Bootstrapping Mathematics

Masahiko Sato

Graduate School of Informatics, Kyoto University

The second PhilLogMath workshop
Seiryo Kaikan, Tokyo, Japan
March 14, 2012

Contents

What is formalized mathematics?
Why formalize mathematics?
History of formalization
Mathematical Objects

Our approach

What is formalized mathematics?

A formalized mathematics is written in a formal language.

Syntax of the language is formally given by, e.g., a
context-free grammar.

@ Mathematical objects are represented by linguistic entities
such as nouns.

e Mathematical assersions (propositions) are represented by
formulas, which are also linguistic objects.

@ Proofs are also formally written in the formal language.
e Given any formula and (formal) proof, it is primitive
recursively decidable if the proof proves the formula.

Note that there is no formal definition of formalized mathematics.
(Cf. Church’s Thesis.)

Why formalize mathematics?

@ Motivations coming from mathematics.

@ Motivations coming from computer science.

Why formalize mathematics? (cont.)
Motivations coming from mathematics

Proof of unprovability of a proposition.

Consistency proof.

°
°
@ Godel’s incompleteness theorem.
@ Reverse mathematics.

°

Zermelo-Fraenkel set theory.

These motivations are mainly theoretical. Mathematicians usually
talk about formalized mathematics but not work in it.

Formalization of logic is important here.

Why formalize mathematics? (cont.)
Motivations coming from computer science

@ Verification of proofs.
@ Verification of programs.
o Constructive programming.
o Formalization of metamathematics.
These motivations are mainly practical. Some computer scientists

are interested in creating a computer environment for doing
mathematics in it.

Cf., Isabelle, Coq, Agda, Minlog etc.

Formalization of computation is important here.

History of formalization
Frege (Begriffsschrift, 1879) Higher order logic, Natural

deduction

Russell (Principia Mathematica (with Whitehead), 1910) Type
theory

Brouwer (Intuitionism) — Heyting

Hilbert (Formalism) — Godel, Gentzen
Zermelo-Fraenkel (Set theory)

Church (A-calculus, Simple theory of types)

Turing (universal Turing machine, decision problem)

McCarthy (1961: A basis for mathematical theory of
computation) — Milner

de Bruijn (Automath 1967 —)
Mizar (1973 —), Coq, Isabelle, Minlog, Agda

Quotation from McCarthy
(1961: A basis for mathematical theory of computation)

Proof-checking by computer may be as important as proof
generation. It is part of the definition of formal system that proofs
be checkable.

Because a machine can be asked to do much more work in
checking a proof than can a human, proofs can be made much
easier to write in such systems. In particular, proofs can contain a
request for the machine to explore a tree of possibilities for a
conventional proof.

The potential applications for computer-checked proofs are very
large. For example, instead of trying out computer programs on
test cases until they are debugged, one should prove that they have
the desired properties.

Quotation from McCarthy (cont.)
(1961: A basis for mathematical theory of computation)

The usefulness of computer checked proofs depends both on the
development of types of formal systems in which proofs are easy to
write and on the formalization of interesting subject domains.

It should be remembered that the formal systems so far developed
by logicians have heretofore quite properly had as their objective
that it should be convenient to prove metatheorems about the
systems rather than that it be convenient to prove theorems in the
systems.

Motivation for bootstrapping mathematics

Mathematics is human linguistic activity.

Acceptance of proofs by mathematicians is a social process.
Hilbert's idea: Finitism and Formalism.

Finitism = real mathematics = mathematics with meaning

Formalism = ideal mathematics = mathematics without
meaning

Feasibility of bootstrapping mathematics

@ The notion of computable function is a stable notion.
@ Bootstrap finitary mathematics.

@ Then, formalize ideal mathematics as formal systems which
are objects of real mathematics.

@ In this way, we can mechanically check all the mathematics
we create.

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

‘ Platonism ‘Constructivism‘ Formalism

Philosophy ‘ Realism ‘Conceptualism ‘ Nominalism

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

‘ Platonism ‘Constructivism‘ Formalism

Philosophy
Mathematics

Realism Conceptualism | Nominalism
Logicism Intuitionism Formalism

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism | Nominalism
Mathematics Logicism Intuitionism Formalism
Comp. Sci. Denotational | Operational Axiomatic

semantics semantics semantics

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism | Constructivism | Formalism

Philosophy Realism Conceptualism | Nominalism

Mathematics Logicism Intuitionism Formalism
Comp. Sci Denotational | Operational Axiomatic
)) semantics semantics semantics
Ontology Strong Weak Weakest

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism | Constructivism | Formalism

Philosophy Realism Conceptualism | Nominalism

Mathematics Logicism Intuitionism Formalism
Comp. Sci Denotational | Operational Axiomatic
' ' semantics semantics semantics
Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism | Constructivism | Formalism

Philosophy Realism Conceptualism | Nominalism

Mathematics Logicism Intuitionism Formalism
Comp. Sci Denotational | Operational Axiomatic
') semantics semantics semantics
Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

@ Mathematical objects of the first kind.
@ Mathematical objects of the second kind.

Mathematical Objects (cont.)

Platonism | Constructivism | Formalism

Philosophy Realism Conceptualism | Nominalism

Mathematics Logicism Intuitionism Formalism
Comp. Sci Denotational | Operational Axiomatic
' ' semantics semantics semantics
Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Mathematical Objects (cont.)

Platonism | Constructivism | Formalism
Philosophy Realism Conceptualism | Nominalism
Mathematics Logicism Intuitionism Formalism
Comp. Sci Denotational | Operational Axiomatic
' ' semantics semantics semantics
Ontology Strong Weak Weakest
Computation Neglected Essential Essential
Classification of Math Objects Set Type Class

How can we bootstrap mathematics?

How can we teach first-order Peano Arithmetic to someone who
knows nothing about mathematics?

©6 00000000

Tr ==z
r=yoy==w.
r=yYy>oy=z T =2z
r =1y D S(x) =S(y).

S(x) # 0.
S(z) =S(y) Dz =y.
z+0==wx
z +S(y) = S(z + y).
xx0=0.

r*xS(y) =x*xy+ x.
P(0) A (Vx.P(xz) D P(S(x))) D Vz.P(x).

How can we bootstrap mathematics? (cont.)

We provide a framework in which we can formalize real
mathematics.

We will treat finitary objects as objects of the first kind.

See the following picture.

Natural
Language

My view of mathematics

Inadequacy of type theories for bootstrapping

There are at least 5 reasons why type theories are inadequate for
bootstrapping mathematics. (Of course, these theories are good
for other purposes.)

@ Type: Type does not hold. In my framework Class : Class does
hold.

@ The notion of ‘subtype’ is difficult to handle, compared to the
notion of ‘subset’ or ‘subclass’.

© Quotation and evaluation are not fully supported.
@ Cannot define partial functions.

© Logically complex. (For example, to use a type theory to
formalize Peano arithmetic is an overkill.)

A framework for doing mathematics in it

We begin with collecting key concepts to be used in building such
a framework.

We view mathematics as human collaboration of linguistic activity.
We will create a programming environment (called Natural
Framework) to support such a linguistic activity.

@ Object

@ Creation of objects
e Name (Symbol)

e Naming

@ Notion of 'as’

o Class

°

Classification

Objects of the first kind

Mathematical objects of the first kind are constructed by the
fundamental priciple of object creation:

@ An object of the first kind is created from finitely many
already created objects of the first kind.

@ The creation is done by applying a creation method to
existing objects.

@ Both the creation method and the created object belongs to a
specific class.

@ The class is called the mother class of the created object.
@ Thus, any object is created as an instance of its mother class.

@ The equality relation (=) on objects of the first kind is called
the equality of the first kind.

Objects of the first kind (cont.)

Objects of the first kind are created by the fundamental principle
of object creation:

Every object a is created from already created n objects
ai,...,an (n > 0) by applying a creation method M .

We can visualize this act of creation by the following figure:

a]. o o 0 an

a M

or, by the equation:

a=M(ai,...,ap)

The method M is a partial function, in general, but it is decidable
whether M may be applied to given obects.

Objects of the first kind (cont.)

Equality and inequality relation on objects are defined
simultaneously with the creation of objects.

Two objects:
M (ai,...,am) and N (b1,...,by)

are equal (=) if and only if M and N are the same method,
m =mnand a; =b; (1 << m).

Objects of the first kind (cont.)

Equality and inequality relation on objects are defined
simultaneously with the creation of objects.

Two objects:
M (ai,...,am) and N (b1,...,by)

are equal (=) if and only if M and N are the same method,
m =mnand a; =b; (1 << m).

In other words, two objects are equal if they are created in exactly
the same way, and the equality relation is decidable.

Objects of the first kind (cont.)

Equality and inequality relation on objects are defined
simultaneously with the creation of objects.

Two objects:

M (ai,...,am) and N (b1,...,by)
are equal (=) if and only if M and N are the same method,
m =mnand a; =b; (1 << m).

In other words, two objects are equal if they are created in exactly
the same way, and the equality relation is decidable.

However, there is only one excecption: abstractions which are
objects of the class (Abs).

Object and Class

In type theory:
3 : Nat

is a judgment, 3 is an object, and Nat is a type. Here, ‘judgment’,
‘object’ and ‘type’ are concepts used when we talk about type
theory in the meta language. These concepts do not have
counter-parts in type theory.

Object and Class (cont.)
In NF class theory,
3 : (Nat)

is a proposition, 3 is an object, and (Nat) is a class. Here,
‘judgment’, ‘object’ and ‘type’ are concepts used when we talk
about NF in the meta language. These concepts do have
counter-parts in NF class theory.

In fact, we have:

(3 : (Nat)) : (Prop),
3 : (Object),
(Nat), (Prop), (Object), (Class) : (Class),
(Nat), (Prop), (Object), (Class) : (Object),
(

“:’: (Function).

Object and Class (cont.)

In type theory, fundamental concetps in type theory such as object,
type and judgment are not internalized. We can use these concepts
only at metalevel and not in the theory itself.

In NF class theory, fundamental concetps in class theory such as
object, class and proposition are all internalized. We can use these
concepts both at metalevel and in the class theory.

This is possible since NF is designed so that key mathematical
concepts can be easily internalized by making a one-to-one
correspondece between these metalevel concepts and internal
mother classes.

Moreover, since NF is a formal sublanguage of English, it supports
real mathematics formally but can be understood directly by
humans without further interpretations.

Basic concepts

If we try to bootstrap mathematics from scratch, we must start
from somewhere, where we have some intuitive understanding of
basic concepts which are, perhaps, absolutely necessary to
construct mathematics from them.

Here, we propose the following four basic concepts:

Name, Tuple, Function and Class

Tuple

Given any finite sequence of objects aq,. .., a,, we we can form a
tuple
(a1 ... an)

of these objects.

Tuples are created by the following two methods.

Tupl il
(Tuple/nil) : (Tuple) uple/ni

a: (Object) b: (Tuple)

Tupl
(Tuple/cons a b) : (Tuple) uple/cons

Function

A function is either a primitive function or a defined funtion.
Functions are identified by its name, which is a symbol.

A function is called a method, if it can be used to create new
objects from existing objects.

Class

A class is either a mother class or the top class.

Each class is identified by its name, which is symbol whose first
and last character is an angular bracket.

For example, we will write (Object) for the top class.

The initial four mother classes are: (Tuple), (Symbol),
(Function) and (Class).

Bootstrapping Natural Framework (NF)

Bootstrapping of NF is done in two steps.

Each object is created interacting with the surrounding universe.
The universe is empty initially.

Who creates objects?

In the first step, objects are created by the program boot.el
written in Emacs Lisp.

In the second step, objects are created by the program boot.ez
written in Ez which is a language inside the universe of NF.

The bootstrapping process finishes after the loading of these two
programs. At this point, the universe is nonempty and the user can
directly manipulate and modify the universe by writing programs in
Ez (which is part of the universe).

Conclusions

@ Hilbert's idea: there are two kinds of mathematics.
o The first is real mathematics based on the finitistic view of
mathematics.
e The second is ideal mathematics based on the formalistic view
of mathematics.
e Most of platonistic and intuitionistic mathematics can be
formalized.

@ The notion of computability is stable and accepted by all
mathematicians.
e Proof checking is a decidable process.
e So, implementing proofs naturally is important
@ NF realizes a natural framwork for doing both real
mathematics and ideal mathematics.

