s|. Here, by an essentially first-order environment
we mean an environment such that for each definition = = a in a, either x is of
arity 0 or a is of the form r*.

We do the case analysis on the shape of s.

1. s=tFafsy, ..., s,] Inthis case, t is of the form §°y[t1, ..., t,] and [s;], =a [ti],,
(1<i<n).
(a) #*2 is defined in p. In this case we have p(#*z) = a; and o(ffy) = b;
for some ¢ (1 < ¢ < m). Since p is essentially first-order, we see that
[s], = a; and. [t], = b;; or else p(t*z) = o(tty) = r* for some r since
p(t*z) =, o(%y). So, we have [s], =a [t],-
(b) t*a is free or declared in p and p(#*z) = #* 2. By induction hypothesis,
we have

[s], =t alls1],- - [sn] ) Za 8 @lft1], - - -, [tul ] = [H],-

2. s=c[s1,..., 8] In this case, t is of the form c[ty,...,¢,] and, by induction
hypothesis, we see that

[s], = clls1],:- - - [sa],] Za cllti]ys - [tn],] = [H,-
3. s = (2) [s']. In this case ¢ is of the form (y) [¢'] and [s'] ,._, . =a [t'] =y, )
We also have [s], = [(2) [s']], = @) [[¢],,)] and [t], = [ [I']], =
W) [[t'] (5,41 So, if we can show that [[s'] , ,,]

— ’
omenry = ol iy, W

will be done. We can show this as follows. By Lemma 2 which we prove next,

we have ('), ) ) = oy 8 i) ) = i)
where

p= (1 = [al](w:\/n*), ey Ty, = [am](z:vn*))
and

!

o = (g1 = (il ey s = Bty
Since [s| < [s|, by induction hypothesis, we have [s'] ,/ ._, ) Za [t'] 5/ oy, -

Therefore, we have [[s’}(pm](wzvn*) =, [[t/](ffﬂ)](y:vn*)'



Next, we prove the lemma for the case where p is a higher-order environment
by induction on |s|. We do the case analysis on the shape of s.

1. s = t*2[s1,...,s,]). In this case, t is of the form #*x[ty,...,t,] and s; =4 t;

(1<i<n).

(a) #*2z is defined in p and p(#*2) = (21, ..., 7, )a. In this case, we have [s ]p =
[a](m:[sl]p .... n=lsn] )" We also see that tkz is defined in o and o(#*z) is
of the form (yi,. .. 7yn)b and hence we have [t] [b](y1 [t1], e = [ al)"
Here, both (z; = [sﬂp,...wn = [sn]p) and ( y1 = [t1] .-,yn = n]p)

are first-order, and by induction hypothesis, sl =, ﬁ for (1 <i<
m). So, we have

(51, = )@y =511, wn=tsn),) S Bli=ita),pn=itn],) = o

(b) t*x is free or declared in p and p(f*z) = §™x. Same as 1(b) in the
first-order case.

2. s= [81, ..., 8p). Same as 2 in the first-order case.

3. s=(x)s. Same as 3 in the first-order case.

Lemma 2 (Substitution Lemma). If p = (z1 = a1,...,Zym = am) and p' =
(71 =[a1] -+ 2m = [am],), then [[b](ﬂ»z)](z:a) = [b](p,’m:a).

Proof. By induction on [b]. We actually show [[b] [0] (' 2=a,z) Where

P7m¢2)](m:a) =
Z is a sequence of variables.

4 Natural Framework

In this section we introduce the Natural Framework (NF) which was originally
given in Sato [5]. In [5], NF was developed based on a restricted theory of ex-
pressions. In this section we revise and extend NF by using the simple theory of
expressions we have just defined.

NF is a computational and logical framework which supports the formal
development of mathematical theories in the computer environment, and it has
been implemented by the author’s group at Kyoto University and has been
successfully used as a computer aided education tool for students [4].

Based on the theory of expressions we just presented we now define judge-
ments and derivations. In doing so, we first introduce the fundamental concept
of derivation context. This concept is fundamental since, in general, an expres-
sion a containing free variables does not have a fixed meaning since its meaning
depends on the meaning of its free variables while free variables do not have
fixed meaning. However, in mathematical reasoning we often treat expressions
containing free variables. In order to cope with this situation, we will make use of
derivation contexts. Namely we will treat expressions containing free variables
always under a derivation context I' such that all the free variables in these
expressions are declared in I'.



Although it is possible and actually it is more natural and simpler to use
the formal theory from a formal point of view, we will present our theory of
judgments and derivations using the informal theory for the sake of readability.

In the following, we will use the following specific constants. Nil, zero, succ
(arity 0), s (arity 1), Pair, ::, =, HD, : (arity 2), and CD (arity 3).

We use the following notational convention.

<> = Nil,
<el| f>:=Pairle, f],
<e1,€2,...,e,> :=<eql<eq| - -<e, INIL> - - - >>)

X = J:=[X, J],
H=J:==[H,J|.

An expression of the form <ej,es,...,e,> is called a list and we will define
concatenation of two lists by:

<617~~'7em>®<f17~'~ufn>:E<617-~a6m7f17'~'7fn>-

If V =<zq,...,2,> is a list of distinct variables, then an expression e is a
V-expression it (V)e is a closed expression.

4.1 Judgments and derivations
We first define the notion of judgment.

Definition 1 (Judgment). We will call any expression a judgment. A judg-
ment of the form H = J is called a hypothetical judgment and a judgment
of the form (x) [J] is called a universal judgment. A judgment J is called a
V-judgment if V is a list of variables and (V) [J] is closed.

Thus, formally speaking, any expression is a judgment. However, in order to
make a judgment, or, in order to assert a judgment, we must prove it. Namely,
we have to construct a derivation whose conclusion is the judgment. Below, we
will make the notion of derivation precise. To this end, we first define derivation
context.

Definition 2 (Derivation Context). We define a derivation context I" to-
gether with its general variable part GV(I') and variable part V(I").

1. Empty context. The empty list <> is a derivation context. Its general variable
part 1s <> and variable part is <>.

2. General variable declaration. If I" is a derivation context, and x is a variable
not declared in I', then I' ® <x> is a derivation context. Its general variable
part is GV(I") @ <x> and variable part is V(') ® <x>.

3. Derivation variable declaration. If I" is a derivation context, H is a V(I')-
expression, and X is a 0-ary variable not declared in I', then I' & <X :: J>
is a derivation context. Its general variable part is GV (I") and variable part
is V(I') @ <X>.



We now define derivation games.

Definition 3 (Derivation Game). A list of the form <c; :: Ry, ...,¢cp 2 Rp>
is called a derivation game if each ¢; is a 0-ary constant and R; is a closed
Judgment (1 < i < n). Each R; is called a rule of the game and c¢; is called the
name of the rule R;. ¢;’s must be all distinct.

Derivation games are used to define mathematical or logical theories and also
to define computation systems. We will give some examples of derivation games
later, but see [5] for more examples of derivation games.

Any closed expression R can be uniquely written in the form

(1‘1,,$m)[H1=>:>Hn:>J]

where J is not a hypothetical judgment. This expression can be instantiated as

follows. We fix a list of variables V. If p = (21 = e1,...,Zm = €,) where each e;
(1 <j <m)isa V-expression, then [R]p is called a V-instance of R and we write
R(e1,...,en) for it. Since R(e,...,ey) is of the form H| = --- = H, = J/,
we will write

H ... H

% R(eh . .76m)
for R(eq,...,em). We will sometimes write R itself as

B e Ry, )

in order to make the role of R as a rule clear. Actually, R is a rule-schema, and
as we will see in the definition of derivations below, instances of R are used as
inference rules when we construct derivations.

We can now proceed to the definition of derivations. Derivations are defined
with the following informal meanings of judgments in mind. A hypothetical
judgment H = J means that we can derive the judgment J whenever H is
derivable. A universal judgment of the form (x) [J] means that we can derive
the judgment [J](w:e) for any expression e which is substitutable for z.
Definition 4 (Derivation). Let G be a derivation game. We define a G-derivation
relative to a derivation context I' as follows. We define its conclusion at the same
time. In the following definition, I' stands for an arbitrary derivation context.
We can see from the definition below, that if D is a G-derivation under I', then
its conclusion is a GV (I") expression.

1. Derivation variable. If X is a derivation variable and X :: H is in I', then
X

1s a G-derivation under I' and its conclusion is H.



2. Composition. Suppose that R is a rule in G and c is the name of the rule
R. If Dy,..., D, are G-derivations under I" such that their conclusions are
Hy, ..., H,, respectively, and

1fﬁ(el,m,em)

is a GV(I")-instance of R, then

Dy --- D,
—7 cleg,... ,em)7
which is an abbreviation of the expression CD[J, <c,e1,...,en>, <D1,...,Dp>],
is a G-derivation and its conclusion is J.
3. Hypothetical derivation. If D s a G-derivation under I' & <X :: H> and its
conclusion is J, then
(X :: H)[D],

which is an abbreviation of the expression HD[H, (X) [D1], is a G-derivation
under I' and its conclusion s H = J.
4. Universal derivation. If D is a G-derivation under I'®<x> and its conclusion
1s J, then
() [D]

18 a G-derivation under I' and its conclusion is (x) [J].

We will write
I'teg D:J

if D is a derivation in G under I" whose conclusion is J.
A very simple example of a derivation game is the game Nat:

Nat := < zero :: 0:Nat, succ:: (n)[n:Nat = s(n): Nat] >,

and, by using obvious notational convention, we can display the two rules of this
game as follows. We write s(z) for s[z].

n : Nat

s(n) : Nat succ(n)

0 : Nat zero()

In Nat, we can have the following derivation
Fnat D :: s(s(0)) : Nat.

NF provides another notation which is conveniently used to input and display
derivations on a computer terminal. In this notation, instead of writing I" F¢
D :: J we write:

I'+J in G since D.



Also, when writing derivations in this notation, a derivation of the form

D, - D,

7 R(e1,...,em)

will be written as:
J by R(e1,...,em) {D1;...; Dy}

Here is a complete derivation in Nat in this notation.

F () [z:Nat = s(s(x)):Nat] in Nat since
() [(X::z:Nat) [
s(s(x)):Nat by succ(s(z)) {
s(z) :Nat by succ(x) {X}

1]

The conclusion of the above derivation asserts that for any expression x, if x
is a natural number, then so is s(s(x)), and the derivation shows us how to
actually construct a derivation of s(s(x)) :Nat given a derivation X of x:Nat.

We can prove the following basic properties of derivations in the same way
as in [5)].

Theorem 2 (Decidability). If G is a derivation game, I is a derivation con-
text, D is a V(I')-expression, J is a GV(I')-expression, then it is primitive
recursively decidable whether I' =g D :: J or not.

For a derivation game G, we let D(G) be the set of G-derivations under
the empty context. Then, we have the following corollary which fulfills Kreisel’s
dictum.

Corollary 1. For any derivation game G, D(G) is a primitive recursive subset
of E.

We can also check the following properties of derivations.

Proposition 1. If '+ D :: J, then any free variable in J is declared in GV(I'),
and any free variable in D is declared in V(I').

Derivation games enjoy the following fundamental properties.

Theorem 3. The following properties hold for any derivation game G.

1. Weakening. If ' =g D :: J and I’ ® I'' is a context, then ' & " g D :: J.

2. Strengthening for gemeral variable. If ' @ <> & I bg D = J, and x &
FV(I")UFV(D)UFV(J), then ' & I'" tg D :: J.

3. Strengthening for derivation variable. If T & <X :: H>® I g D :: J, and
X ¢FV(D), then '@ I'"+¢ D :: J.



4. Substitution for derivation variable. If I’ ® <X : H>® I' g D :: J and
I'tg D' H, then I'® I ¢ [D] (x_pn =t J.

5. Substitution for general variable. If I®&<x>®I" bt D :: J, and e is a GV(I')-
expression substitutable for x, then I' ® [I'],_ ) Fa [D] ) = [J] (pze)-

6. Exchange. If I ®<e, [>® " g D ::J, and I' ®<f,e>® I is a derivation
context, then ' ®<f,e>® I g D :: J.

These basic properties of derivations imply that it is possible to implement a
system on a computer that can manipulate these symbolic expressions and decide
the correctness of derivations. At Kyoto University we have been developing
a computer environment called CAL (for Computation And Logic) [4] which
realizes this idea.

There are already several powerful computer systems for developing mathe-
matics with formal verification, including Isabelle [3], Coq [1] and Theorema [2].
NF/CAL is being developed with a similar aim, but at the same time it is used
as an education system for teaching logic and computation.

4.2 Lambda calculus in NF

As an example of a derivation that requires higher-order variables in the defining
rules, we define the untyped AG-calculus LambdaBeta as follows. We introduce the
following new constants. AF, appF, (3, refl, sym, trans, appL, appR, £ (arity 0),
A (arity 1), =, app (arity 2).

Term The A-terms are defined by the game Term which consists of the following
two rules.

(2) [z : Term = M|x] : Term]
A(z) [M[z]]] : Term

M :Term N :Term
app[M, N|: Tern

AF(M) appF (M, N)

We can see from the form of the rule that the variable M in the AF-rule is a
unary variable, and we can instantiate M by an expression of the form (x)e.

An example of a A-term is given by the following derivation, where we will
write A(z) [M] for A\[(x) [M1] and app(M, N) for app[M, N].

Y::y:Term - A(z) [app(z,y)]:Term in Term since
A(x) [app(x,y)] :Term by AF {
() [(X::x:Term) [
app(z,y) :Term by appF {X; Y}
1]



EqTerm We can define the (-equality relation on A-terms by the game EqTerm
which is defined by the following rules, where we write M = N for = [M, N]|.

M : Term M=N M=N N=L
V= M refl(M) N sym(M, N) V=1 trans(L, M, N)

M =N Z:Term Z :Term M =N
appL(M, N, Z appR(M, N, Z
app[M, Z] = app[N, 7] **° ( ) app[Z, M] = app[Z, N] 7 ( )
AM(x) [M[z]]] : Term N : Term (z) [ : Term = M[x] = N[z]]

§(M,N)

]
app[A[(x) [M[z]]], N] = M[N] B(M, N) M) [IM[z]1] = A[(2) [N[z]]]

We can see from the form of the rule that the variable M in the (-rule and

variables M, N in the £-rule are of arity 1.
We can now define the untyped AB-calculus LambdaBeta by putting:

LambdaBeta := Term @ EqTerm.

We give below an example of a formal derivation of a reduction in the A\j3-
calculus.

Y::y:Term - app(A(z) [app(x,2)],y) = app(y,y) in LambdaBeta since
app (A () [app(z,z)],y) = app(y,y) by B((z)[app(x,z)],y) {
A(x) [app(x, )] :Term by AF {
(r) [(X::x:Term) [
app(x,y) :Term by appF {X; Y}
1]
};
Y
}

In the above derivation, the S-rule is instantiated by the environment p = (M =
(x) [applz, 2|1, N = y). Hence M[N] is instantiated as follows:

[MIN]], = [aPP[xax]](x:[N]p) since (M = (2) [applz, z]1) € p

[applz, 7] (z=y)
= app[y, Y|

5 Conclusion
We have introduced a simple theory of expressions equipped with the operations

of abstraction and instantiation. Abstraction is realized by a syntactic construc-
tor but instantiation is realized by an external operation. In the usual systems



of expression with named variables for binders, it is necessary to rename local
binding variables to avoid unsolicited capture of free variables. In our system, we
have introduced variable references which can refer to any surrounding variable.
Variable references are already introduced in [6], but the definition of substitu-
tion in it is very complicated. We could simplify the definition by introducing
the extended notion of environment.

The theory of expressions introduced here is a modification of our previous
theory of expressions given in [5]. The previous theory did not have the notion
of arity, and simpler than the current theory. However the previous theory could
not define derivation games as objects in the theory. In the current theory it is
possible to define rules of derivation games by closed expressions.

We have also shown that using this new theory of expressions, we can refor-
mulate the theory of judgments and derivations introduced in [6].

Acknowledgements

The author wishes to thank Bruno Buchberger, Murdoch Gabbay, Atsushi
Igarashi, Yukiyoshi Kameyama, Per Martin-Lof, Koji Nakazawa, Takafumi Saku-
rai, and René Vestergaard, for having fruitful discussions on expressions with the
author.

References

1. Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Develop-
ment, Coq’Art: The Calculus of Inductive Constructions, Texts in Theoretical Com-
puter Science, Springer, 2004.

2. B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W.
Windsteiger, The Theorema Project: A Progress Report, in Symbolic Computation
and Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on
the Integration of Symbolic Computation and Mechanized Reasoning, August 6-7,
2000, St. Andrews, Scotland), M. Kerber and M. Kohlhase (eds.), A.K. Peters,
Natick, Massachusetts, pp. 98-113.

3. T. Nipkow, L.C. Paulson and M. Wenzel, Isabell/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, 2283, Springer 2002.

4. M. Sato, Y. Kameyama and I. Takeuti, CAL: A computer assisted learning system
for computation and logic, in Moreno-Diaz, R., Buchberger, B. and Freire, J-L. eds.,
Computer Aided Systems Theory — EUROCAST 2001, Lecture Notes in Computer
Science, 2718, pp. 509 — 524, Springer 2001.

5. M. Sato, Theory of Judgments and Derivations, in Arikawa, S. and Shinohara,
A. eds., Progress in Discovery Science, Lecture Notes in Artificial Intelligence 2281,
pp- 78 — 122, Springer, 2002.

6. M. Sato, T. Sakurai, Y. Kameyama, A Simply Typed Context Calculus with First-
Class Environments, Journal of Functional and Logic Programming, Vol. 2002, No.
4, March 2002.

7. R. Vestergaard, The primitive proof theory of the A-calculus, PhD thesis, School of
Maths and Computer Sciences, Heriot-Watt University, 2003.



