

Model-bounded monitoring of hybrid systems

Masaki Waga¹, Étienne André², Ichiro Hasuo³

Kyoto University¹, Université de Lorraine², National Institute of Informatics³

18 May 2021, MT-CPS 2021

This work is partially supported by JST ACT-X Grant No. JPMJAX200U, by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), by JSPS Grant-in-Aid No. 18J22498, and by ANRNRF ProMiS (ANR-19-CE25-0015).

Safety Critical CPSs

Self-driving car crash in Arizona: Red light runner hits Waymo van

Copyright 2018 Scripps Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed. Photo by: Air15

BBC	Sign in	News	Sport	Reel	Worklife	Travel	Future	М
NEWS								
Home Vide	o World Asia UK	Busine	ess Te	ch S	cience S	tories E	Entertainme	nt 8
Technolog	v							

Tesla Model 3: Autopilot engaged during fatal crash

🕓 17 May 2019

🔗 🔰 🗹 < Share

https://www.abc15.com/news/region-southeast-valley/chandler/waymo-car-involved-in-chandler-arizona-crash

https://www.bbc.com/news/technology-48308852

Monitoring

<u>Specification:</u> No (v > 120)

Monitoring with Sampling

Monitoring with Sampling

Monitoring with Sampling

<u>Specification:</u> No (v > 120)

Our Contribution

<u>Specification:</u> No (v > 120)

<u>Knowledge</u> (bounding model)

$$\left| \frac{\mathrm{d}v}{\mathrm{d}t} \right| < K$$

Our Contribution

<u>Specification:</u> No (v > 120)

Our Contribution

<u>Specification:</u> No (v > 120)

<u>Knowledge</u> (bounding model)

 $\left|\frac{\mathrm{d}v}{\mathrm{d}t}\right| < K$

Our Contribution

<u>Specification:</u> No (v > 120)

Contributions

Proposed model-bounded monitoring

Bounding model (knowledge): linear HAs \mathscr{M}

- Formalized with monitored language $L_{\rm mon}(\mathcal{M})$

 $L_{\mathrm{mon}}(\mathscr{M})$: possible *discrete* observations of \mathscr{M}

Algorithms + implementations

Idea: bounded-time reachability Experiment → effectively monitorable

<u>Given</u>

- Bounding model in LHA *M*
- Safety Specification ϕ
- Discrete Log *w*

No (v > 120)

Decide if the actual behavior might violate the spec.

<u>Given</u>

- Bounding model in LHA *M*
- Safety Specification ϕ
- Discrete Log *w*

No (v > 120)

Decide if the actual behavior might violate the spec.

15

Monitored Language L_{mon}

Combine cont. exec. of \mathcal{M} and disc. obs. of w

$$L_{\text{mon}}(\mathcal{M}) = \{ \text{Discr. Obs } w \mid$$

Monitored Language L_{mon}

Combine cont. exec. of \mathcal{M} and disc. obs. of w

 $L_{\text{mon}}(\mathcal{M}) = \{ \text{ Discr. Obs } w \mid \exists \text{ exec. } \sigma \text{ of } \mathcal{M} \text{ s.t.} \}$

Monitored Language L_{mon}

Combine cont. exec. of \mathcal{M} and disc. obs. of w

 $L_{\text{mon}}(\mathscr{M}) = \{ \text{ Discr. Obs } w \mid \exists \text{ exec. } \sigma \text{ of } \mathscr{M} \text{ s.t.} \\ w \text{ is a sample of } \sigma \}$

Workflow of Model-bounded Monitoring

1. Construct an LHA $\mathscr{M}_{\neg \varphi}$ from bounding model \mathscr{M} and spec. φ

Idea: Product of LHAs

2. Check if $w \in L_{\text{mon}}(\mathcal{M}_{\neg \varphi})$

Idea: Bounded-time reachability analysis

Implementations

Approach 1: Utilize existing model-checker (PHAVerLite) Pros: Highly-optimized reachability analysis impl.

<u>Approach 2</u>: Implement dedicated monitor (HAMoni)

Pros: Best performance in theory

Environment of Experiments

- Used 3 benchmarks on adaptive cruise controller (ACC)
 + 1 robot navigation (NAV) benchmark
- ACC: Cars should not be too close (or no physical contact)
 For scalability analysis
- **NAV**: Do not enter an unsafe region
- Amazon EC2 c4.large instance / Ubuntu 18.04 LTS (64 bit)
 - 2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, 3.75 GiB RAM

For false alarms analysis

Experiment Results Changing Observation Length

Experiment Results Changing Model Dimension

Experiment Results

False Alarms

shortest sampling interval without false alarms [ms.]

False alarm for "very safe" exec.→ sampling is coarse

Conclusions

Proposed model-bounded monitoring

Bounding model (knowledge): linear HAs \mathscr{M}

- Formalized with monitored language $L_{\rm mon}(\mathcal{M})$

 $L_{\mathrm{mon}}(\mathscr{M})$: possible *discrete* observations of \mathscr{M}

Algorithms + implementations

Idea: bounded-time reachability Experiment → effectively monitorable