Viewing A-terms through Maps
— Essence of de Bruijn index —

Masahiko Sato

Graduate School of Informatics, Kyoto University

TPP2012
Chiba University
November 22, 2012

Authors

A joint work with the following people.
e Randy Pollack (Harvard University)
@ Helmut Schwichtenberg (University of Munich)
e Takafumi Sakurai (Chiba University)
e James McKinna (Edinburgh University)

History

1930's. Church defined raw lambda terms (A) and defined
a-equivalence relation on them.

1940. Quine defined graphical representation of lambda
terms. Later, in the 50's, Bourbaki rediscovered it.

1972. de Bruijn defined representation of lambda terms by
indices (D).

1980. Sato defined representation of lambda terms by map
and skelton (L).

2012. This talk clarifies the relationship among the above four
representations.

History (cont.)

Church (A)

|

Quine-Bourbaki (A/ =q)

S

de Bruijn (D)

/
\M/

Sato (L)

70 '. QUANTIFICATION §12

sideration for established usage, the “variation” connoted belongs
to a vague metaphor which is best forgotten. The variables have
no meaning beyond the pronominal sort of meaning which is re-
flected in translations such as (20); they serve merely to indicate
cross-references to various positions of quantification. Such cross-
references could be made instead by curved lines or bonds; e.g., we
might render (27) thus:

)

1s a city .J. has seen

1s 2a man J~ () (

(H¢
and (26) thus:

() (" 1s a number . ()m< TSNVSY).

But these “quantificational diagrams” are too cumbersome to
recommend themselves as a practical notation; hence the use of

variables.

A’
AH
= AA’
= AA"
TeAA

VISAATSAAT

el A7

Summary of the talk

Three datatypes
We will relate the three datatypes (A, L, D) of expressions
introduced by Church, S. and de Bruijn.

A = The datatype of raw A-terms.
L = The datatype of lambda-expressions.
D = The datatype of de Bruijn expressions.

Three types of binding

A : binding by parameters x € X.
L : binding by maps m € M.
D : binding by indices ¢ € 1.

K,LecA
M,N €L
D,EcD

x € X.
1 €I
m € M.

Summary of the talk (cont.)

s=wa || app(K,L) | lam(z, K).
=z |t]|app(M,N) | mask(m, M) (m | M).
w=ux |t |app(D, E) | bind(D).

The diagram

[-Io:A—>L={{[M]JLelL|MeA} surjection.
[-Ip:A—=D={[M]p €D| M € A} surjection.
2D: L —- D bijection.

[-Io

L2D

The Datatype M of Maps

Intuitive idea

meM neM
0eM 1eM mapp(m,n) € M

Equality axiom on M

mapp(0,0) = 0.

The Datatype M of Maps (cont.)

= MO mone

m € Mo minl LM[O minr

minl(m) € Mo minr(n) € My

m € My n € Mg
mcons(m,n) € My

mcons

m € My
mzero

0eM meM mincl

The Datatype M of Maps (cont.)
We define mapp : M X M — M as follows.

|f m=n=>4u,
. (m) if m # 0 and n =0,
mapp(m, n) = (n) if m =0 and n # 0,

(m,n) ifm#0andn #
We will write (m m) or mn for mapp(m,n).

Orthogonality relation

mln m'Ln'
m L 1ln mm’ L nn'

Example: (1 0) L (0 1) butnot (11) L (01).

The Datatype I of Indices

€1
box S

box € 1 @) el

1,7 € 1 ::= box | lift(2).

We will write [] for box.

The Datatype X of Parameters

We assume a countably infinite set X of parameters.
We will write x,y, z for parameters.
We assume that equality relation on X is decidable.

The Datatype A of Raw A-terms

mEApar ’iEAldX
KeA LGAapp rzeX I(EA|
lam(z, K) € A A

app(K,L) € A
K,Le Au=x|i]|app(K,L)|lam(zx, K).
z € X.

1 el

Remark. lam binds parameter x in K.

The Datatype L of lambda-expressions

ar i
ar;EILp ieleX
MeL Ne]Lapp meM MecL m|M
app(M,N) € L mask(m, M) € L
ML
0| M 1| box
m|M n|N m|N n|N mln

mapp(m, n) | app(M, N) m | mask(n, N)

The Datatype L of lambda-expressions (cont.)

Notational Convention
@ We use M, N, P as metavariables ranging over
lambda-expressions.
e We write (M N) and also M N for app(M, N).
e We write [m\M7] and also m\M for (m, M).

@ A lambda-expression of the form (m, M) is called an
abstract.

@ We use A, B as metavariables ranging over abstarcts, and
write A for the subset of IL consisting of all the abstracts.

Map and Skelton

We define map : X X L. — M and skel : X X L. — L. We write
Mx for map(X, M), and M*X for skel(X, M).

1 ifex=uy,

Yo i= { 0 ifx#uy.
1e = 0.

(M N)g := mapp(Mg, Nyz).

[m\M], := M,.

. {D ifx =1y,

v = Y if x #£ y.
1% = 1.
(M N)* := (M®* N?%).

[mm\M]1%® := [m\M?™"].

Lambda Abstraction in L
We define lam : X X . — L by:

lam(z, M) := [M,\M?*].

Examples. We assume that @, y and z are distinct parameters.

lam(x,) = 1\
lam(z,y) = 0\y.
lam(z, lam(y, z)) = lam(x, 0\x)
= 1\O\[.
lam(z, lam(y,y)) = lam(x,lam(1,0))
= O\1\L.
lam(x,lam(y, lam(z, (xz y2)))) =
(10 000\ (00 10>\ (01 01\ (JOJ ICD)

Instantiation and Substitution

We define the instantiation operation: inst : A X L. — L as
follows. We will write AVM for inst(A, M).

(I\OJVvYP := P.
[ON\M]VP := M.
[(m n)\(M N)IVP := (Im\M]VP [n\N]VP).
[m\[n\N]]VYP := [n\[m\N]VP].

We can now define substitution operation:
subst : L X X X . = L as follows.

M{x\N} := lam(x, M)VN.

Instantiation and Substitution (cont.)

Example.

lam(y, yz){z\y} = lam(z, lam(y, yx)) Vy
= lam(z, [10\Oz]) vy
= [0I\[10\OO]1] vy
= 10\ [01\OO] vy
= 10\ ([0O\Ol vy [1\Olvy)
= 10\Uy

= lam(z, zy)

Remark. By internalizing the instantiation operation, we can easily
get an explicit instantiation calculus.

Instantiation and Substitution (cont.)

Substitution Lemma
If x # y and = & FP(P), then

MA{z\N H{y\P} = M{y\P}{z\N{y\P}}.

Proof. By induction on M € L. Here, we only treat the case
where M = (my, m2)\M71 Mz = mimao\M;Mas.
MA{z\N}H{y\P}
[mim2\M M1 {x\N }{y\P}
[mimo\(M1{z\N} Mz{x\N}PI{y\P}
[mama\ (M {z\N H{y\P} M2{z\N}{y\P})]
[(m1 mO\ (M1 {y\PHz\N{y\P}} Mz{y\P}Hz\N{y\P}

(by IH)
[(m1 m2)\(M1{y\P} M2{y\P}P1{z\N{y\P}}
[(m1 ma)\ (M1 M2)1{y\P}{=\N{y\P}}
= M{y\PH{z\N{y\P}}.

The Lg-calculus

AM —3 AVM '8

M —)5 M’
MN —5 M'N

MceL
| appr
app MN —g MN’ PP

M —3 N
lam(z, M) —g Iam(a:,N)

Remark. Traditional way of formulating B-conversion rule is:

(lam(x, M) N) =g M{x\N}.

The Lg,,-calculus

The Lg,-calculus is obtained from the Lg-calculus by adding the
following n-rule.

[0INM] —gy M

Remark. In the tradtional Agy-caclulus the n-rule is:
(x¢, Mz) =gy M ifx &FP(M).

But, we could state it without mentioning & and hence without
mentioning the side condition on & and M, since we have

(¢, Mz) = [01\MO] ifx & FP(M).

In fact, the 1p-rule is a rule about abstracts M and has nothing to
do with parameters x. The same remark applies to the
B3-conversion rule as well.

Interpretation of A in L

We define the interpretation function [—]r : A — La as follows.

[z]L := X.
[Z]L := 3.
[MN]v := ([M]v [N]w)-
[lam(x, M)]L := lam(x, [M]L).

Remark. Two raw A-terms M and NN are a-equivalent iff
[M]L = [N]w.

The Datatype D of de Bruijn-expressions

mEDpar ’L'E]D)ldx
DeD FebD, ~ _DeD
app(D, E) € D bind(D) € D

D,EeD:u=x|i|app(D,E)|bind(D).
z € X.
1 el

Summary of the Datatypes A, L and D

K, Le Au=x|i]|app(K,L) | lam(z, K).
M,N e€L:u==a|i|app(M,N) | mask(m, M) (m | M).
D,EeDu==a|i|app(D,E) | bind(D).
xz € X.
1€l
m € M.

Interpretation of L in D

We define the mask function
mask; : M x D — D (¢ € I)

as follows. We will write [m\D] or m\D for mask(m, D).

0\;x := (x).
e () if j <1,
0\ig '_{ G+1) ifj>i.
1\s4 := bind ().
mn\;DE := (D'E")
if m\;D = (D’) and n\;E = (E").

m\;bind(D) 1= bind(m\i+1D).

Interpretation of L in D (cont.)

We define the interpretation function L2D : . — I as follows.

L2D(x) := x.

L2D(4) := .
L2D(M N) := (L2D(M) L2D(IN)).
L2D(m\M) := [m\L2D(M)].

