
Symbolic Expressions and Variable Binding
Lecture 2

Masahiko Sato

Graduate School of Informatics, Kyoto University

September 6–10, 2010

Plan of the 5 lectures

...1 Overview

...2 Traditional definition of Lambda terms

...3 Lambda terms by de Bruijn indices

...4 Lambda terms as abstract data type

...5 Derivations as abstract data type

Plan of this lecture

Objects of the first kind

Objects of the second kind

Natural numbers

Binary trees

Abstract syntax

Equivariance

Traditional lambda expressions

Objects of the first kind

Objects of the first kind are created by the fundamental principle
of object creation:

Every object a is created from already created n objects
a1, . . . , an (n ≥ 0) by applying a creation method M .

We can visualize this act of creation by the following figure:

a1 · · · an
a M

or, by the equation:

a = M (a1, . . . , an)

Objects of the first kind (cont.)

Mathematical objects of the first kind are constructed by the
fundamental priciple of object creation:

An object of the first kind is created from finitely many
already created objects of the first kind.

The creation is done by applying a creation method to
existing objects.

Both the creation method and the created object belongs to a
specific class.

The class is called the mother class of the created object.

Thus, any object is created as an instance of its mother class.

The equality relation (=) on objects of the first kind is called
the equality of the first kind.

Objects of the first kind (cont.)

Objects of the first kind have the following nice properties.

For any object a and any mother class C, it is decidable
whether a : C or not.

Primitive recursive computation on objects of any mother
class is possible.

Induction principle on objects of any mother class can be
given uniformly.

A method is an object of the first kind. (In contrast, a
function is usually extensional, and is defined as an object of
the second kind.)

A class is an object of the first kind. It is an instance of the
mother class 〈Class〉.
In particular, we have 〈Class〉 : 〈Class〉.

We are developing a programming language, Z, which can be used
to create, compute and reason about objects of the first kind.

Objects of the first kind (cont.)

Objects of the first kind have the following nice properties.

For any object a and any mother class C, it is decidable
whether a : C or not.

Primitive recursive computation on objects of any mother
class is possible.

Induction principle on objects of any mother class can be
given uniformly.

A method is an object of the first kind. (In contrast, a
function is usually extensional, and is defined as an object of
the second kind.)

A class is an object of the first kind. It is an instance of the
mother class 〈Class〉.
In particular, we have 〈Class〉 : 〈Class〉.

We are developing a programming language, Z, which can be used
to create, compute and reason about objects of the first kind.

Objects of the second kind

Let C be a class whose members are objects of the first kind, and
let =2 be a (partial) equivalence relation on C.

We can obtain objects of the second kind by identifying a and b in
C if a =2 b. When =2 is a partial equivalence relation, an object
a of the first kind in C is considered to be an object of the second
kind if a =2 a holds.

In this setting, functions and relations on these objects must be
defined so that the equality =2 becomes congruence relation with
respect to these functions and relations.

Well-definedness of these functions and relations are sometimes
nontrivial.

Also, inductive arguments are not as smooth as for objects of the
first kind, or even impossible.

Natural numbers

We define natural numbers as instances of a mother class 〈Nat〉.

(Nat/zro) : 〈Nat〉 Nat/zro
n : 〈Nat〉

(Nat/suc n) : 〈Nat〉 Nat/suc

The first creation method Nat/zro, creates an instance
(Nat/zro) from 0 already created objects.

We can read off the above fact, simply by looking at the
created object (Nat/zro).

The second creation method Nat/suc, creates an instance
(Nat/suc n) from 1 already created object n, provided that
n satisfies the side condition: n is an instance of 〈Nat〉.
The premise of the method n : 〈Nat〉 express the above side
condition.

Natural numbers (cont.)

We will write these methods in the following concise form.

(zro) : 〈Nat〉
zro

n : 〈Nat〉
(suc n) : 〈Nat〉

suc

It is possible to display natural numbers in tree forms. For example,
3 = (suc (suc (suc (zro)))) can be displayed as follows.

Nat/suc

Nat/suc

Nat/suc

Nat/zro

Binary trees

We define binary trees as instances of a mother class 〈Bt〉.

(nil) : 〈Bt〉 nil
s : 〈Bt〉 t : 〈Bt〉
(cns s t) : 〈Bt〉

cns

It is, of course, possible to display binary trees in tree forms. For
example, (cns (nil) (cns (nil) (nil))) can be displayed as
follows.

Bt/cns

Bt/nil Bt/cns

Bt/nil Bt/nil

Lists

We define lists (of natural numbers) as instances of a mother class
〈List〉.

(nil) : 〈List〉 nil
a L : 〈List〉

(cns a L) : 〈List〉
cns

The second method cns (cons) is a binary method where its first
argmuent can be any already created object a, but the second
argument L must be a 〈List〉.

Lists (cont.)

(nil) : 〈List〉 nil
a L : 〈List〉

(cns a L) : 〈List〉
cns

It is, of course, possible to display binary trees in tree forms. For
example, (cns 1 (cns 2 (nil))) can be displayed as follows.

List/cns

1 List/cns

2 List/nil

Abstract syntax

McCarthy (1963) introduced the notion of abstact syntax.

Abstract syntax deals with syntactic objects as objects of
abstract data types.

It is possible to compute and reason about objects only by
means of functions exported from the data types.

These functions are usually classified into: constructors,
recognizers and selectors.

Hence, objects of the first kind belonging to a same mother
class can be presented as an abstract data type.

Objects of the first kind are abstract in this sense.

Abstract syntax vs. axiom system

An abstract data type given by abstract syntax is similar to an
axiomatic system.
An axiomatic system specifies a mathematical structure abstractly.
Take, for example, Peano Arithmetic. It specifies the structure of
natural numbers, in terms of the nullary function zro and the
unary function suc, and abstractly specifies the structure in terms
of Peano’s axioms.
There are many (although isomorphic) concrete implementations
(models) of the axiom system.
Similarly, the class 〈Nat〉 is an absract data type whose structure is
given to the users of the data type only through the names of
primitive functions like zro and suc, and their arities.
Hence, the implementor of the data type can hide the details of
implementation from the users.

Computation on Abstract syntax

In Z, we have the case expressions which can be used to define
recursive functions on objects.

When the value of e is a natural number:

(case e
((zro) ...)

((suc n) ... n ...))

When the value of e is a binary tree:

(case e
((nil) ...)

((cns s t) ... s t ...))

[demo]

Computation on Abstract syntax

In Z, we have the case expressions which can be used to define
recursive functions on objects.

When the value of e is a natural number:

(case e
((zro) ...)

((suc n) ... n ...))

When the value of e is a binary tree:

(case e
((nil) ...)

((cns s t) ... s t ...))

[demo]

Traditional lambda expressions

We define traditional lambda expressions as instances of a mother
class 〈Txp〉.

x : 〈Nat〉
(var x) : 〈Txp〉

var
M : 〈Txp〉 N : 〈Txp〉
(app M N) : 〈Txp〉

app

x : 〈Nat〉 M : 〈Txp〉
(lam x M) : 〈Txp〉 lam

An example, where x and y are distinct natural numbers.

(lam x (lam y (app (var x) (var y))))

Traditional lambda expressions (cont.)

(lam x (lam y (app (var x) (var y))))

The tree form of this expression is:

Txp/lam

x Txp/lam

y Txp/app

Txp/var

x

Txp/var

y

Group action

A group G acts on a set X if there is a group action map:

· : G × X → X

with the following properties.
...1 1G · x = x for all x ∈ X.
...2 ab · x = a · (b · x) for all a, b ∈ G and x ∈ X.

Note that each a ∈ G induces a bijection:

a∗ : X → X

such that a∗(x) = a · x (x ∈ X).
Also, G∗ := {a∗ | a ∈ G} becomes a group isomorphic to G
under the group operation (◦) defined by
(a∗ ◦ b∗)(x) := a∗(b∗(x)) = a · (b · x) = ab · x.

Finite permutations

We will mainly consider the group G of finite permutations on
〈Nat〉. A bijection ρ : V → V is a finite permutation on 〈Nat〉 if
it fixes all but finitely many x : 〈Nat〉. The group operation is
defined by (ρ ◦ σ)(x) = ρ(σ(x)). G acts on 〈Nat〉 in a natural
way.

Each element ρ of G can be expressed as:

ρ = [xπ(1), . . . , xπ(n)/x1, . . . , xn]

where π is a permutaion on the set {1, . . . , n} and x1, . . . , xn

are n distinct natural numbers. ρ is a bijection ρ : V → V such
that ρ(x) is xπ(i) if x = xi and x otherwise.

If x and y are distinct, then the permutaion [y, x/x, y] is called a
swap and we write (y//x) for it. A swap is its own inverse, and
any finite permutation can be written as a product of swaps.

Equivariance

Let G be a group acting on two sets X and Y .
Then a function f : X → Y is a equivariant map if

f(a · x) = a · f(x)

holds for all a ∈ G and x ∈ X.

We will take as G the group Perm of finite permutations on
variables, and analyze the structure of the traditional lambda
expressions.

Equivariance

Let G be a group acting on two sets X and Y .
Then a function f : X → Y is a equivariant map if

f(a · x) = a · f(x)

holds for all a ∈ G and x ∈ X.

We will take as G the group Perm of finite permutations on
variables, and analyze the structure of the traditional lambda
expressions.

Action of Perm on 〈List〉 and 〈Txp〉

We can define two swap functions, one on 〈List〉 and the other
on 〈Txp〉.

List/swap : 〈Nat〉 〈Nat〉 〈List〉 → 〈List〉

(defun List/swap (x y L)

(case L

((nil) [])

((cns z L)

(List/cns

(if (=? z x) y

(if (=? z y) x

z))

(List/swap x y L)))))

Action of Perm on 〈List〉 and 〈Txp〉

We can define two swap functions, one on 〈List〉 and the other
on 〈Txp〉.

Txp/swap : 〈Nat〉 〈Nat〉 〈Txp〉 → 〈Txp〉

(defun Txp/swap (x y M)

(case M

((var z)

(if (=? z x) (Txp/var y)

(if (=? z y) (Txp/var x)

(Txp/var z))))

((app M1 M2)

(Txp/app (Txp/swap x y M1) (Txp/swap x y M2)))

((lam z M1)

(Txp/lam

(if (=? z x) y (if (=? z y) x z))

(Txp/swap x y M1)))))

Free variables

We define the function:

FV : 〈Txp〉 → 〈List〉

as follows.

(defun FV (M)

(case M

((var M) [M])

((app M N) (append (FV M) (FV N)))

((lam x M) (remove x (FV M)))))

Free variables (cont.)

append is defined as follows.

(defun append (L1 L2)

(case L1

((nil) L2)

((cns x L1) (List/cns x (append L1 L2)))))

remove is defined as follows.

(defun remove (x L)

(case L

((nil) L)

((cns y L)

(let ((L1 (remove x L)))

(if (=? x y) L1 (List/cns y L1))))))

Free variables (cont.)

We also define in? for later use.

in? : 〈object〉 〈List〉 → 〈bool〉

where 〈object〉 is the class of all objects and 〈bool〉 is the class
consisting of true (= nil = []) and false (= ()).

(defun in? (x L)

"Check if <object> x is in <List> L."

(case L

((nil) nil)

((cns y L) (or (=? x y) (in? x L)))))

Alpha equivalence

We define an equivariant function:

Txp/=? : 〈Txp〉 〈Txp〉 → 〈bool〉

as follows.

(defun Txp/=? (M N)

(case M

((var x)

(case N

((var y) (=? x y))))

((app M1 M2)

(case N

((app N1 N2) (and (Txp/=? M1 N1) (Txp/=? M2 N2)))))

((lam x M1)

(case N

((lam y N1) (Txp/=? (Txp/swap x y M1) N1))))))

Alpha equivalence (cont.)

Two traditional lambda expressions M and N are alpha
equivalent (written, M =α N) if (Txp/=? M N) = () (true).
=α enjoys the following properties.

...1 If y 6∈ (FV M), then (lam x M)=α (lam y (y//x)M).

...2 (refl) M =α M .

...3 (symm) If M =α N , then N =α M .

...4 (trans) If M =α N and N =α P , then M =α P .

...5 If M =α N , then (lam x M)=α (lam x N).

...6 If M1 =α N1 and M2 =α N2, then
(app M1 N1)=α (app M2 N2).

Remark 1: It is possible to inductively define =α as the least
relation having the above properties. Our definition is more basic
than such a definition, since it gives a primitive recursive function
to decide the alpha equivalence.

Alpha equivalence (cont.)

Two traditional lambda expressions M and N are alpha
equivalent (written, M =α N) if (Txp/=? M N) = () (true).
=α enjoys the following properties.

...1 If y 6∈ (FV M), then (lam x M)=α (lam y (y//x)M).

...2 (refl) M =α M .

...3 (symm) If M =α N , then N =α M .

...4 (trans) If M =α N and N =α P , then M =α P .

...5 If M =α N , then (lam x M)=α (lam x N).

...6 If M1 =α N1 and M2 =α N2, then
(app M1 N1)=α (app M2 N2).

Remark 2: In the standard definition, item 1 above is expressed as:
...1 If y 6∈ (FV M), then (lam x M)=α (lam y [y/x](M)).

But, this requires to define substitution ([/]()) before defining
alpha equivalence.

Alpha equivalence (cont.)

Two traditional lambda expressions M and N are alpha
equivalent (written, M =α N) if (Txp/=? M N) = () (true).
=α enjoys the following properties.

...1 If y 6∈ (FV M), then (lam x M)=α (lam y (y//x)M).

...2 (refl) M =α M .

...3 (symm) If M =α N , then N =α M .

...4 (trans) If M =α N and N =α P , then M =α P .

...5 If M =α N , then (lam x M)=α (lam x N).

...6 If M1 =α N1 and M2 =α N2, then
(app M1 N1)=α (app M2 N2).

Remark 3: Swap function (· // ·)· is an equivariant function, but
it is (probably) not possible to define substitution function
[· / ·](·) as an equivariant function.

Substitution

We now know that =α is an equivalence relation on 〈Txp〉
compatible with the three creation methods: Txp/var, Txp/app
and Txp/lam.

So, from now on, we will regard instances of 〈Txp〉 as objects of
the second kind and define a function Txp/subst which performs
substitution operation on 〈Txp〉.

Txp/subst : 〈Txp〉〈Nat〉〈Txp〉 → 〈Txp〉

We will write [N/x](M) for (the value of)
(Txp/subst N x M).

This function must enjoy the property:

If N1 =α N2 and M1 =α M2, then
[N1/x](M1) =α [N2/x](M2).

Substitution (cont.)

(defun subst (N x M)

(case M

((var y) (if (=? x y) N M))

((app M1 M2) (Txp/app (subst N x M1) (subst N x M2)))

((lam y M1)

(if (=? x y) M

(let ((m1 (FV M1)) (n (FV N)))

(if (and (in? x m1) (in? y n))

(let* ((z ((fresh (append m1 n)))

(M2 (Txp/swap y z M1)))

(Txp/lam z (subst N x M2)))

(Txp/lam y (subst N x M1))))))))

Substitution (cont.)

(defun fresh (L)

(case L

((nil) 0)

((cns x L)

(max (1+ x) (fresh L)))))

This is not an equivariant function.

