Symbolic Expressions and Variable Binding
Lecture 3

Masahiko Sato

Graduate School of Informatics, Kyoto University

September 6-10, 2010

Plan of the 5 lectures

@ Overview

@ Traditional definition of Lambda terms
© Lambda terms by de Bruijn indices

© Lambda terms as abstract data type
© Derivations as abstract data type

Plan of the talk
@ de Bruijn indices are used to represent lambda expressions by
means of nameless binders.

@ We will define lambda expressions using de Bruijn indices in
two steps.

Plan of the talk

@ de Bruijn indices are used to represent lambda expressions by
means of nameless binders.

@ We will define lambda expressions using de Bruijn indices in
two steps.

@ In the first step we define the mother class (Dxp) of de Bruijn
expressions which may contain free indices. This corresponds
to the raw terms of de Bruijn’s expressions in the usual
presentation.

Plan of the talk

de Bruijn indices are used to represent lambda expressions by
means of nameless binders.

We will define lambda expressions using de Bruijn indices in
two steps.

In the first step we define the mother class (Dxp) of de Bruijn
expressions which may contain free indices. This corresponds
to the raw terms of de Bruijn’s expressions in the usual
presentation.

In the second step, we define the mother class (dxp)
consisting of closed de Buijn expressions containing no free
indices. This class implements lambda expressions as objects
of the first kind.

Plan of the talk

de Bruijn indices are used to represent lambda expressions by
means of nameless binders.

We will define lambda expressions using de Bruijn indices in
two steps.

In the first step we define the mother class (Dxp) of de Bruijn
expressions which may contain free indices. This corresponds
to the raw terms of de Bruijn’s expressions in the usual
presentation.

In the second step, we define the mother class (dxp)
consisting of closed de Buijn expressions containing no free
indices. This class implements lambda expressions as objects
of the first kind.

Finally, we compare (dxp) with the class (Txp) of traditional
expressions.

The class {Dxp)

The mother class (Dxp) (de Bruijn lambda expression) has the
following creation methods:

x : (Nat) i: (Nat) _
(var x) : (Dxp) ver (idx) : (Dxp) 1dx
M : (Dxp) N : (Dxp) app M : (Dxp)
(app M N) : (Dxp) (lam M) : (Dxp)

Ramark 1 The creation method idx creates an index which
replaces a bound variable in traditional lambda expression.

The class {Dxp)

The mother class (Dxp) (de Bruijn lambda expression) has the
following creation methods:

x : (Nat) i: (Nat) _
(var x) : (Dxp) ver (idx) : (Dxp) 1dx
M : (Dxp) N : (Dxp) o M : (Dxp)

(app M ND = (Dxp) ° (Tam M) : (Dxp)

Ramark 2 Unlike traditional case, 1am method does not have the
argument for binding variables.

xr

The class (Dxp) (cont.)

Az[Ay[x - z]]
Txp/lam Dxp/lam
\
Txp/lam Dxpflam
Dxp/app
] Txp/app
Dxp/idx Dxp/var

Txp/var Txp/var ‘ ‘
| | 1 z

xr z

xr

The class (Dxp) (cont.)

Az[Ay[z - z]]
Txp/lam Dxp/lam
\
Txp/lam Dxpflam
Dxp/app
Y Txp/app
Dxp/idx Dxp/var

Txp/var Txp/var ‘ ‘
| | 1 z

xr z

xr

The class (Dxp) (cont.)

Az[Ay[x - z]]
Txp/lam Dxp/lam
\
Txp/lam Dxpflam
Dxp/app
(] Txp/app
Dxp/idx Dxp/var

Txp/var Txp/var ‘ ‘
| | 1 z

xr z

The class (Dxp) (cont.)

Az Ay - 2]]
Txp/lam Dxp/lam
T Txp/lam Dxp/lam
; Txn/app Dxp/app

Dxp/idx Dxp/var
Txp/var Txp/var ‘

\ \ 1 z
x z

The class (Dxp) (cont.)

Az[z - Ay[z - y]]

Txp/lam Dxp/lam

/\ \
x Txp/app ///jf?lfﬁfi\\\

Txp/var Txp/lam Dxp(idx Dxpflam
L RN 0 Dxp/app
Yy Txp/app /\
/\ Dxp/idx Dxp/idx

Txp/var Txp/var \ \
\ \ 1 0
T Y

The class (Dxp) (cont.)

Az[z - Ay[z - y]]

Txp/lam Dxp/lam

/\ \
x Txp/app ///jfﬂzs?fi\\\

Txp/var Txp/lam Dxpfidx Dxpflam
L RN 0 Dxp/app
Yy Txp/app /\
/\ Dxp/idx Dxp/idx

Txp/var Txp/var \ \
\ \ 1 0
T Y

Action of Perm on (Dxp)

We can define the swap function:

Dxp/swap : (Nat) (Nat) (List) — (List)

(defun Dxp/swap (x y M)
(case M
((var z)
(if (=7 z x) (Dxp/var y)
(if (=7 z y) (Dxp/var x)
(Dxp/var z))))

((idx 1) M)
((app M1 M2)
(Dxp/app (Dxp/swap x y M1) (Dxp/swap x y M2)))
((lam M) (Dxp/lam (Dxp/swap x y M)))))

Remark 1 All the functions we introduce in Lecture 3 are
equivariant functions.

Action of Perm on (Dxp)

We can define the swap function:

Dxp/swap : (Nat) (Nat) (List) — (List)

(defun Dxp/swap (x y M)
(case M
((var z)
(if (=7 z x) (Dxp/var y)
(if (=7 z y) (Dxp/var x)
(Dxp/var z))))

((idx 1) M)
((app M1 M2)
(Dxp/app (Dxp/swap x y M1) (Dxp/swap x y M2)))
((lam M) (Dxp/lam (Dxp/swap x y M)))))

Remark 2 We will not use the Dxp/swap function anymore.

The function Dxp/Closed?

We define the function:
Dxp/Closed? : (Dxp) (Nat) — (bool)
which checks if a given (Dxp) is closed at a given level or not.

(defun Dxp/Closed? (M i)
(case M
((var x) true)
((idx j) (<7 j 1))
((app M N)
(and (Dxp/Closed? M i) (Dxp/Closed? N i)))
((lam M) (Dxp/Closed? M (1+ i)))))

The function Dxp/closed?

We define the function:
Dxp/closed? : (Dxp) — (bool)

which checks if a given (Dxp) is closed or not. A (Dxp) is closed iff
every index in it is bound by a Dxp/lam.

(defun Dxp/closed? (M)
(Dxp/Closed? M 0))

The function Dxp/closed? (cont.)

Of the five expressions below, only the last one is not closed.
Awzyz[z], \wzyz[y|, Awzryz[z], \wzyz[w], A\wzyz[v]

The function Dxp/closed? (cont.)

Of the five expressions below, only the last one is not closed.
Awzyz[z], \wzyz[y|, Awzryz[z], \wzyz[w], A\wzyz[v]

Dxp/lam
Dxp)lam
Dxp)lam
Dxp)lam
Dxp)idx

|
0

Dxp/lam
Dxp)lam
Dxp)lam
Dxp)lam
Dxp)idx

|
1

Dxp/lam
Dxp)lam
Dxp)lam
Dxp)lam
Dxp)idx

|
2

Dxp/lam
Dxp/lam
Dxp/lam
Dxp/lam

Dxp/idx

Dxp/lam
Dxp)lam
Dxp)lam
Dxp)lam
Dxp)idx

|
4

The function Dxp/close

We define two functions

Dxp/close : (Nat) (Dxp) — (Dxp)
Dxp/Close : (Nat) (Nat) (Dxp) — (Dxp)

(defun Dxp/close (x M)
(Dxp/Close x 0 M))

(defun Dxp/Close (x i M)
(case M
((var y) (if (=7 x y) (Dxp/idx i) M))
((idx j) M)
((app M N)
(Dxp/app (Dxp/Close x i M) (Dxp/Close x i M)))
((lam M) (Dxp/lam (Dxp/Close x (1+ i) M)))))

The class (Dxp0)
We can define the class (DxpO) as a subclass of (Dxp) consisting
of closed instances of (Dxp).

Dxp0? : (object) — (bool)

(defun Dxp0?7 (M)
"Check if a given <object> M is an instance of <Dxp>."
(and (Dxp? M)
(Dxp/closed? M)))

However, this class is not a mother class.

So, we construct a mother class which is an isomorphic but disjoint
copy of (Dxp0) in the next slide.

The class (Dxp0)

We can define the class (DxpO) as a subclass of (Dxp) consisting
of closed instances of (Dxp).

Dxp0? : (object) — (bool)
(defun Dxp0?7 (M)
"Check if a given <object> M is an instance of <Dxp>."
(and (Dxp? M)
(Dxp/closed? M)))

However, this class is not a mother class.

So, we construct a mother class which is an isomorphic but disjoint
copy of (Dxp0) in the next slide.

[demo]

The class {dxp)

The class (Dxp) contains open (that is, non-closed) expressions
which do not represent valid lambda expressions. So, we introduce
the class (dxp) which is obtained from (Dxp) by forgetting open
expressions. The class has only one creation method dxp/dxp.

M : (Dxp)
(dxp M) : (dxp)

where the method may be applied only when M : (Dxp) is closed.

(dxp) and (Dxp)

We see, by the construction, that the mother class (dxp) is
isomorphic to the subclass (Dxp0) of (Dxp).

Here, we have the following two bijections. They are inverses of
the others.

dxp/dxp : (Dxp0) — (dxp)
dxp/2Dxp : (dxp) — (Dxp0)
(defun dxp/2Dxp (M)

(case M
((dxp M) M)))

The basic functions on (dxp)

We can define the following three basic functions on (dxp).
dxp/var : (Nat) — (dxp)
dxp/app : (dxp) (dxp) — (dxp)
dxp/lam : (Nat) (dxp) — (dxp)

(defun dxp/var (x)
(dxp/dxp (Dxp/var x)))

(defun dxp/app (M N)
(dxp/dxp (Dxp/app (dxp/2Dxp M) (dxp/2Dxp N))))

(defun dxp/lam (x M)
(dxp/dxp (Dxp/lam (Dxp/close x (dxp/2Dxp M)))))

The basic functions on (dxp) (cont.)

dxp/var : (Nat) — (dxp)

dxp/app : (dxp) (dxp) — (dxp)
dxp/lam : (Nat) (dxp) — (dxp)

By these functions, (dxp) becomes an algebraic structure with
these algebraic operations. We can also define appropriate
recognizers:
dxp/var?, dxp/app?, dxp/lam?
and selectors:
dxp/varl, dxp/appl, dxp/app2, dxp/laml, dxp/lam2
for the data structure.

The structure of (dxp) makes (dxp) an adequate model of the
lambda terms.

This can be seen in the next slide.

Translation from (Txp) to (dxp)

[see lecture2.pdf]
We have the homomorphism:

Txp/2dxp : (Txp) — (dxp)

(defun Txp/2dxp (M)
(case M
((var x) (dxp/var x))
((app M N) (dxp/app (Txp/2dxp M) (Txp/2dxp N)))
((lam x M) (dxp/lam x (Txp/2dxp M)))))

Translation from (Txp) to (dxp)

[see lecture2.pdf]
We have the homomorphism:

Txp/2dxp : (Txp) — (dxp)

(defun Txp/2dxp (M)
(case M
((var x) (dxp/var x))
((app M N) (dxp/app (Txp/2dxp M) (Txp/2dxp N)))
((lam x M) (dxp/lam x (Txp/2dxp M)))))

From this, we have the isomorphism:

Txp/2dxp : (Txp)/=a — (dxp)

Alpha equivalence, revisited

Recall that we defined an equivariant function:

Txp/=7 : (Txp) (Txp) — (bool)

as follows

(defun Txp/=7 (M N)
(case M
((var x)
(case N
((var y) (=7 x y))))
((app M1 M2)
(case N
((app N1 N2) (and (Txp/=? M1 N1) (Txp/=? M2 N2)))))
((lam x M1)
(case N

((lam y N1) (Txp/=7 (Txp/swap x y M1) N1))))))

Alpha equivalence, revisited (cont.)

We can now replace this function by the following:
Txp/=7 : (Txp) (Txp) — (bool)

(defun Txp/=7 (M N)
(=7 (Txp/2dxp M) (Txp/2dxp N)))

Note that no renaming of variables are necessary in the new
definition of alpha equivalence.

One can even bypass the old definition and can use the new
definition.

(3-conversion on (dxp)

The following function computes the 3-conversion on (dxp).
dxp/beta : (dxp) (dxp) — (dxp)

(defun dxp/beta (M N)
(case M
((dxp M)
(case N
((dxp N)
(case M
((lam M) (dxp/dxp (Dxp/open M N))))))))

B-conversion on (dxp) (cont.)

Dxp/open : (Dxp) (Dxp) — (Dxp)
Dxp/Open : (Dxp) (Nat) (Dxp) — (Dxp)

are defined as follows.

(defun Dxp/open (M N)
(Dxp/0Open M 0 N))

(defun Dxp/Open (M i N)
(case M
((var x) M)
((idx §) Gf (=7 i j) N M)
((app M1 M2)
(Dxp/app (Dxp/Open M1 i N) (Dxp/Open M2 i N)))
((lam M) (Dxp/lam (Dxp/Open M (1+ i) N)))))

The class (dxp) is not abstract

The basic funtions on (dxp), namely, the constructors: dxp/var,
dxp/app, dxp/lam, and associated recognizers and selectors are
concretely defined by the users.

This means that the class (dxp) is not an abstract data type.

