
A Framework for Checking Proofs Naturally

Masahiko Sato

Graduate School of Informatics, Kyoto University
masahiko@kuis.kyoto-u.ac.jp

Abstract. We propose a natural framework, called NF, which supports
development of formal proofs on a computer. NF is based on a theory of
Judgments and Derivations.

NF is designed by observing how working mathematical theories are cre-
ated and developed. Our observation is that the notions of judgments and
derivations are the two fundamental notions used in any mathematical
activity. We have therefore developed a theory of judgments and deriva-
tions and designed a framework in which the theory provides a uniform
and common play ground on which various mathematical theories can be
defined as derivation games and can be played, namely, can write and
check proofs.

NF is equipped with a higher-order intuitionistic logic and derivations
(proofs) are described following Gentzen’s natural deduction style.

NF is part of an interactive computer environment CAL (Computation
and Logic) and it is also referred to as NF/CAL. CAL is written in
Emacs Lisp and it is run within a special buffer of the Emacs editor.
CAL consists of user interface, a general purpose parser and a checker
for checking proofs of NF derivation games.

NF/CAL system has been successfully used as an education system for
teaching computation and logic for undergraduate students for about 8
years.

We will give an overview of the NF/CAL system both from theoretical
and practical sides.

1 Introduction

The Curry-Howard isomorphism enables us to identify proofs with programs.
Therefore, simply by developing a formal computer environment for checking
proofs, we also obtain an environment for checking the correctness of programs.
The NF/CAL system which we have been developing provides such a computer
environment. Although there are already several powerful environments with the
same objective, such as Coq [3], Isabelle [7], our system is unique in that general
forms of proofs are uniformly and formally defined and can be treated as first
class objects of the system.

Another objectives for developing our system are foundation and education.
To achieve these objectives, our system is based on a theory of judgments and
derivations introduced in [10]. The theory is later modified by changing the

basic data structure of expressions. This new data structure of expressions was
introduced in [12].

In this paper, we outline the current status of NF/CAL with examples. We
also present a new definition of expressions which enables the classification of
expressions according to the three basic syntactic categories of object, judgment
and derivation.

2 Expression

Proofs as well as judgments are linguistic objects. We need expressions as a
means to represent such linguistic objects in a uniform manner. The expressions
we introduce here can be used to define various linguistic objects uniformly, and
we can define higher-order abstract syntax by using them. The key idea behind
the following definition of expressions is the usage of arity.

We will, of course, use natural language to explain the notion of expres-
sions, and for that we will have to use mathematical expressions (as part of
our language). Thus we have expressions in the object-language and also in the
meta-language. We will therefore call the former object-expressions and the latter
meta-expression when we feel it necessary to distinguish them clearly.

2.1 Category

Our goal is to define (well-formed) expressions, and those well-formed expressions
should be analyzable both syntactically and semantically by human readers.
In this way, expressions can express thoughts and objects. Those expressions
which express thoughts will be said to belong to the (syntactic) category j (for
judgement), and those which express objects will belong to the category o (for
objects). We have here one more category d of derivations. Derivations are used
to provide evidences for the truth of judgments. All the categories we need are
characterized by the following grammar.

γ ::= o | j | d

κ ::= γ | (κ1, . . . , κn)γ (n > 0)

γ stands for ground categories and there are exactly three ground categories o, j
and d. κ stands for (general) categories and a category (κ1, . . . , κn)γ is said to
be higher-order, and a category γ is said to be first-order. A first-order category
is nothing but a ground category.

2.2 Arity and Expression

Expressions are built up by combining variables and constants appropriately.
We restrict possible combinations by assigning a category to each variable or
constant. If a category κ is assigned to a variable x (constant c), we will say

that x (c, resp.) has arity κ. For an arity κ = (κ1, . . . , κn)γ, we call n the arity
number of κ. The arity number of a ground category is defined to be 0. If a
variable x has a positive arity number n then x standing by itself is not an
expression, but x[e1, . . . , en] becomes a valid expression provided that e1, . . . , en

are expressions. Thus, x is an unsaturated entity and it expects n arguments to
become a saturated object. So, x is a variable ranging over higher-order abstracts.
This way of analyzing an expression is due to Frege [5], and Martin-Löf once
adopted this idea in his theory of expressions [6].

The category (κ1, . . . , κn)γ is also written as γ[κ1, . . . , κn] when it is treated
as an arity.

We define expressions slightly informally by taking the notion of α-equivalence
for granted. For each arity κ, we assume that we have countably infinite set set
of variables (x, y, z) with arity κ. For each arity κ, we assume that we have
countably infinite set set of constants (c, d) with arity κ. We assume that all
these sets are mutually disjoint. We will write x@κ if x has arity κ and similarly
for constants.

We define expressions as follows, where e :κ will mean that e is an expression
which belongs to category κ.

x@γ[κ1, . . . , κn] a1 : κ1 · · · an : κn

x[a1, . . . , an] : γ
var

c@γ[κ1, . . . , κn] a1 : κ1 · · · an : κn

c[a1, . . . , an] : γ
const

x1@κ1 · · · xn@κn a : γ
(x1, . . . , xn)a : (κ1, . . . , κn)γ abs

In the var and const rules, we will understand that x[a1, . . . , an] (c[a1, . . . , an])
stands for x (c, resp.) when n = 0. In the abs rule, n must be a positive natural
number. We will also write (x1, . . . , xn)[a] for (x1, . . . , xn)a when we wish to
emphasize that x1, . . . , xn are the binding variable and their scope is a.

The notion of free and bound occurrences of variables in an expression is
defined as usual. Namely, free occurrences of x1, . . . , xn in a becomes bound
in (x1, . . . , xn)a. An expression is closed if it contains no free occurrences of
variables. We write FV(e) for the set of variables having free occurrences in e.

2.3 Environment

We define environments which are used to instantiate abstract expressions and
also to define substitution. Let x be a variable of arity κ. We say that an expres-
sion e is substitutable for x if e belongs to category κ.

If x is a variable of arity n and e is substitutable for x, then x = e is a
definition, and a set of definitions ρ = {x1 = e1, . . . , xk = ek} is an environment
if x1, . . . , xk are distinct variables, and its domain |ρ| is {x1, . . . , xk}.

2.4 Instantiation

Given an expression e and an environment ρ, we define an expression [e]ρ as
follows. In the clause 5, we choose fresh local variables as necessary.

1. [x]ρ :≡ e if x@γ and x = e ∈ ρ.
2. [x[a1, . . . , an]]ρ :≡ [e]{x1=[a1]ρ,...,xn=[an]ρ} if n > 0 and x = (x1, . . . , xn)e ∈ ρ.
3. [x[a1, . . . , an]]ρ :≡ x[[a1]ρ, . . . , [an]ρ] if x 6∈ |ρ|.
4. [c[a1, . . . , an]]ρ :≡ c[[a1]ρ, . . . , [an]ρ].
5. [(x1, . . . , xn)[a]]ρ :≡ (x1, . . . , xn)[[a]ρ].

In order to check the well-definedness of the above definition, we define the
rank r(κ) of a category κ as follows.

1. r(γ) = 0.
2. r((κ1, . . . , κn)γ) = max {r(κ1), . . . , r(κn)}+ 1.

The rank of an environment ρ is then defined as follows.

r(ρ) = max {r(κ)|x ∈ |ρ| and x@κ}.
We define the rank of an empty environment to be 0.

We can now check the well-definedness of the instantiation operation induc-
tively as follows. Let ρ be an environment and e be an expression. If the rank
of ρ is 0, then we can compute [e]ρ without using the clause 2, and this means
that we can compute it by induction on the construction of e. If the rank of
ρ is positive, we can again compute [e]ρ by induction on the construction of e.
We note that the clause 2 is now taken care of by appealing to the induction
hypothesis.

It is essential to distinguish arities of variables. Without the distinction,
evaluation of expressions may fail to terminate as can be seen by the following
example.

[x[x]]{x=(y)[y[y]]} ≡ [y[y]]{y=[x]{x=(y)[y[y]]}} ≡ [y[y]]{y=(y)[y[y]]} ≡ · · ·

However, since we do have the distinction of arities of variables, the above com-
putation is not possible. To see this, let us write x1[x2] for x[x] to distiguishes
the two occurrences of x in x[x]. Then we have x1[x2] : γ, x1@γ[κ] and x2 : κ for
some ground category γ and category κ. That x2 : κ implies x2@κ. Therefore x
must have arity γ[κ] and κ, which is impossible.

3 Natural Framework

In this section we introduce the Natural Framework (NF) which was originally
given in Sato [10]. In [10], NF was developed based on a restricted theory of

expressions. In this section we revise and extend NF by using the simple theory
of expressions we have just defined.

NF is a computational and logical framework which supports the formal
development of mathematical theories in the computer environment, and it has
been implemented by the author’s group at Kyoto University and has been
successfully used as a computer aided education tool for students [9].

Based on the theory of expressions we just presented we now define judge-
ments and derivations. In doing so, we first introduce the fundamental concept
of derivation context. A derivation context provides a context in which we con-
struct our derivation, and it is essentially a list of assumptions available in the
current context.

Although it is possible and actually it is more natural and simpler to use
the formal theory from a formal point of view, we will present our theory of
judgments and derivations using the informal theory for the sake of readability.

In the following, we will use the following specific constants:

⇒ @ j[j, j],
∀ @ j[(o)j],
CD @ d[j, (d)d],
UD @ d[(o)d],

: @ j[o, o].

We use the following notational convention.

H ⇒ J :≡ ⇒[H,J],
∀(x)J :≡ ∀[(x)J].

In order to manipulate sequences of expressions formally, we will write 〈e1, . . . , en〉
for the sequence e1, . . . , en of expressions. Thus 〈〉 stands for the empty sequence.
We define concatenation of two sequences by:

〈e1, . . . , em〉 ⊕ 〈f1, . . . , fn〉 :≡ 〈e1, . . . , em, f1, . . . , fn〉.

3.1 Judgments and derivations

We first define the notion of judgment.

Definition 1 (Judgment). We will call any expression which belongs to cat-
egory j a judgment. A judgment of the form H ⇒ J is called a conditional
judgment and a judgment of the form ∀(x)J is called a universal judgment.

Thus, formally speaking, any expression belonging to category j is a judgment.
However, in order to make a judgment, or, in order to assert a judgment, we
must prove it. Namely, we have to construct a derivation whose conclusion is the
judgment. Below, we will make the notion of derivation precise. To this end, we
first define derivation context. We will call a variable with arity d a derivation
variable.

Definition 2 (Derivation Context). If H1, . . . ,Hn (n ≥ 0) are judgments
and X1, . . . , Xn are distinct derivation variables, then a meta-expression Γ of
the form:

X1 :: H1, · · · , Xn :: Hn ` []

is a derivation context.

Each Xi :: Hi is called an assumption of the derivation context. If Γ is a deriva-
tion context of the above form and J is a judgment, then the meta-expression:

X1 :: H1, · · · , Xn :: Hn ` J

is called a hypothetical judgment, and it is also written as Γ [J]. We define the set
of free variables in Γ [J] by putting FV(Γ [J]) = FV(Γ) ∪ FV(H1) · · ·FV(Hn) ∪
FV(J). The variables in FV(Γ [J]) are called the parameters of Γ [J]. The pa-
rameters X1, . . . , Xn are called derivation parameters.

We define the notion of a rule as follows. If H1, . . . ,Hn and J are judgments,
〈x1@κ1, . . . , xm@κm〉 is an enumeration of free variables in these judgments, and
c is a constant of arity d[κ1, . . . , κm, d, . . . , d] with arity level m + n, then the
meta-expression R:

〈〈H1, . . . , Hn〉, J, c, 〈x1, . . . , xm〉〉
is called a rule. c is called the name of the rule. The rule R is also figuratively
written as:

H1 · · · Hn

J
c(x1, . . . , xm)

.

Informally speaking, this rule represents an inference rule which allows us to
infer J provided that we can derive all the Hi’s. The variables, x1, . . . , xm are
called the parameters of the rule. Reflecting this informal meaning of a rule, we
also write the rule R above as follows, using a notation used to represent Horn
clauses:

c(x1, . . . , xm) :: J :- H1, · · · ,Hn.

Suppose that R is a rule of the above form, and that ρ = {x1 = e1, . . . , xm =
em} is an environment. Then the ρ-instance of R, written [R]ρ, is defined as the
meta expression:

〈〈[H1]ρ, . . . , [Hn]ρ〉, [J]ρ, c, 〈e1, . . . , em〉〉.
This meta expression is also written:

[H1]ρ · · · [Hn]ρ
[J]ρ

c(e1, . . . , em)
.

We now define derivation games.

Definition 3 (Derivation Game). A sequence of the form 〈R1, . . . , Rn〉 is
called a derivation game if each Ri is a rule and the names of the rules are
distinct.

Derivation games are used to define mathematical or logical theories and also
to define computation systems. We will give some examples of derivation games
later, but see [10] for more examples of derivation games. (The notion of deriva-
tion game introduced in [10] is based on our earlier conception of expressions,
but most of derivation games there can be considered as derivation games in the
sense of this paper with a slight modification.)

We can now proceed to the definition of derivations. Derivations are defined
with the following informal meanings of judgments in mind. A conditional judg-
ment H ⇒ J means that the judgment J holds whenever H holds. A universal
judgment of the form ∀(x)J means that the judgment [J](x=e) holds for any
expression e which is substitutable for x.

Definition 4 (Derivation). Let G be a derivation game, J be a judgment and
Γ be a derivation context. We will inductively define the meaning of meta judg-
ment: D is a G-derivation of J in Γ . We also read this judgment as: D is a
G-derivation of Γ ` J .

1. Derivation variable. If X is a derivation variable and X :: H is an assump-
tion in Γ , then

X

is a G-derivation of H in Γ .
2. Application of a rule. Suppose that R is a rule in G. If D1, . . . , Dn are G-

derivations in Γ of H1, . . . ,Hn, respectively, and

H1 · · · Hn

J
c(e1, . . . , em)

is an instance of R, then

c[e1, . . . , em, D1, . . . , Dn]

is a G-derivation of J in Γ . We may also write this derivation as:

D1 · · · Dn

J
c(e1, . . . , em)

.

3. Conditional derivation. If D is a G-derivation of J in Γ,X :: H, then

CD[H, (X)D]

is a G-derivation of H ⇒ J in Γ . This derivation is also written as: (X ::
H)D.

4. Universal derivation. If D is a G-derivation of J in Γ , and x@o is a variable
not in FV(Γ), then

UD[(x)D]

is a G-derivation of ∀(x)J in Γ . This derivation is also simply written (x)D
when it is clear from the context that we are talking about derivations.

We remark that each derivation introduced above is an object expression be-
longing to category d because of the arity of the constants used to construct
derivations.

We will write
Γ `G D :: J

if D is a G-derivation of J in Γ .
A very simple example of a derivation game is the game Nat:

Nat :≡ 〈 zero :: 0 : Nat :- , succ(n) :: s[n] : Nat :- n : Nat 〉,

where zero@d, 0@o, Nat@o, succ@d[o, d], n@o and s@o[o]. By using obvious
notational convention, we can display the two rules of this game as follows. We
write s(x) for s[x].

0 : Nat zero()
n : Nat

s(n) : Nat
succ(n)

In Nat, we can have the following derivation

`Nat D :: s(s(0)) : Nat.

NF provides another notation which is conveniently used to input and display
derivations on a computer terminal. In this notation, instead of writing Γ `G

D :: J we write:
Γ ` J in G since D.

Also, when writing derivations in this notation, a derivation of the form

D1 · · · Dn

J
c(e1, . . . , em)

will be written as:
J by c(e1, . . . , em) {D1; . . . ;Dn}

Here is a complete derivation in Nat in this notation.

` ∀(x)[x:Nat ⇒ s(s(x)):Nat] in Nat since

(x)[(X::x:Nat)[

s(s(x)):Nat by succ(s(x)) {

s(x):Nat by succ(x) {X}

}

]]

The conclusion of the above derivation asserts that for any expression x, if x
is a natural number, then so is s(s(x)), and the derivation shows us how to
actually construct a derivation of s(s(x)):Nat given a derivation X of x:Nat.

We can prove that is is decidable whether a given expression is a correct
derivation of a given game in the same way as in [10]. Therefore it is possible

to implement a system on a computer that can manipulate these symbolic ex-
pressions and decide the correctness of derivations. At Kyoto University we have
been developing a computer environment called CAL (for Computation And
Logic) [9] which realizes this idea.

There are already several powerful computer systems for developing mathe-
matics with formal verification, including Isabelle [7], Coq [3] and Theorema [4].
NF/CAL is being developed with a similar aim, but at the same time it is used
as an education system for teaching logic and computation.

3.2 Predicate calculus in NF

As an example of a derivation that requires higher-order variables in the defining
rules, we define the intuitionistic predicate calculus Pred as follows. The game
consists of the following 15 rules.

〈 ⇒-I(P @j, Q@j) :: P ⇒ Q :- P ⇒ Q,

⇒-E(P @j, Q@j) :: Q :- P ⇒ Q, P ,

¬-I(P @j) :: ¬P :- P ⇒⊥,

¬-E(P @j) :: ⊥ :- ¬P, P ,

∧-I(P @j, Q@j) :: P ∧Q :- P, Q,

∧-EL(P @j, Q@j) :: P :- P ∧Q,

∧-ER(P @j, Q@j) :: Q :- P ∧Q,

∨-IL(P @j, Q@j) :: P ∨Q :- P,

∨-IR(P @j, Q@j) :: P ∨Q :- Q,

∨-E(P @j, Q@j, R@j) :: R :- P ∨Q,P ⇒ R,Q ⇒ R,

⊥-E(P @j) :: P :- ⊥,

∀-I(P @j[o]) :: ∀(x)P [x] :- ∀(x)P [x],
∀-E(P @j[o], a@o) :: P [a] :- ∀(x)P [x],
∃-I(P @j[o], a@o) :: ∃(x)P [x] :- P [a],
∃-E(P @j[o], Q@j) :: Q :- ∃(x)P [x],∀(x)[P [x] ⇒ Q] 〉

In the above rules, we have explicitly declared the arities of the parameters.
Note that in the last four rules involving quantifiers, the variable P has higher-
order arity j[o]. The arities of the names of the game can be easily inferred. For
example, the constant ∨-E has arity d[j, j, j, d, d, d] and ∀-E has arity d[(o)j, o, d]
Logical operators have the following arities:

⊥@ j,¬@j[j],∧@j[j, j],∨@j[j, j],∃@j[(o)j].

We remark that the rules⇒-I and ∀-I are redundant since both of these rules
only derive the same judgments as their premises, and there are already rules to

derive conditional judgments and universal judgments as part of built-in rules
for constructing derivations. We have nevertheless included these rules so that
the derivations become closer to ordinary derivations in the natural deduction
style predicate calculus.

CAL provides a mechanism to automatically convert rules of games into
LATEX source file which can be used to show rules in human-friendly form. For
example, the ∃-E rule becomes as follows:

∃(x)[P [x]] ∀(x)[P [x] ⇒ Q]

Q
∃-E

We give an example of a derivation in Pred.
A ` ¬¬(A∨¬A) in Pred since
¬¬(A∨¬A) by ¬-I {
(X::¬(A∨¬A))[
⊥ by ¬-E {
¬¬A by ¬-I {

(Y::¬A)[
⊥ by ¬-E {

X;
A∨¬A by ∨-IR {Y}

}]};
¬A by ¬-I {

(Z::A)[
⊥ by ¬-E {

X;
A∨¬A by ∨-IL {Z}

}]}}]}

In the above derivation A is a variable of arity j. This derivation can be converted
into the following natural deduction style proof by CAL.

(X ::¬(A∨¬A))

(Y ::¬A)[
X

Y
A ∨¬A ∨-IR
⊥ ¬-E

]

¬¬A ¬-I

(Z::A)[
X

Z
A ∨¬A ∨-IL
⊥ ¬-E

]

¬A ¬-I
⊥ ¬-E

¬¬(A ∨¬A)
¬-I

4 Defining λ-terms in NF

In this section, we define λ-terms formally in NF as a derivation game. The
λ-terms we define here is a conservative extension of traditional λ-terms with
explicit bound variable names. The extension is done by adding the notion of
variable reference which enables us define the substitution operation naturally

even for the case where the name of a binding variable must be renamed to avoid
capturing of free variables after substitution.

Here we define λ-terms literally as linguistic objects, namely, as sequences of
characters, without using the higher-order abstract syntax available in NF. It is
also possible to defined λ-terms using higher-order abstract syntax, and for such
a definition the reader is referred to [10].

4.1 λ-terms

We need several auxiliary notions before we can define λ-terms.
Variables are defined by the following rules. The premises of the two rules

below are meta-judgments. Although it is possible to define these judgments
formally, we skipped the definitions for the sake of simplicity. Thus, for example,
the meta-judgment ‘x is a variable’ means that x is a sequence of characters
which can be classified as a variable according to a certain grammatical rule. In
the NF system, the truth of this judgment is checked by a Lisp program which
checks the equality of NF objects. In the following we also avoid writing down
details of arities of constants introduced.

x is a variable
x : variable

Variable
x and y are distinct variables

x NeqVar y
neqvar

Variable reference are defined as follows. In the following definitions, the
notation p· · ·q stands for Quine’s quasi-quotation [8], which is also known as
back-quotation in the Lisp language. Namely, everything inside the quotation
marks p and q is quoted with the exception that variables in bold font are not
quoted but will act as ordinary variables in the same way as those variables
outside the quasi-quotation. In this way, we can talk about sequences of tokens
in a convenient way.

x : variable
x : varref

varref-var
r : varref

p#rq : varref varref-sharp

x : variable
x IsCoreOf x

ICO0
x IsCoreOf r

x IsCoreOf p#rq ICO1

x IsCoreOf r y IsCoreOf s x NeqVar y

r NeqCore s
NEQC

x : variable
p#xq Covers x

covers1
x : variable r Covers x

p#rq Covers x
covers2

r Covers s
p#rq Covers p#sq covers3

We can see that variable references are obtained by prepending a finite number
of] symbols in front of variables.

Next, we define variable sequences as follows. The first rule below says that
an empty sequence is a variable sequence. The judgment Γ EqLen ∆ means that
Γ and ∆ are variable sequences of the same length.

pq : varseq varseq0
Γ : varseq x : variable

pΓ , xq : varseq varseq1

pq EqLen pq eqlen0
Γ EqLen ∆ x : variable y : variable

pΓ , xq EqLen p∆, yq eqlen1

We can now define λ-terms. Note that the first rule below is an extension of
traditional definition of λ-terms, since there only variables can be used to define
the initial set of λ-terms while here we can use variable references as the initial
set. The judgment M : Λ means that M is a λ-term.

r : varref
r :Λ

lambda-varref
x : variable M :Λ

pλx[M]q :Λ
lambda-abs

M :Λ N :Λ
pM(N)q :Λ

lambda-app

4.2 Substitution

We define substitution in this subsection. First, we define how we can push a term
through a variable reference. The judgment M ↑r = N means that the result of
pushing a λ-term M through a variable reference r is N .

r : varref
r↑r = p#rq push-hit r Covers s

r↑s = p#rq push-up

s Covers r
r↑s = r

push-keep
r NeqCore s

r↑s = r
push-miss

s↑x = r M ↑r = P

pλx[M]q↑s = pλx[P]q push-abs

M ↑s = P N ↑s = Q

pM(N)q↑s = pP (Q)q push-app

Substitution can be defined as follows. The judgment M [P /x] = N means
that the result of substituting P for x in M is N . By means of the pushing oper-
ation, we can define capture avoiding substitution without the need of renaming
of binding variables.

r : varref
r[P /r] = P

subst-hit
p#rq Covers s
p#rq[P /s] = r

subst-down

s Covers r
r[P /s] = r

subst-keep
r NeqCore s

r[P /s] = r
subst-miss

P ↑x = Q r↑x = s M[Q/s] = N

pλx[M]q[P /r] = pλx[N]q subst-abs

M[P /r] = Q N[P /r] = R

pM(N)q[P /r] = pQ(R)q subst-app

The systematic use of the lambda-bar operator] is due originally to Berkling
and Fehr [2]. Sato [11] independently introduced the same operator, but it was
used only to substitute first-order terms. Our definition here is slightly simpler
than [2] since we could avoid case analysis in the definitions of push and substi-
tution for λ-abstracts.

We can now proceed to define the reduction rules of the λ-calculus. Here we
only give the crucial rule of β-conversion.

M[N /x] = P
pλx[M](N)q→P

beta

4.3 α-equivalence

In this subsection we define α-equivalence relation on λ-terms. Our definition
uses context which enable us to define α-equivalence without involving any notion
of renaming of variables. Thus our definition is simpler and more natural than
the traditional definition of α-equivalence.

Let Γ, ∆ be sequences of variables and M, N be λ-terms. Below, we define
the judgment: Γ ` M ≡ ∆ ` N , which we read M and N are α-equivalent
relative to Γ and ∆.

Γ EqLen ∆ x : variable y : variable

pΓ , xq`x ≡ p∆, yq`y
alpha-bound

Γ `r ≡ ∆`s r↑x = t s↑y = u

pΓ , xq`t ≡ p∆, yq`u
alpha-push

r : varref
pq`r ≡ pq`r

alpha-free

pΓ , xq`M ≡ p∆, yq`N

Γ `pλx[M]q ≡ ∆`pλy[N]q alpha-abs

Γ `M ≡ ∆`P Γ `N ≡ ∆`Q

Γ `pM(N)q ≡ ∆`pP (Q)q alpha-app

We define two λ-terms M and N to be α-equivalent if the judgment pq ` M ≡
pq ` N is derivable by using the above rules. It is now easy to verify that this
notion of α-equivalence is indeed an equivalence relation on λ-terms.

The author learned by private communication that Per Martin-Löf had de-
veloped essentially the same method, and that Robert Staerk also had a similar
idea and implemented the algorithm as part of the Minlog system [1] developed
by Helmut Shwichtenberg’s group.

5 Concluding Remarks

We have given an overview of the NF/CAL system. We believe that it is essen-
tial to have a basic structure of object expressions which can represent various

mathematical and meta-mathematical entities required in mathematics and com-
puter science. To this end, we have introduced a revised theory of expressions
in which we have basic ground categories of o, j, d which respectively represent
objects, judgments and derivations. The structure of categories is isomorphic to
the simple type structure generated from these ground categories by the arrow
type construction, and we have used higher-order categories as arities of con-
stants and variables. The advantage of this approach is that we can syntactically
sort out expressions according to their intended meanings, and thereby prevent
users from writing inadvertently completely meaningless expressions. In this re-
spect, we think that our theory of expressions should be extensible by allowing
extension of ground categories depending on various applications.

References

1. H. Benl, U. Berger, M. Seisenberger, H. Schwichtenberg and W. Zuber, Proof the-
ory at work: Program development in the Minlog sytem, in Automated Deduction,
W. Bibel and P.H. Schmitt, eds., Vol II, Kluwer, 1998.

2. K.J. Berkling and E. Fehr, A Consistent Extension of the Lambda Calculus as a
Base for Functional Programming Languages, Information and Control, 55, pp.
89-101.

3. Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Develop-
ment, Coq’Art: The Calculus of Inductive Constructions, Texts in Theoretical Com-
puter Science, Springer, 2004.

4. B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W.
Windsteiger, The Theorema Project: A Progress Report, in Symbolic Computation
and Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on
the Integration of Symbolic Computation and Mechanized Reasoning, August 6-7,
2000, St. Andrews, Scotland), M. Kerber and M. Kohlhase (eds.), A.K. Peters,
Natick, Massachusetts, pp. 98-113.

5. G. Frege, The Basic Laws of Arithmetic, University of California Press, 1964.
6. B. Nordström, K. Petersson and J.M. Smith, Programming in Martin-Löf ’s Type

Theory, Clarendon Press, Oxford, 1990.
7. T. Nipkow, L.C. Paulson and M. Wenzel, Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, Lecture Notes in Computer Science, 2283, Springer 2002.
8. W.V.O. Quine, Mathematical Logic, revised ed., Harvard University Press, 1951.
9. M. Sato, Y. Kameyama and I. Takeuti, CAL: A computer assisted learning system

for computation and logic, in Moreno-Diaz, R., Buchberger, B. and Freire, J-L. eds.,
Computer Aided Systems Theory – EUROCAST 2001, Lecture Notes in Computer
Science, 2718, pp. 509 – 524, Springer 2001.

10. M. Sato, Theory of Judgments and Derivations, in Arikawa, S. and Shinohara,
A. eds., Progress in Discovery Science, Lecture Notes in Artificial Intelligence 2281,
pp. 78 – 122, Springer, 2002.

11. M. Sato, Theory of Symbolic Expressions II, Publ. RIMS, Kyoto U., 21, pp. 455-
540, 1985.

12. M. Sato, A Simple Theory of Expressions, Judgments and Derivations, in Maher,
M. J. ed., ASIAN 2004, Lecture Notes in Computer Science 3321, pp. 437 – 451,
Springer, 2004.

