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Safety Critical CPSs
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https://www.bbc.com/news/technology-48308852

https://www.abc15.com/news/region-southeast-valley/chandler/waymo-car-involved-in-chandler-arizona-crash



M. Waga (Kyoto U.)

v

120

  Specification: No  ( )v > 120

Monitoring

3



M. Waga (Kyoto U.)

v

t

120

  Specification: No  ( )v > 120

Monitoring

3

✘



M. Waga (Kyoto U.)

v

t

120

Monitoring with Sampling

4

✘

t

  Specification: No  ( )v > 120



M. Waga (Kyoto U.)

Monitoring with Sampling

5

  Specification: No  ( )v > 120

✔?
v

t

120

t



M. Waga (Kyoto U.)

Monitoring with Sampling

5

  Specification: No  ( )v > 120

✔?
v

t

120

t



M. Waga (Kyoto U.)

Signal Interpolation

6

  Specification: No  ( )v > 120

v
120

t



M. Waga (Kyoto U.)

Signal Interpolation

7

  Specification: No  ( )v > 120

v
120

t



M. Waga (Kyoto U.)

Signal Interpolation

8

  Specification: No  ( )v > 120

v
120

t



M. Waga (Kyoto U.)

Signal Interpolation

8

  Specification: No  ( )v > 120

v
120

t



M. Waga (Kyoto U.)

Signal Interpolation

9

  Specification: No  ( )v > 120

v
120

t

✘?



M. Waga (Kyoto U.)10

  Specification: No  ( )v > 120

v
120

t

Impossible because
dv
dt

< K

Interpolation with Prior 
Knowledge



M. Waga (Kyoto U.)11

  Specification: No  ( )v > 120

v
120

t

Our Contribution

Model-Bounded Monitoring

  Knowledge 
(bounding model)

dv
dt

< K



M. Waga (Kyoto U.)11

  Specification: No  ( )v > 120

v
120

t

Feasible execution with
dv
dt

< K

Our Contribution

Model-Bounded Monitoring

  Knowledge 
(bounding model)

dv
dt

< K



M. Waga (Kyoto U.)

v
120

12

  Specification: No  ( )v > 120
Our Contribution

Model-Bounded Monitoring

  Knowledge 
(bounding model)

dv
dt

< K



M. Waga (Kyoto U.)

v
120

t
12

  Specification: No  ( )v > 120

Feasible execution with
dv
dt

< K

Our Contribution

Model-Bounded Monitoring

✔

  Knowledge 
(bounding model)

dv
dt

< K



M. Waga (Kyoto U.)13

Q. How to Represent 
Bounding Model?

A. Linear Hybrid Automata
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Figure 4: Model-bounded monitoring of hybrid systems
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Figure 5: Model-bounded monitoring of
the log F in Fig. 3b. The bounding model
M in Fig. 6a con�nes interpolation to the
hatched area. Thus no collision in C 2
[0, 10]; potential collision in C 2 [10, 20].
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(a) A bounding model M for the platooning example, ex-
pressed as an LHA
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(b) The LHA M¬i for i = (G1 � G2 > 0)
Figure 6: LHAs for the automotive platooning example

period. For C 2 [10, 20], the two areas overlap, suggesting potential
collision.

The above analysis is automated by our automata-theoretic frame-
work in Fig. 4. We shall sketch its work�ow.

Leti be the safety speci�cation G1�G2 > 0 (“no physical contact”).
The formal construction ofM¬i (De�nition 11) yields the LHA in
Fig. 6b. InM¬i , the original LHAM (Fig. 6a) is duplicated, and once
i is violated, the execution can move from the �rst copy (the top
two states in Fig. 6b) to the second (the bottom states). The bottom
states are accepting—they detect violation of i .

Now we use one of our algorithms to solve the membership
problem, i. e., whether the log F belongs to Lmon (M¬i ). Solving
this membership problem amounts to computing the hatched areas
in Fig. 5—it is done relying on polyhedra computation—and checking
if the safety speci�cation is violated.

Usage Scenarios The scheme in Fig. 4 is used as follows. As a
basic prerequisite, we assume that the bounding modelM overap-
proximates the SUM: for each continuous-time signal f ,

(soundness of a bounded model)
f is a behavior of the SUM =) f is a run ofM.

We do not require the other implication. Due to the limited expres-
sivity of LHAs (that is the price for computational tractability),M
would not tightly describe the SUM.

Assume �rst that our monitor did not raise an alert (i. e., F 8
Lmon (M¬i )). Let f0 be the (unknown) actual behavior of the SUM
that is behind the logF . By the feature 4 of the scheme, we conclude
that f0 was safe. Indeed, f0 satis�es Item 4a by de�nition. It comes
from the SUM, and thus by the soundness assumption, f0 satis�es
Item 4b. Hence Item 4c must fail.

Let us turn to the case where our monitor did raise an alert
(F 2 Lmon (M¬i )). This can be a false alarm. For one, the existence

of unsafe f (as in the feature 4) does not imply that the actual
behavior f0 was unsafe. For another, Item 4b does not guarantee
thatf is indeed a possible behavior of the SUM, since we only assume
soundness of the bounding model. Nevertheless, a positive answer
of our monitor comes with a reachability witness (a trace) in M¬i ,
which serves as a useful clue for further examination.

Summarizing, our monitor’s alert can be false, while the absence
of an alert proves safety. We can thus say our model-bounded moni-
toring scheme is sound.
Bounding Models We note that the roles of bounding models
are di�erent from common roles played by system models. A sys-
tem model aims to describe the system’s behaviors in a sound and
complete manner. In contrast, bounding models focus on overapprox-
imation, trading completeness for computational tractability that is
needed in monitoring applications.

The overapproximating nature of a bounding model is less of a
problem in monitoring, compared to other exhaustive applications
such as model checking. In the latter, approximation errors accu-
mulate over time, leading to increasingly loose overapproximation.
In contrast, in our usage, a bounding model is used to interpolate
between samples (Fig. 5). Here overapproximation errors get reset
to zero by new samples.

Bounding models can arise in di�erent ways, including:

• (Adding margins to a system model) If a system model is
given as an LHA, we can use it as a bounding model. A more
realistic scenario is to add some margins to address potential
perception and actuation errors. LHAs’ feature that they allow
di�erential inclusions is particularly useful here. An example
is in Fig. 7, where perception and actuation uncertainties are
addressed by the additional margins in the transition guards
and �ow dynamics, respectively.
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Contributions
• Proposed model-bounded monitoring


      Bounding model (knowledge): linear HAs 


• Formalized with monitored language 


      : possible discrete observations of 


• Algorithms + implementations 

      Idea: bounded-time reachability 
      Experiment → effectively monitorable
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Monitored Language Lmon
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Workflow of 
Model-bounded Monitoring

1. Construct an LHA  from bounding model  
and spec. 


      Idea: Product of LHAs


2. Check if 


      Idea: Bounded-time reachability analysis

ℳ¬φ ℳ
φ

w ∈ Lmon(ℳ¬φ)
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Implementations

Approach 1: Utilize existing model-checker (PHAVerLite)


    Pros: Highly-optimized reachability analysis impl.


Approach 2: Implement dedicated monitor (HAMoni)


    Pros: Best performance in theory

19
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Environment of Experiments

• Used 3 benchmarks on adaptive cruise controller (ACC) 
      + 1 robot navigation (NAV) benchmark


• ACC: Cars should not be too close (or no physical 
contact)


• NAV: Do not enter an unsafe region


• Amazon EC2 c4.large instance / Ubuntu 18.04 LTS (64 bit)

• 2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, 3.75 GiB RAM 

20

For scalability analysis

For false alarms 
analysis
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Dedicated impl. 
≈ 10x faster
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Experiment Results 
Changing Model Dimension
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Experiment Results 
False Alarms
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Conclusions
• Proposed model-bounded monitoring


      Bounding model (knowledge): linear HAs 


• Formalized with monitored language 


      : possible discrete observations of 


• Algorithms + implementations 

      Idea: bounded-time reachability 
      Experiment → effectively monitorable
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