
Platonism with a
Flavor of Constructivism

Masahiko Sato

Graduate School of Informatics, Kyoto University

Workshop on Constructivism: Logic and Mathematics

May 26, 2008

Motivation

Computer assistance of human mathematical activities.

Formalization of mathematics and metamathematics

Proof assistance on a computer

Comparison of various frameworks

NF (Natural Framework) as meta-frameworks

Motivation (cont.)

Proofs and propositions as mathematical objects are to be
considered here.

Some previous attempts:

Constructive validity ([Scott 1970])

Propositions as types ([Martin-Löf 1972])

Frege structure ([Aczel 1980])

Frege structure with proof objects ([Sato 1991])

Formalist, Constructivist and Platonist

What is a proof?

For a formalist, a proof is just a natural number (Gödel).

For a constuctivist, a proof is a computable function (Bishop
and many others).

For a platonist, a proof is not a mathematical object, but is it
really so?

Formalist, Constructivist and Platonist

What is a proof?

For a formalist, a proof is

just a natural number (Gödel).

For a constuctivist, a proof is a computable function (Bishop
and many others).

For a platonist, a proof is not a mathematical object, but is it
really so?

Formalist, Constructivist and Platonist

What is a proof?

For a formalist, a proof is just a natural number (Gödel).

For a constuctivist, a proof is

a computable function (Bishop
and many others).

For a platonist, a proof is not a mathematical object, but is it
really so?

Formalist, Constructivist and Platonist

What is a proof?

For a formalist, a proof is just a natural number (Gödel).

For a constuctivist, a proof is a computable function (Bishop
and many others).

For a platonist, a proof is

not a mathematical object, but is it
really so?

Formalist, Constructivist and Platonist

What is a proof?

For a formalist, a proof is just a natural number (Gödel).

For a constuctivist, a proof is a computable function (Bishop
and many others).

For a platonist, a proof is not a mathematical object, but is it
really so?

Mathematical Objects

What are mathematical objects, and how they are constructed?

For a platonist, mathematical objects exist independent of his
mind. So he is not interested in the latter half of the quesion, or,
at least it seems to be so.

For a constructivist, mathematical objects are to be mentally
constructed by him. So, he is more interested in the latter half of
the question, and try to answer the first half by solving the latter.

We wish to attack this question based on platonistic ontology but
from a constructive point of view.

A hint for this approach was given by John H. Conway.

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism

Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest

Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Platonism vs. Constructivism

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematician Classical
mathematician

Constructive
mathematician Proof theorist

Ontology concerns what and computation concerns how.
⇒
Classical mathemtaics became more and more abstract.
⇒
We wish to make classical mathematics more concrete
(constructive in a sense).

Mathematicians’ Liberation Movement

Conway, in his book “On Numbers and Games” (1976), proposed
the following way of construction of mathematical objects.

...1 Objects may be created from earlier objects in any reasonably
constructive fashion.

...2 Equality among created objects can be any desired
equivalence relation.

This is very similar to Martin-Löf’s predicative construction of
objects.

Conway also stressed the open-endedness of mathematics.

Classical ZFC is good for metamathematics but inadequate for the
purpose of actually working in it.

Platonism as Transfinitary Constructivism

Computation in ordinary sense of the term means
computation on natural numbers.

We extend the notion of computation, and compute on
ordinal numbers. (Takeuti already suggested this.)

Ontological Commitment

We must commit ourselves ontologically as to what objects
we accept as entities which exist.

At the same time, we must accept the limitations which come
from Gödel’s second incompletness theorem and from Tarski’s
theorem on indefinablity of truth.

In other words, it is impossible to have a fixed formal system
in which we can develop all the mathematics.

This means that we always have to have (at least) two
linguistic layers, one for the object-level and the other for the
meta-level.

In this talk, I concentrate mainly on the construction of the
meta-level.

By the dynamical interaction between the meta and object
levels, we can modify and grow the object-level language.

Ontological Commitment

We must commit ourselves ontologically as to what objects
we accept as entities which exist.

At the same time, we must accept the limitations which come
from Gödel’s second incompletness theorem and from Tarski’s
theorem on indefinablity of truth.

In other words, it is impossible to have a fixed formal system
in which we can develop all the mathematics.

This means that we always have to have (at least) two
linguistic layers, one for the object-level and the other for the
meta-level.

In this talk, I concentrate mainly on the construction of the
meta-level.

By the dynamical interaction between the meta and object
levels, we can modify and grow the object-level language.

Quine’s view

In 1948, Quine published a very influential paper:

On what there is

In this paper, Quine wrote the following famous sentence:

To be is to be the value of a variable.

This dictum (almost) implies that function application must be
done by call-by-value and not by call-by-name.

Quine’s view (cont.)

For example, in set theory, instead of introducing a specific
constant ∅ for the empty set, one can do without it by introducing
an axiom which guarantees the existence and uniqueness of some
object which satifies the properties of the empty set.

∃x. ∀y. ¬y ∈ x

Name and object

Quine stressed that names (terms) may not always denote objects.
(Example, ‘Pegasus’.)
There are (at least) three different approaches to names and
objects.

First-order logic assumes that names always have values.

Constructive type theories use contexts to control the usage of
names, so that when they are used they always have values.

Logic of partial terms (Scott, Beeson etc.) allows undefined
terms.

Name and object (cont.)

A(b)
∃x. A(x)

b : B p : A(b)
(b, p) : ∃(x : B). A(x)

A(b) b = b

∃x. A(x)

Our approach adopts the first inference rule, but we can also
explicitly talk about names and objects at the same level.

The logic of partial terms cannot directly talk about names. In our
approach names are also objects.

We remark that H. Ono (1977) proposed a first-order theory of
names and objects.

Name and object (cont.)

In traditional systems, terms are constructed as follows.

In first-order logic:

‘f ’ : unary-fn-symbol ‘a’ : term
‘f(a)’ : term

In type theory:

f : A → B a : A

f(a) : B

Type theory confuses syntax and semantics in a sense. This
confusion is carried over to Edinburgh LF for instance.

Our approach is similar to first-order logic.

Name and object (cont.)

Our approach is to clearly distinguish names and objects by
introducing the notion of kinds which are used to classify objects.

An object whose kind is expression is used to name an object.

An expression is an object and we can talk about it directly within
our system.

Moreover, our system has a binary relation

e ↓ a

which means that e is an expression denoting a. For example, we
have

‘2 + 3’ ↓ 5, ‘‘2 + 3’’ ↓ ‘2 + 3’, . . .

Name and object (cont.)

Consider division of a by b where a and b are rational numbers. It
is well defined if b is not 0.

What if b = 0?

In first-order logic, since functions are always total, div(a, 0) is
usually defined by assigning an aribitrary value, say, 0.

In (dependent) type theory, the division function has the following
type:

div : Q → (b : Q) → (b 6= 0) → Q

In our system, ‘div(a, 0)’ denotes an error object.

Meta Language and Object Languge

We use English as the meta language for defining the formal object
language which will be used to formally define our NF (Natural
Framework).

It is important to remark that our object language will be defined
as a sub-language of English. That is, although it is a formal
language, it is at the same time, a part of a natural language,
namely, English.

We will call the object language NF English.

So, a sentence of NF English is also an English sentence, and we
can always read it aloud.

Meta-level objects and object-level objects

In our meta language we will use informal platonistic mathematics
freely.

The ontology of the meta language will be strictly stronger than
that of the object language.

We commit ourselves to the existence of the inaccessible
cardinals Ω1, Ω2,

The collection of all object-level objects is a meta-level object
but not an object-level object.

Construction of objects

We must presuppose time and space so that we can construct
objects.

In type theory, we define natural numbers as follows.

0 : N zero n : N
s(n) : N

succ

Then natural numbers are constructed in time and space as follows.

0, s(0), s(s(0)), · · ·

They are obtained by applying the methods zero and succ as
follows.

apply(zero, ()), apply(succ, (0)), apply(succ, (s(0))), · · ·

Construction of objects (cont.)

Our ontology accepts the existence of all the platonistic ordinals
(time) and sequences of objects of arbitrary ordinal length (space).

A sequence of length α can be visualized as follows.

sequence a: a0 a1 a2 · · · · · · aβ · · · · · · (β < α)

We will write ‘|a|’ for the length of a.

A sequence may be considered as a generalisation of a Turing
Machine’s tape where each cell can contain any object, and cells
are indexed by ordinals bounded by another ordinal.

Transfinitary inductive definition

We construct new objects inductively from already constructed
objects by applying constructors (which are methods).

On day α, we construct new objects using objects created before
day α.
Namely, all the objects created before day α are available, and
more over, we assume that blank tapes of length β are available
for each β ≤ α.

If an object a is created, for the first time, on day δ, then δ is
called its birthday and we write ‘||a||’ for it.

Kind

We categorize objects into following kinds:

...1 Ordinal

...2 Sequence

...3 Character

...4 String

...5 Set

...6 Quotient

...7 Function

...8 Proposition

...9 Arity

...10 Expression

...11 Abstract

...12 Error

Kind (cont.)

The kinds above are all mutually disjoint and we also have the kind
Obj of all the NF-objects.

The kind Obj will be stratified into Objk (k = 0, 1, 2, . . .) so
that:

Obj0 ⊂ Obj1 ⊂ · · · , Obj =
∪
k

Objk and a Objk ⇔ ||a|| < Ωk+1.

Each kind will be stratified similarly.

A sentence of NF English will be called judgments.

For example, ‘0 Ord’ (read: 0 is an Ordinal) is a judgment.

Well Ordering of Objects and ID Number

We can well-order

Obj
4
=

∪
k

Objk

in such a way that if ||a|| < ||b||, then a will come before b.

We will write ‘ID(a)’ for the ordinal assigned to a by this
well-ordering.

We have:

a ∈ Objk ⇔ ||a|| ∈ Objk ⇔ ID(a) ∈ Objk ⇔ ||a|| < Ωk+1.

Ordinal

· · · αi Ord · · · (0 ≤ i < γ)
ord(· · · , αi, · · ·) Ord

ord

On day δ, one may apply this rule if γ ≤ δ, and if αi < αj

whenever i < j.

Order relation and equality are defined as follows.

ord(αi) ≤ ord(βj) ⇔ ∀αi∃βj αi ≤ βj.

α = β ⇔ α ≤ β ∧ β ≤ α.

We have: 0 = ord(), 1 = ord(0), 2 = ord(0, 1) = ord(1), . . .
and ω = ord(0, 1, . . . , i, . . .) (0 ≤ i < ω) and so on.

In general, on day δ, we can construct all the ordinals less than or
equal to δ.

Sequence

· · · ai Obj · · · (0 ≤ i < γ)
seq(· · · , ai, · · ·) Seq

seq

On day δ, one may apply this rule if γ ≤ δ.

Equality is defined by:

seq(ai) = seq(bj) ⇔ |(ai)| = |(bj)| ∧ ∀i ai = bi.

We will write:

‘(a0, a1, . . .)’ for seq(a0, a1, . . .)

‘seq(ai)[j]’ for aj.

Character

i Ord
char(i) Char

char

On day δ, one may apply this rule if i ≤ δ and i < ω.
Equality is defined by:

char(i) = char(j) ⇔ i = j.

String

· · · ci Char · · · (0 ≤ i < n)
str(· · · , ci, · · ·) Str

str

On day δ, one may apply this rule if n ≤ δ and n < ω.

Equality is defined by:

str(ci) = str(dj) ⇔ |(ci)| = |(dj)| ∧ ∀i ci = di.

We will write ‘"c0c1 · · · cn"’ for str(c0, c1, . . . , cn).

Set

· · · ai Obj · · · (0 ≤ i < γ)
set(· · · , ai, · · ·) Set

set

In the above rule, we must have: ai < aj if i < j.

On day δ, one may apply this rule if γ ≤ δ.

Equality and membership relations and length of a set are defined
by:

set(ai) = set(bj) ⇔ |(ai)| = |(bj)| ∧ ∀i ai = bi.

b ∈ set(ai) ⇔ ||b|| < ||set(ai)|| ∧ ∃i b = ai.

|set(ai)|
4
= |(ai)|.

We will write ‘set(ai)[j]’ for aj.

Quotient Object

a Obj R Set

qobj(a, R) Qobj
qobj

In this rule, R must an equivalence relation and a is an object
such that (a, a) ∈ R.

Equality is defined by:

qobj(a, R) = qobj(b, S) ⇔ R = S ∧ (a, b) ∈ R.

We will write ‘[a]R’ for qobj(a, R).

Function

A Set s Seq

fun(A, s) Fun
fun

This rule may be applied when |A| = |s|.

Equality and function application are defined as follows.

fun(A, s) = fun(B, t) ⇔ A = B ∧ s = t

apply(fun(A, s), x) = y ⇔ ∃i x = A[i] ∧ y = s[i].

Proposition

a Obj b Obj

(a < b) Prop
lt

a Obj b Obj

(a = b) Prop
eq

a Obj b Set

(a ∈ b) Prop
in

a Obj b Prop

(a :: b) Prop
pr

a Exp b Obj

(a ↓ b) Prop
dn

P Prop Q Prop

P ∧ Q Prop
and

P Prop Q Prop

P ∨ Q Prop
or

P Prop Q Prop

P ⊃ Q Prop
imp

P Prop

¬P Prop
not

f PropFun

∀f Prop
all

f PropFun

∃f Prop
ex

Propositional Function

A Set s Seq

fun(A, s) PropFun
propfun

This rule may be applied

if |A| = |s|, and

if s[i] Prop for all i < |s|.

PropFun is a subkind of Fun.

If f = fun(A, s) is a propositional function, then we will write

‘∀x ∈ A f(x)’ for ∀f.

Proofs and Propositions

Recall that:
a Obj b Prop

(a :: b) Prop
pr

We claim that every propostion P is true if and only if it has a
proof p, namely, ‘p :: P ’.

We use platonistic version of propositions-as-sets principle and
BHK interpretation to define the provability relation inductively.

So, for example:

f :: P ⊃ Q ⇔ f ∈ Proof(P ⊃ Q)

⇔ f ∈ Proof(P) → Proof(Q)

⇔ ∀p ∈ Proof(P) apply(f, p) ∈ Proof(Q)

⇔ ∀p :: P apply(f, p) :: Q.

Summary

We argued the inadequecy of a fixed language as a universal
language for developing (almost) all the mathematcs.

For example, neither ZFC nor type theory are adequate for
this purpose.

We argued that for the purpose, we need at least two layers of
languages for the meta-level and object-level.

In this setting, object-level language can be modified and
extended.

The object-language must be open-ended and must admit free
structures.

The object-language must be able to talk about both syntax
and semantics naturally.

Summary (cont.)

We proposed a constructive way of constructing a universe of
mathematical objects.

Each and every object of the universe is created one by one
sequentially in time and space.

We presupposed, unconditionally, the existence of time and
space whose units are ordinals.

We have presented a meta language today.

The meta language naturally contains a constructive
sublanguage.

We wish to use the meta language to implement an object
language which can be used as a framework for a proof
assistance system.

