KYOTO UNIVERSITY

DOCTORAL THESIS

An Integrated Theory of
Type-Based Static and Dynamic Verification

Author: Supervisor:
Taro Sekiyama Professor Atsushi Igarashi

Department of Communications and Computer Engineering
Graduate School of Informatics

February 26, 2016

KYOTO UNIVERSITY

Abstract

Graduate School of Informatics
Department of Communications and Computer Engineering

Doctor of Informatics

An Integrated Theory of Type-Based Static and Dynamic Verification
by Taro Sekiyama

For development of reliable software, many verification methods have been studied so
far. One of the most successful approaches is type systems, which have been tied to
various kinds of programming languages from dynamically typed ones through de-
pendently typed ones. Each of dynamic, static, and dependent typing has its own pros
and cons and is not always sufficient for development of practical, reliable software.

Our goal is to introduce a full-fledged programming language where dynamically,
statically, and dependently typed code coexist and interact safely. In this thesis, we
focus on three universal features in programming: delimited control, parametric poly-
morphism, and algebraic datatypes. These features are bases of current program-
ming languages—delimited control provides control effects such as exception han-
dling; polymorphism plays a key role in type-based abstraction and reuse of program
components; algebraic datatypes are an usual tool to represent data structures. We
study how these features are incorporated with mechanisms for integrating a certified
and an uncertified worlds, based on gradual typing, which combines static and dy-
namic typing, and manifest contracts, which does static and dependent typing. We
first study delimited control in integration of static and dynamic typing; this extension
needs monitoring of capture and call of delimited continuations. We also investigate
parametric polymorphism in a combination of static and dependent typing and show
our extension is sound, in particular, parametricity does hold. Finally, an extension
with algebraic datatypes lets us compare two major approaches to giving specifica-
tions to data structures from the point of view of computational efficiency. We believe
that these extensions and insights obtained from them will contribute to achievement
of our goal.

iii

Acknowledgements

First of all, I want to thank Atsushi Igarashi for being my supervisor and a patient
collaborator. He gave me a chance to study manifest contracts, which I have worked
over in both of my master’s and doctoral courses. He also gave many fruitful, influen-
tial comments to my work—especially, the work on manifest contracts with algebraic
datatypes started with his insight to the relationship between refinements on type con-
structors and data constructors. My attitude to research has been affected deeply by
him. He was patient with my English writing, speaking, and listening skills and helped
my job hunting.

I am grateful to Akihiro Yamamoto and Yasuo Okabe for the attention of my com-
mittee. Their comments improve the quality of my thesis significantly.

Koji Nakazawa educated me about mathematics, logic, and mathematical logic. Ko-
hei Suenaga gave advice on job hunting. They also gave comments which improved
my work and presentations significantly. Kentaro Okumura kept on discussing work
and counseled me when I was in difficulty. Yuki Nishida developed an experimental
implementation to demonstrate our work. I am very grateful to all members of the
Computer Software Group at Kyoto University. I enjoyed life in the laboratory thanks
to them.

Michael Greenberg is a collaborator on manifest contracts. The discussion with
him was exciting and the content of Chapter 3 is the joint work with him. He also
improved my presentation and encouraged me in the presentation at an international
conference. Yoshiyuki Kameyama and Kenichi Asai advised and indicated a direction
of my work on logical relations for statically typed languages with shift/reset (that
work is not presented in this thesis, though). Kenichi Asai also taught me that a study
of shift/reset should be based on CPS transformation; in fact, the transformation works
as a guide to introduce the monitoring system given in Chapter 2.

Finally, I appreciate my family, who have supported me from both of financial and
mental sides since childhood. Without their helps, I would never be here.

List of Publications

Chapter 2 consists of:

Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi. Shifting the blame - A blame
calculus with delimited control. In Proceedings of the 13th Asian Symposium on Pro-
gramming Languages and Systems, volume 9458 of Lecture Notes in Computer Science,
pages 189-207. Springer-Verlag, 2015.

Chapter 3 consists of:

Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. Polymorphic manifest
contracts, revised and resolved. ACM Transactions on Programming Languages and Sys-
tems, 2015. Accepted with major revision.

Chapter 4 consists of:

Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for datatypes.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 195-207, 2015.

Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for algebraic
datatypes. The 16th Workshop on Programming and Programming Languages, 2014.

vii

Contents

Acknowledgements

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3

1.4

1.5

Software Verification o oL
Type-Based Software Verification
Integration of Static and Dynamic Verification
131 GradualTyping L o
1.3.2 ManifestContracts
ThisThesis
14.1 Gradual Typing with Delimited Control
1.4.2 Manifest Contracts with Parametric Polymorphism
1.4.3 Manifest Contracts with Algebraic Datatypes
Organization

2 Gradual Typing with Delimited Control

21

2.2

2.3

24

Blame Calculus with Shiftand Reset
21.1 BlameCalculus
2.1.2 Delimited-Control Operators: Shift and Reset
2.1.3 Blame Calculus with Shiftand Reset
Language
221 Syntax
222 SemantiCs e e e e e e e e e
223 TypeSystem
224 TypeSoundness.
Blame Theorem e
231 Subtyping
232 BlameTheorem,
CPS Transformation e

3 Manifest Contracts with Parametric Polymorphism

3.1

3.2

Overviewo e
3.1.1 Manifest Contract Calculus for Hybrid Type Checking
3.1.2 Polymorphic Manifest Contract Calculus Fy
3.1.3 Flawsin Fg—and How We Solve Them
Defining Ffy L
321 Syntax
3.2.2 Operational Semantics

X

ix

xiii

»
<

S O WO JOlI = WN P =

323 StaticTyping

33 Propertiesof Ff;
33.1 Cotermination.
332 TypeSoundness.
34 Parametricity o oo
341 LogicalRelation.
342 Parametricity o
3.5 Three Versionsof Fy e
351 Fyl.O0:Beloetal’sWork
3.52 Fp20:Greenberg’sThesis.
353 Ff. .o
Manifest Contracts with Algebraic Datatypes
41 Overview e
411 CastsforDatatypes.
412 Ideasfor Translation
42 A Manifest Contract Calculus N,
421 Syntax e
422 TypeSystem
423 Semantics e e
424 TypeSoundness.
Typing for Run-time Terms
Well-formed Type Definition Environments
425 Comparisonof Fyand \E, Lo oo
4.3 Translation from Refinement Types to Datatypes
43.1 Translation, Formally.
432 Correctness e
43.3 Efficiency Preservation
434 Extension: BinaryTrees
435 Discussion
Related Work
5.1 Integration of Static and Dynamic Typing
5.2 Integration of Static and Dependent Typing
5.3 Dependent and/or Refinement Type Systems
5.4 Parametricity with Dynamic Type Analysis
5.5 Contracts for Datatypes
5.6 Systematic Derivation of Datatype Definitions
Conclusion
6.1 ThisThesis e
6.2 FutureWork
Proofs of Gradual Typing with Delimited Control
Al TypeSoundness
A2 BlameTheorem
A3 CPSTransformation.

B Proofs of Manifest Contracts with Parametric Polymorphism 139

B.1 Properties of substitution.o 0 0oL 139
B.2 Cotermination e 142
B3 Typesoundness 147
B.4 Parametricity o oo 160
C Proofs of Manifest Contracts with Algebraic Datatypes 167
C1 Termand Type Equivalence 167
C.2 Cotermination i i i e e e e e 169
C3 TypeSoundness 184
C4 Translation e 201
C4.1 StaticCorrectness v v v v i i e e e 201
C4.2 DynamicCorrectness. 207

xi

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39

3.10

4.1
4.2
43
44
4.5
4.6
4.7

Comparison of static verification in typing styles. 3
Syntax. 16
Reduction and evaluation. 17
Compatibilityrules. o o 18
Typingrules. 20
Subtypingrules. L L 22
Safetyrules. 23
CPS transformation. 25
An inconsistent derivation of Fy's type conversion relation. 34
Syntaxfor Ff;y 36
Operational semanticsfor Fyyo .. 38
Typing rules for Fy;. The rules marked * are for “run-time” terms. 41
Type compatibility and conversionfor Fyy 43
The logical relation for parametricity 47
Complexityofcasts 50
Parallel reduction (foropenterms). 52
Counterexamples to substitutivity and cotermination of parallel reduc-

tioninFy e 53
Type conversion via common-subexpression reduction 54
Programsyntax. L 61
Typingrulesfor N, o Lo 63
Type compatibility for A, o 64
Operational semantics for X, L Lo L Lo Lo 65
Typing rules for run-time terms. 69
Translation. L o 72
Generation of base contracts and arguments to recursive calls. 72

xiii

List of Tables

3.1 The status of properties of polymorphic manifest calculi. 29

41 Lookupfunctions.. 61

XV

Chapter 1

Introduction

1.1 Software Verification

Software has been used in various situations and dealt with critical things such as hu-
man life, business, privacy, and so on. In such software, it is crucial to verify that the
software behaves correctly. For example, an operating system should provide guest
users with only data offered publicly and, more technically, programs should write
and read data to and from a file via an opened file descriptor.

The most obvious way to check the behavior of a program is probably to execute
it actually and observe what it outputs and what computational resources (e.g., files,
sockets, and processes) it uses. This naive approach, however, has many defects in
verifying practical software. First, when something unexpected is observed, it is often
difficult to identify the cause of the error because software bugs and their causes often
seem to be unrelated in program texts in many cases. Worse, that approach does not
reach the goal completely, namely, a program verified by it does not always behave cor-
rectly because it checks only some execution paths of the program, not all. For example,
let us consider an (artificial) Ruby program as follows:

def f(b) =
if b then
1
else
"foo"
end
end

x = f(File.exists? ("bar"))
print Math.sqgrt (x)

The function f takes a Boolean value and examines its truth; if the argument is t rue, £
will return an integer; otherwise, it will return a string. The program queries whether
the file named "bar™" exists, passes its result to function £, and prints the square root
of the value returned by £. Obviously, a run of this program would never raise errors
if the file "bar" exists since, in that case, £ will return integer 1 and its square root
is also 1. This program will be aborted, however, in the case that the file does not ex-
ist, because £ will return a string but Math.sqgrt cannot calculate the square root of a
string value. This is the case that all execution paths in a program should be checked.
Unfortunately, we cannot expect it in general because such checks give rise to combina-
torial explosion easily and, worse, there may be infinite execution paths, in particular,
in nonterminating programs.

Alternatively, static verification has been studied and used as approaches to verify-
ing programs in a more systematic, modular, and dependable way. Static verification

2 Chapter 1. Introduction

techniques give program components specifications, which represent how the compo-
nents should behave, and check that the components follow the specifications with
the aid of computers before running the program. Since it does not need execution of
programs, static verification can detect errors in an early stage of development—the
early error detection reduces efforts made by programmers to find software bugs from
a large codebase. Most approaches to static verification are also exhaustive, i.e., if they
accept a program, it is guaranteed that the program never has certain errors. Forms
of specifications vary with properties we want programs to have and verification ap-
proaches.

1.2 Type-Based Software Verification

Types, which intuitively denote kinds of data, are one of the most successful specifica-
tion forms. Verification mechanisms using types are usually called type systems, which
assign types to program components and check that the components are manipulated
with only operations allowed by their types. Many programming languages such as
Java [42], C++ [56], C¥ [73], Standard ML [76], Haskell [68], etc. support static type sys-
tems which guarantee that programs accepted by the systems do not have some kinds
of errors—e.g., “method-not-found” errors in Java and call of nonfunctional values in
Standard ML and Haskell. The static discrimination among data makes it possible to
not only detect errors caused by applying unexpected operations at very early stages
but also optimize programs (in fact, this is the first motivation of introducing the type
system in FORTRAN [12]). Another benefit of type systems is that types are specifi-
cations (comparatively) easy to read and understand and so they work as machine-
verified documentation; this often plays an important role in maintainability of soft-
ware. Although there are these advantages in static typing, it is often too strict and re-
jects even semantically correct programs. For example, it is difficult for many statically
typed languages to deal with heterogeneous lists safely,' though (unsafe) workarounds
to avoid the problem are provided in most languages.

Type systems have been so suited to verify programs and closely tied to various
kinds of programming languages from so-called dynamically typed ones through so-
called dependently typed ones. On one hand, dynamically typed languages, which
are also called script languages and include Python, Ruby, ECMAScript (JavaScript),
many dialects of Lisp, and so on, do not perform type checking statically and instead
defer it to run time. If a run-time check fails, then an exception will be raised to no-
tify the failure. In other words, dynamic typing reports errors only when they happen
actually, unlike static typing, which estimates errors possible to happen. For example,
an execution of the Ruby program above will be aborted by raising a run-time excep-
tion for failure of the run-time check that Math. sqrt should take floating-points as an
argument. Dynamically typed languages do not receive the advantages of static typ-
ing and their programs consume more computational resources than ones in statically
typed languages for the need to record and check kinds of data at run time, whereas
dynamically typed languages enable prototypes of software applications to be devel-
oped rapidly and exploit features, such as print of formatted string, macro, run-time
reflection, serialization/deserialization of objects, etc., difficult to deal with in static
typing since their programs are not restricted by rigid constraints imposed by static
type systems. On the other hand, dependently typed languages, such as DML [123],
Cayenne [11] F* [108], Coq [112], Agda [4], etc., have more powerful static type systems

1Some languages, e.g., Haskell [60], can.

Chapter 1. Introduction 3

Statically verifiable properties Easy to pass static type checking
Dynamic typing
Static typing
Dependent typing

FIGURE 1.1: Comparison of static verification in typing styles.

than usual nondependently, statically typed languages such as Java; we call such non-
dependently typed languages statically typed ones and their typing styles static typing
simply if what they mean is clear from the context. The type systems of dependently
typed languages allow types to be dependent on values in programs. For example, Coq
can give a type Vector n to denote lists of length n exactly:

Inductive Vector : int -> Type :=
nil : Vector 0
| cons : forall n : int, int -> Vector n —-> Vector (n+1)

Since n is an integer to denote the length of lists, the empty list nil is given type
Vector 0 and cons constructor returns a list of Vector (n+1) when given a sublist
of Vector n. Itisimportant to notice that Vect or depends on integer values denoted
by n. This dependency makes it possible to represent more precise specifications. For
example, using Vect or, Coq would provide a concatenation function of two finite lists
with the following type:

Vector m —-> Vector n —> Vector (n+m)

whereas OCaml [66], a statically typed language, would provide it with the following:
int list -> int list -> int list

where int 1list is a type for finite lists of integers. The former type is more precise
than the latter in the sense that the former presents the length of the concatenation but
the latter does not. Use of precise specifications leads to early notice of incorrect imple-
mentations. Dependently typed languages also accept features, such as print of format-
ted strings, difficult to give types in usual statically typed languages [11]. Support for
dependent types, however, makes type checking difficult, at worst, undecidable [11].
Perhaps worse, powerful type systems require programmers to write enormous type
annotations. Figure 1.1 shows a summary of the comparison above: dynamic typing
guarantees nothing statically but enables “flexible” programming; static typing detects
certain errors statically but rejects apparently correct programs; dependent typing can
detect more errors and accept more correct programs but imposes significantly more
burdens on both programmers and type checkers.

1.3 Integration of Static and Dynamic Verification

We have seen three kinds of typing styles: dynamic typing, static typing, and depen-
dent typing. Each typing style has its own pros and cons and has been adopted by
many programming languages, including ones for research, already. It is natural that
combining these typing styles yields more powerful programming styles. Combining
static and dynamic typing, we can start with developing a prototype in a dynamically
typed language and rewrite parts where specifications become stable to a statically

4 Chapter 1. Introduction

typed one. Combining static and dependent typing, we can write only critical parts
in dependently typed languages for rigorous verification and other parts in a statically
typed language to avoid burdens due to dependent typing. In fact, there has been much
work to unify static and dynamic typing and do static and dependent typing. For ex-
ample, programming languages supporting both static and dynamic typing have been
developed actively [73, 74, 114,18, 118, 31] and integration of static and dependent typ-
ing has been investigated over a decade [82, 37, 46, 45, 62, 64, 44,14, ,43,61,].
In what follows, we briefly introduce two integration mechanisms which we work
over: gradual typing, which combines static and dynamic typing, and manifest contracts,
which does static and dependent typing. Both of these mechanisms allow a certified
and an uncertified sides to interact by giving and taking values. This interaction, how-
ever, poses a challenge: how is it verified that values flown from the uncertified side
follow the specifications in the certified side? The key approach to the challenge is
dynamic verification—the values from the uncertified side is checked at run time.

1.3.1 Gradual Typing

Gradual typing [101, 113, 120] is a framework to integrate static and dynamic typing,
allowing statically typed (typed for short) and dynamically typed (untyped for short)
code to coexist. Gradually typed languages allow programmers to write an untyped
program at an early stage for rapid development, rewrite parts where specifications
become stable to statically typed ones, and obtain a fully typed program finally. For
example, let us see how the following untyped, ML-like program is rewritten to a fully
typed program:

let £ g x = g (g x)
let h x = f (funy -> vy + 1) x
let x = h 1

where gray parts are untyped. Since integers are typed at int and operation (+) can
be applied to only integers, we can rewrite a few parts in the program to statically
typed ones as follows:

let £ g x = g (g x)

let h x = £ (fun (y:int) -> y + 1) x

let x h 1

where white parts are statically typed. Since functions h and £ take only arguments of
int and int — int, respectively, the program is rewritten as follows:

let £ (g:int—int) x = g (g x)

let h (x:int) = £ (fun (y:int) -> y + 1) x

let x =h 1

By continuing similar reasoning, we can obtain the fully typed program:

let £ (g:int—int) (x:int) : int = g (g x)
let h (x:int) : int = £ (fun (y:int) -> vy + 1) x
let x : int = h 1

All of the four programs above are legitimate in gradual typing. In addition to smooth
transformation from fully untyped programs to fully typed ones, gradual typing also
enables “flexible” programming, like dynamically typed languages. For example, let
us consider the following program:

Chapter 1. Introduction 5

let x = 1f (£ 0) then (+) else 1
let y:int = 1if (£ 0) then x 1 2 else x

where £ is supposed to be a statically typed function of int — bool. In the first
let declaration, what value is bound to x rests on the conditional expression £ 0; if
f 0 evaluates to true, then function (+) is bound to x; otherwise, integer 1 is bound.
The body of the second let declaration refers to variable x appropriately, so no run-
time errors will happen. Since (+) and 1 have different types, the type of a value
of variable x cannot be determined statically in simple type systems and so statically
typed languages (with simple type systems) would reject this program. By contrast,
gradually typed languages accept it because they can suppose that the 1et declaration
is untyped.

The key notion for safe interaction between a typed and an untyped parts is mon-
itoring of value flows between the two parts to check at run time that values in the
untyped side satisfy the type specifications given by the typed side—in languages with
“sound” gradual typing, all run-time value flows are monitored. Perhaps interestingly,
value flows from typed parts to untyped parts also have to be monitored when higher-
order functions are supported. If it is detected that untyped values did not conform
to the specification of a typed part, “blame” [35, , , 27] (a kind of uncatchable
exceptions) will be raised to notify that something unexpected happened.

1.3.2 Manifest Contracts

Manifest contracts [37, 44, 64, 43] are a framework for integrating static and dynamic
checking of type specifications including refinement types,” which are a kind of depen-
dent types. In manifest contracts, finer-grained specifications than simple types such as
int are expressed by using software contracts [83, 72, 35] (contracts for short). Contracts
were originally introduced to represent formal specifications between a supplier and a
client of a software component. In this thesis, we follow the style of Eiffel [72]; contracts
mean predicates described in the language used to write programs, allowing program-
mers to express more precise specifications than simple types and able to be checked
at run time since they are program expressions. For example, a contract to denote that
variable x is positive is written as x > 0. In addition to such simple specifications,
contracts can represent finer-grained ones such as preconditions, which denote what
a function requires, postconditions, which denote what a function guarantees, and in-
variants, which denote what always holds. As an example of such contracts, let us
express a specification of division function. In mathematics, given a dividend and a
nonzero divisor, division returns the quotient such that the dividend is equal to the
multiplication of the quotient and the divisor. When division function is implemented
as the form let div dividend divisor = ... in a program, the precondition
that a divisor is nonzero is expressed as divisor <> 0 and the postcondition that
the dividend is equal to the multiplication of the quotient and the divisor is expressed
asdividend = result * divisor where result is a variable to denote the quo-
tient.

Many programming languages support contract systems with run-time checking
mechanisms as libraries (such as in the C language [55]) or dedicated constructs (such
as in Eiffel [72]). The most widely accepted checking mechanism is probably asser-
tion, which takes a Boolean expression and checks its truth at run time. For example,

"Refinement types are also known as subset types.

6 Chapter 1. Introduction

OCaml [66] supports the assert construct and, given division function div, function
div’ that enforces the pre- and the post-conditions for division is written as follows:

let div’ dividend divisor =
assert (divisor <> 0);

let result = div dividend divisor in
assert (dividend = result * divisor);
result

If zero is given to div’ as a divisor, the precondition divisor <> 0 ischecked at run
time and an exception is raised to notify failure of the assertion; similarly, if div does
not return a value satisfying the postcondition, an exception is also raised to notify fail-
ure of the postcondition; otherwise, div’ works in the same way as div. Eiffel [72]
succeeds in incorporating contracts into interfaces of program components and encour-
ages making pre- and post-conditions of methods and invariants of classes explicit—
this approach is called “Design by Contracts” concisely. Racket [35] has a state-of-
the-art contract system, which supports higher-order contracts [35], lazy contracts [36],
parametric contracts [45], and so on.

Unlike traditional contract systems, dubbed latent contracts by Greenberg et al. [44],
with only run-time checking mechanisms, manifest contracts take advantage of con-
tracts for both static and dynamic verification by embedding contract information into
types. The key type construct is refinement types. A refinement type {z:B | e} intuitively
represents a set of values v of base type B such that the expression [v/z]e, which is ob-
tained by substituting v for z in the Boolean expression ¢, evaluates to true. It is worth
noting that e, called a contract, a refinement, or a predicate, can be an arbitrary Boolean
expression and so refinement types can specify any subset of base-type constants as
long as a constraint to specify the subset can be written as a program expression. For
example, positive integers are represented as {z:int | « > 0} and prime numbers are
as {z:int | prime? 2} using a user-defined primality test function prime?. Support for
dependent function types, which allow us to express input/output relationships of func-
tions, makes specification languages more expressive. In general, dependent function
types take the form z: 77 — T5, which means, when taking a value v of T, functions of
the type return a value of [v/z]T». For example, using type rational to denote rational
numbers, a type of division function div is represented as

dividend:rational —
divisor:{z:rational | z # 0} — {result:rational | dividend = result x divisor}.

The second argument and the return types denote the pre- and the post-conditions of
division, respectively. Thanks to dependency of function types, the return type can
describe the relationship of inputs dividend and divisor and the output result—the first
argument dividend should be equal to the multiplication of the output and the second
argument divisor. Dependent function types give application terms precise types. For
example, the quotient (div 42 6) of dividend 42 and divisor 6 is typed at { result:rational |
42 = result x 6}.

Specification checking in manifest contracts is expressed as type checking since
specifications are denoted by types with contract information. For example, when
we want to ensure that an implementation of division function satisfies the contract
for division, it is checked that the implementation can be given the above dependent
function type. Manifest contracts advocate hybrid type checking, an integration of both

Chapter 1. Introduction 7

static and dynamic type checking, which resolves whether program components sat-
isfy specified contracts statically as much as possible and defers checking to run time if
a problem instance is not resolved statically.

What plays an essential role in static type checking is subtype checking. Intuitively,
type T is a subtype of 75 when contract information on 7% implies that on T5. Static
subtype checking between refinement types is, thus, formalized as an implication re-
lation between the Boolean predicates on the refinement types. For example, the quo-
tient of dividend 42 and divisor 6 is typed at {result:rational | 42 = result * 6} and the
predicate 42 = result x 6 implies result > 0, so the quotient would be also given type
{result:rational | result > 0} statically. Static subtype checking rests on only type in-
formation and guarantees that any term of a type is regarded as one of its supertype
without run-time checks.

By contrast, dynamic type checking uses run-time values in addition to type in-
formation and checks that some run-time value satisfies contracts on types at which we
expect the value to be typed. A key mechanism for dynamic checking is type coercions,
more commonly called casts. A cast (T} < T»)f performs a run-time check that, when
taking a value of T, the value satisfies contracts on T7. If the check fails—i.e., the value
violates the contracts—then blame will be raised for notifying failure of the check.

The key to connect static and dynamic checking is in the typing rule for casts, which
gives a cast application (T} <= T»)" e type T1 on which we expect e to satisfy the con-
tract information. This rule is justified by the cast semantics—if the cast application
results in a value, it suggests success of the cast, namely, the target value satisfies the
contracts on T7. Even if the cast application causes blame, there are no problems be-
cause at such a time program execution will be aborted.

1.4 This Thesis

Our goal is to introduce a full-fledged programming language where dynamically,
statically, and dependently typed code coexist and interact safely. For this goal, we
study a theory to advance gradual typing and manifest contracts. Although their
key ideas have been established, it is not trivial to extend them so that static and
dynamic verification can interact cooperatively because enhancement of dynamic as-
pects often introduces an undesirable interaction between a certified and an uncer-
tified worlds and breaks foundations of static verification. For example, as pointed
out by Ahmed et al. [7], naive addition of polymorphism to gradual typing results
in violation of parametricity, a key property of statically typed lambda calculi with
polymorphism [41, 89, 90,]. A study of extending integration mechanisms with a
programming construct also lets us reconsider the construct from the point of view of
both certified and uncertified sides and provides new insights about it.

In this thesis, we focus on three universal features in programming: delimited con-
trol, parametric polymorphism, and algebraic datatypes. First, we study gradual typ-
ing with delimited control. Combining delimited-control operations and integration
of certified and uncertified worlds has not been studied in depth (except for Takikawa
et al. [110]). Since gradual typing seems to be more straightforward than manifest
contracts, we start with extending gradual typing with delimited control. Second, we
introduce polymorphism to manifest contracts. Polymorphism has been studied in the
context of static and dependent typing for a long time [41, 89, 13] whereas it does not
work well naively in both dynamic typing [92] and gradual typing [69, 7]. So, extend-
ing manifest contracts with polymorphism is expected to be nontrivial and, in fact, is

8 Chapter 1. Introduction

nontrivial. Finally, we extend manifest contracts with algebraic datatypes. This exten-
sion lets us compare two major approaches to giving specifications to data structures
from the point of view of computational efficiency.

In what follows, we describe overviews of our extensions briefly.

1.4.1 Gradual Typing with Delimited Control

We study integration of static and dynamic typing in the presence of delimited-control
operators. Delimited control is so powerful, a well known programming construct—
for example, various operations, such as exception handling, to manipulate call stacks
(sequences of activation frames) can be expressed by using delimited continuations.
However, control operators make it tricky to monitor the borders between typed and
untyped parts, though gradually typed languages should monitor them; in fact, as is
pointed out by Takikawa, Strickland, and Tobin-Hochstadt [110], communications be-
tween the two parts via continuations captured by control operators can be overlooked
under a standard monitoring system.

We propose an extension of a blame calculus [113,], a model calculus for grad-
ual typing, with Danvy and Filinski’s delimited-control operators shift and reset [25]
and give a new cast-based mechanism to monitor all communications between typed
and untyped parts. The idea of the new cast comes from Danvy and Filinski’s type
system [24] for shift/reset, where type information about contexts is considered. Using
types of contexts, our system can monitor all communications.

As a proof of correctness of our idea, we investigate two important properties. One
is Blame Theorem [113, 120], which states that values that flow from typed code never
trigger run-time type errors. The other property is soundness of continuation passing
style (CPS) transformation—investigating properties about CPS is important in study
of shift/reset because the origin and foundations of these operators come from CPS [24,

, 57, 8]. Especially, after giving a CPS transformation for our calculus, we show that
it preserves well-typedness and, for any two source terms such that one reduces to the
other, their transformation results are equivalent in the target calculus. It turns out that
we need a few axioms about casts in addition to usual axioms, such as (call-by-value)
B-reduction, for equality in the target calculus.

1.4.2 Manifest Contracts with Parametric Polymorphism

We study manifest contracts with parametric polymorphism [41, 89, 90], which is a key
device of type-based abstraction in functional programming—for example, it is well
known that polymorphism can encode abstract datatypes (ADTs) [78]. Manifest con-
tracts are a sensible choice for combining contracts and type-based abstraction mecha-
nisms including ADTs. ADTs already use the type system to mediate access to abstrac-
tions; manifest contracts allow types to exercise a still finer grained control. We will see
an example motivating the combination of contracts and ADTs in Chapter 3.

To study combination of contracts and polymorphism, we introduce a polymorphic
manifest contract calculus Fj. Our calculus supports, in addition to polymorphism,
“general refinements,” where the underlying type T of refinement type {z:7" | e} can
be arbitrary, unlike earlier manifest contracts [37, 44, 64], where T is restricted to be
base types. Thanks to support for general refinements, abstract datatypes can be im-
plemented by any type. General refinements also allow intuitive specifications to be
described by stating what a function produces when given specific arguments. For ex-
ample, let us consider a type of a root-finding algorithm, which, given a continuous

Chapter 1. Introduction 9

function f over real numbers, calculates an approximation of a real number = such
that f (z) = 0; such z is called a root of f. Naturally, as a precondition, the algorithm
requires argument function f to have a root. This precondition can be expressed as
f(a) <0and0 < f (b) for some real numbers a and b—since f is continuous, it implies
the existence of a root of f. When we suppose that such a and b along with f are given
by users, the root-finding algorithm is given the dependent function type of:’

a:real — bireal — f:{f:real — real | (fa) < 0and0 < (f b)} — {z:real | abs (f z) < €}

where real is the type for real numbers, abs returns the absolute value of an argument,
and e is an approximation error. Without general refinements, this type would not be
permitted because real — real is not a base type.

We establish fundamental properties including type soundness and relational
parametricity; in fact, our calculus is the first sound polymorphic manifest contract
calculus—though some earlier work studied manifest contracts with polymorphism,
they have some metatheoretical problems. Our key observation for soundness is that
cast semantics should not be affected by substitution—to design such cast semantics,
our calculus uses delayed substitution on casts and a new type conversion relation.

1.4.3 Manifest Contracts with Algebraic Datatypes

We extend manifest contracts with algebraic datatypes. Our calculus supports two sim-
ple approaches to giving refinements to data structures: one gives refinements to type
constructors and the other to data constructors. For example, let us see what type is
given to lists of positive integers in each approach. In the former, using predicate func-
tion for_all which returns whether all elements of a given list satisfy a given predicate,
a type of lists of positive integers can be described as:

{l:int list | for_all (Ay.y >0) [}

where type constructor int list is refined. In the latter, such lists can be described by
defining a new datatype pos list:

type pos list = PNil | PCons : {z:int | z > 0} X pos list

where data constructors PNil and PCons, which correspond to the nil and the cons
constructors of lists, are refined.

The two approaches are complementary. The former makes it easier for a program-
mer to write types because writing program predicates on data structures is compar-
atively easy. The latter enables more efficient contract checking because we can find
what contracts hold for data structures from contract information on types of data con-
structors.

Our goal is to take the best of both approaches and transform programs using re-
finements on type constructors to ones using refinements on data constructors auto-
matically. In this thesis, as a stepping stone to the goal, we propose two mechanisms
for achieving the program transformation. First, a syntactic translation from refine-
ments on type constructors to equivalent refinements on data constructors. Using
this translation, for example, we can derive the definition of pos list from {l:int list |
for_all (A\y.y > 0) I} automatically. Second, dynamically checked casts between different

3The type presented here does not state that f is continuous but we can by using dependent products,
which are provided in Chapter 4.

10 Chapter 1. Introduction

but compatible datatypes such as int list and pos list. Such casts are useful when, say,
we want to apply list-processing functions to inhabitants of pos list. As technical devel-
opment, we define a manifest contract calculus A\, to formalize the semantics of the
casts and prove that the translation is correct. The formalization of A, is slightly dif-
ferent from Ff; (the calculus for manifest contracts with parametricity)—in particular,
/\Igt does not rest on delayed substitution, differently from Ffj, and, in this sense, the
metatheory of A, is simpler than that of Ffj; we will discuss it in detail in Section 4.2.

1.5 Organization

The rest of this thesis is organized as follows. In Chapter 2, we study gradual typing
with delimited control. After seeing how delimited control in a standard monitoring
system causes overlooking interaction between typed and untyped parts, we describe
an idea to monitor such interaction. To formalize the idea, we introduce a blame cal-
culus with CPS-based delimited-control operators shift and reset; the cast semantics of
the calculus monitors capture and call of delimited continuations by considering types
of contexts. Then, we show standard properties: Type Soundness, Blame Theorem, and
soundness of our CPS transformation. Chapter 3 extends manifest contracts with para-
metric polymorphism. We start with reviewing prior work on manifest contracts—in
particular, we see that earlier polymorphic manifest contracts [14, 43] are not sound.
In Section 3.2, we introduce the first conjecture-free, sound polymorphic manifest con-
tract calculus with the help of delayed substitution and a new type conversion relation.
Finally, we show that our calculus has a crucial property, called parametricity, in poly-
morphic lambda calculi. Chapter 4 proposes a manifest contract calculus with algebraic
datatypes. The calculus supports two approaches to giving refinements data structures:
refinements on type constructors and refinements on data constructors. Section 4.3 re-
lates these two approaches via the calculus. Chapter 5 discusses work related to our
work and Chapter 6 concludes this thesis, describing future work.

This thesis is constituted by papers which have been presented or submitted
already. Chapter 2 and Chapter 4 are based on the papers presented at APLAS
2015 [99] and POPL 2015 [98], respectively. Chapter 3 is based on the one submitted to
TOPLAS [97].

We state only key lemmas and theorems in the body of the thesis; all of lemmas and
theorems and their proofs are presented in Appendix.

Chapter 2

Gradual Typing with Delimited
Control

We study gradual typing in the presence of delimited-control operators. As discussed
in Section 1.3.1, the run-time system of a gradually typed language should monitor
all flows of values between typed and untyped parts. Traditionally, casts [101, 37, 52,

, , 7,54, ,] (or contracts [35, , , 27,) play an important role in
such a monitoring system. A source program that contains typed and untyped parts
is compiled to an intermediate language such that casts are inserted in points where
typed and untyped code interacts. Casts are a run-time mechanism to check that a pro-
gram component satisfies a given type specification. For example, when typed code
imports a certain component from untyped code as integer, a cast is inserted to check
that it is actually an integer at run time. If it is detected that a component did not fol-
low the specification, blame (a kind of uncatchable exceptions) will be raised to notify
that something unexpected has happened. Tobin-Hochstadt and Felleisen [113] orig-
inated a blame calculus to study integration of static and dynamic typing and Wadler
and Findler [120] refined the theory of blame on its variant.

It is well known that use of delimited continuations as first-class values has many
applications—e.g., it is possible to implement various control effects such as exception
handling [106], backtracking [25], monads [34], generators [106], etc. However, control
operators make it tricky to monitor the borders between typed and untyped parts; in
fact, as is pointed out by Takikawa, Strickland, and Tobin-Hochstadt [110], communi-
cations between the two parts via continuations captured by control operators can be
overlooked under standard cast semantics.

In this chapter, we propose a blame calculus, based on Wadler and Findler [120],
with Danvy and Filinski’s delimited-control operators shift and reset [25] and give a
new cast-based mechanism to monitor all communications between typed and un-
typed parts. The idea of the new cast comes from Danvy and Filinski’s type system [24]
for shift/reset, where type information about contexts is considered. Using types of
contexts, our cast mechanism can monitor all communications.

As a proof of correctness of our idea, we investigate two important properties. One
is Blame Theorem [113, 120], which states that values that flow from typed code never
trigger run-time type errors. The other property is soundness of CPS transformation:
it preserves well-typedness and, for any two source terms such that one reduces to the
other, their transformation results are equivalent in the target calculus. It turns out that
we need a few axioms about casts in addition to usual axioms, such as (call-by-value)
B-reduction, for equality in the target calculus.

11

12 Chapter 2. Gradual Typing with Delimited Control

Outline In Section 2.1, we review the blame calculus and the control operators
shift/reset, explain why the standard cast does not work when they are naively com-
bined, and briefly describe our solution. Section 2.2 formalizes our calculus with an
operational semantics and a type system, and shows type soundness of the calculus.
Section 2.3 shows a Blame Theorem in our calculus and Section 2.4 introduces a CPS
transformation and shows its soundness.

2.1 Blame Calculus with Shift and Reset

2.1.1 Blame Calculus

The blame calculus of Wadler and Findler [120] is a kind of typed lambda calculus
for studying integration of static and dynamic typing. It is designed as an intermedi-
ate language for gradually typed languages [101], where a program at an early stage is
written in an untyped language and parts whose specifications are stable can be gradu-
ally rewritten in a typed language, resulting in a program with both typed and untyped
parts. In blame calculi, untyped parts are represented as terms of the special, dynamic
type [1, 51, 101] (denoted by x), where any operation is statically allowed at the risk of
causing run-time errors. Blame calculi support smooth interaction between typed and
untyped parts—i.e., typed code can use an untyped component and vice versa—via a
type-directed mechanism, casts.

A cast, taking the form ¢ : A =P B, checks that term ¢ of source type A behaves
as target type B at run time; p, called a blame label, is used to identify the cast that has
failed at run time. For example, using integer type int, cast expression 1 : int = %
injects integer 1 to the dynamic type; conversely, t : x = int coerces untyped term
t to int. A cast would fail if the coerced value cannot behave as the target type of the
cast. For example, cast expression (1 : int =P %) : x =P2 bool, which coerces integer
1 to the dynamic type and then its result to Boolean type bool, causes blame blame p; at
run time since the coerced value 1 cannot behave as bool.

Using casts, in addition to fully typed and fully untyped programs, we can write
a program where typed and untyped parts are mixed. For example, suppose that we
first write an untyped program as follows:

let succ = Az.z +1 in succl

where we color untyped parts gray.! If the successor function is statically typed, we
rewrite the program so that it imports the typed successor function:

let succ = (Az.z+1) : int — int =P * in succ1

where we color typed parts white. When the source and target types in a cast are not
important, as is often the case, we just surround a term by a to indicate the
existence of some appropriate cast. So, the program above is presented as below:

let succ = in succl

Intuitively, a frame in programs in this style means that flows of values between the
typed and untyped parts are monitored by casts. Conversely, the absence of a frame

!Precisely speaking, even untyped programs need casts to use values of the dynamic type as functions,
integers, etc., but we omit them to avoid the clutter.

Chapter 2. Gradual Typing with Delimited Control 13

between the two parts indicates that the run-time system will overlook their commu-
nications.

What happens when a value is coerced to the dynamic type rests on the source
type of the cast. If it is a first-order type such as int, the cast simply tags the value
with its type. If it is a function type, by contrast, the cast generates a lambda ab-
straction that wraps the target function and then tags the wrapper. The wrapper, a
function over values of the dynamic type, checks, by using a cast, that a given argu-
ment has the type expected by the wrapped function and coerces the return value of
the wrapped function to the dynamic type, similarly to function contracts [35]. For ex-
ample, cast expression (Az:int.z+1) : int — int =P * generates lambda abstraction
Ay: % ((Azzint.z +1) (y : » =9 int)) : int =P %). Here, blame label ¢ is the negation
of p, which we will discuss in detail below. Using the notation introduced above, it
is easy to understand that all communications between typed and untyped parts are
monitored because the program above reduces to:

let suce = Ay.|(A\z. x + 1) in succ 1

As advocated by Findler and Felleisen [35], there are two kinds of blame—positive
blame and negative blame, which indicate that, when a cast fails, its responsibility lies
with the term contained in the cast and the context containing the cast, respectively.
Following Wadler and Findler, we introduce an involutive operation - of negation on
blame labels: for any blame label p, p is its negation and p is the same as p. For a
cast with blame label p in a program, blame p and blame p denotes positive blame and
negative blame, respectively. A key observation, so-called the Blame Theorem, in work
on blame calculi is that a cast failure is never caused by values from the more precisely
typed side in the cast—i.e., if the side of a term contained in a cast with p is more
precisely typed, a program including the cast never evaluates to blame p, while if the
side of a context containing the cast is, the program never evaluates to blame p.

2.1.2 Delimited-Control Operators: Shift and Reset

Shift and reset are delimited-control operators introduced by Danvy and Filinski [25].
Shift captures the current continuation, like another control operator call/cc, and reset
delimits the continuation captured by shift. The captured continuation works as if it is
a composable function, namely, unlike call/cc, control is returned to a caller when the
call to the captured continuation finishes.

As an example with shift and reset, let us consider the following program:

(5+Sk.((k1+k2)=13))

Here, the shift operator is invoked by the subterm Sk. ((k1+k2)=13) and the reset
operator (...) encloses the whole term. To evaluate a reset operator, we evaluate its
body. Evaluation of the shift operator Sk. ((k 1+ k2)=13) proceeds as follows. First,
it captures the continuation up to the closest reset as a function. Since the delimited
continuation in this programis 5 + [] (here, [] means a hole of the context), the captured
continuation takes the form Az. (5 + z) (note that the body of the function is enclosed by
reset). Next, variable k is bound to the captured continuation. Finally, the body of the
closest reset operator is replaced with the body of the shift operator. Thus, the example

14 Chapter 2. Gradual Typing with Delimited Control

program reduces to:
(Az. (b+z)) 1)+ ((A\z. (5+z))2))=13).

Since reset returns the result of its body, it evaluates to true.

Let us consider a more interesting example of function choice, a user of which
passes a tuple of integers and expects to return one of them. The caller tests the
returned integer by some Boolean expression and surrounds it by reset. Then, the
whole reset expression evaluates to the index (tagged with Some) to indicate which
integer satisfied the test, or None to indicate none of them satisfied. For example,
(prime? (choice (141,197))) will evaluate to Some 2 because the second argument 197
is a prime number. Using shift/reset, such a (two-argument version of) choice function
can be defined as follows:

choice = \(z, y):int X int. Sk.if k x then Some 1 else if k£ y then Some 2 else None

It is important to observe k is bound to the predicate (in this case, A\z. (prime? z)).

Since blame calculi support type-directed casts, it is crucial to consider type dis-
cipline in the presence of shift/reset. This work adopts the type system proposed by
Danvy and Filinski [24]. Their type system introduces types, called answer types, of
contexts up to the closest reset to track modification of the body of a reset operator—
we have seen above that the body of a reset operator can be modified to the body of a
shift operator at run time. In the type system, using metavariables o and S for types,
function types take the form A/a — B/f3, which means that a function of this type is
one from A to B and, when applied, it modifies the answer type « to 3. For example,
using a function of type (int x int)/bool — int/(intoption) (intoption means integers
tagged with Some and None), its user, when passing a pair of integers, expects to return
an integer value and to modify the answer type bool to intoption. Conversely, to see
how functions are given such a function type, let us consider choice, which is typed at
(int x int) /bool — int/(int option). It can be found from the type annotation that it takes
pairs of integers. The body captures a continuation and calls it with the first and second
components of the argument pair. Since a caller of choice obtains a value passed to the
continuation k, the return type is int. choice demands the answer type of a context be
bool because the captured continuation is required to return a Boolean value in condi-
tional expressions; and the shift operator modifies the answer type to int option because
the if-expression returns an int option value.

2.1.3 Blame Calculus with Shift and Reset

We extend the blame calculus with shift/reset so that all value flows between typed and
untyped parts are monitored, following the type discipline discussed above. The main
question here is how we should give the semantics of casts for function types, which
now include answer type information. The standard semantics discussed above does
not suffice because it is ignorant of answer types. In fact, it would fail to monitor value
flows that occur due to manipulation of delimited continuations, as we see below. For
example, let us consider the situation that untyped code imports typed function choice
via a cast (represented by a frame):

let f = in 5+ (succ (f (141,197)))

Chapter 2. Gradual Typing with Delimited Control 15

This program contains two errors: first, subterm succ (f (141,197)) within the reset
operator returns an integer, though the shift operator in choice expects it to return a
Boolean value since the continuation captured by the shift operator is used in condi-
tional expressions; second, as found in subterm 5+(...), the computation result of
the reset operator is expected to be an integer, though it should be an int option value
coming from the body of the shift operator in choice. However, if the cast on choice
behaved as a standard function cast we discussed in Section 2.1.1, these errors would
not be detected at run time on borders between typed and untyped parts. To see the
reason, let us reduce the program. First, since the choice is coerced to the dynamic
type, a wrapper that checks an argument and the return value is generated and then is
applied to (141,197):

let f = in 5+ (suce (f (141,197))) —" 5+ (suce (| choice|(141,197)||))

The check for (141,197) succeeds and so choice is applied to (141,197), and then the
shift operator in choice is invoked.

- b+ (succ|8k. if k 141 then Some 1 else if k 197 then Some 2 else None)

—* 5+ (if (Az. (sucec[z])) 141 then Some 1 elseif ... then Some 2 else None)

Here, there are one gray area and one white area, both without surrounding frames.
The former means that the value flow from the captured continuation Az. (succ[z]) to

typed code will not be monitored, when it should be by the cast from the dynamic type
to bool. Similarly, the latter means that the value flow from the result of the (typed) if-
expression to untyped code will not be monitored, either, when it should be by the cast
from int option to the dynamic type. The problem is that the standard function casts can
monitor calls of functions but does not capture and calls of delimited continuations.

Our cast mechanism can monitor such capture and calls of delimited continuations.
A wrapper generated by a cast from A/a — B/ to the dynamic type, when applied,
ensures that the reset expression enclosing the application returns a value of the dy-
namic type by inserting injection from 3 and that the continuation captured during the
call to the wrapped function returns a value of o by the cast to «. In the above example
of choice, our cast mechanism reduces the original program to a term like:

5+ (|if (A\z.|(succ[z])|) 141 then Some 1 elseif ... then Some 2 else None

S

where two casts are added: one to check that the return value of the continuation has
bool and the other to inject the result of the if-expression to the dynamic type.

2.2 Language

In this section, we formally define a call-by-value blame calculus with delimited-
control operators shift and reset and show its type soundness. Our calculus is a variant
of the blame calculus by Ahmed et al. [7].

16 Chapter 2. Gradual Typing with Delimited Control

variables z,y,z,k blame labels p,q

constants ¢ := true | false | ... base types ¢ ::= bool | ...

ground types G, H n= |k k= oK/ x

types A B,a,B,7,0 == 1|*x|A/a— B/

values v n= x|l dzt|v: G=x

terms S, tyu v= z|clop(@') | Aw.t]st|
s: A=P B|sisG|s: G= x|blamep |
(s) | Sk.s

FIGURE 2.1: Syntax.

2.2.1 Syntax

Figure 2.1 presents the syntax, which is parameterized over base types, denoted by ¢,
constants, denoted by ¢, and primitive operations, denoted by op, over constants. We
assume that at least Booleans are available in our calculus.

Types consist of base types, the dynamic type, and function types with answer
types. Unlike the blame calculus of Wadler and Findler, our calculus does not include
refinement types for simplicity; we believe that it is not hard to add refinement types if
refinements are restricted to be pure [8]. Ground types, denoted by G and H, classify
kinds of values. If the ground type is a base type, the values are constants of the base
type, and if it is a function type (constituted only of the dynamic type), the values are
lambda abstractions.

Values, denoted by v, consist of variables, constants, lambda abstractions, and
ground values. A lambda abstraction Az. ¢ is standard; variable z is bound in the body
t. A ground value v : G = x is a value of the dynamic type; the kind of v follows
ground type G.

Terms, denoted by s and ¢, extend those in the simply typed blame calculus with
two forms, reset expressions and shift expressions. Using the notation #;' to denote
a sequence {1, ..., t,, of terms, we allow primitive operators to take tuples of terms. A
type test sis G investigates a kind of the result of term s of the dynamic type at run
time. If the value of s matches with G, then it returns true; otherwise, it returns false. A
reset expression is written as (s) and a shift expression is as Sk. s where £ is bound
in the body s. The syntax includes blame as a primitive construct despite the fact
that exceptions can be implemented by shift and reset because blame is an uncatchable
exception in a blame calculus. Note that ground values, ground terms (s : G = %),
and blame are supposed to be “run-time” citizens that appear only during reduction
and not in a source program.

In what follows, as usual, we write s [z := v] for capture-avoiding substitution of v
for variable z in s. As shorthand, we write s : G =% =P Aands : A =P G = xfor
(s: G=%) :x=P Aand (s : A=P G) : G = %, respectively.

2.2.2 Semantics

The semantics of our calculus is given in a small-step style by using two relations over
terms: reduction relation —, which represents basic computation such as S-reduction,
and evaluation relation —, in which subterms are reduced.

Chapter 2. Gradual Typing with Delimited Control 17

s — t| Reduction rules

op(T;*) — ((op,77") R_Opr
(Az.s)wv — sz =] R_BETA
(v) — v R _RESET
(F[Sk.s]) — (s[k = Az.(F[z])]) wherez ¢ fv(F) R_SHIFT
vie=Py — v R_BASE
vk =P % — v R_-DYN
v:Ala— B/p=P AJd) — B/ —

M. Sk.((k((v(z : A =P A)) : B=F B')):d =P a): =P)

R_WRAP
v:A=P x — v:A=P G=* ifA~ Gand A # » R_GROUND
v:G@=x=P A — v:G=P A if G ~ Aand A # x R_COLLAPSE
v:G=%x=P A — blamep ifG £ A R_CONFLICT
(v:G=%)isG — true R_ISTRUE
(v: H=%)isG — false iftH # G R_ISFALSE
s+ t| Evaluation rules
i E_STEP akalll E_ABORT
m h E[blame p] — blamep

FIGURE 2.2: Reduction and evaluation.

The reduction rules, shown at the top of Figure 2.2, are standard or similar to the
previous calculi except (R_-WRAP), which is the key of our work. In (R_OP), to reduce
a call to a primitive operator, we assume that there is a function ¢ which returns an ap-
propriate value when taking an operator name and arguments to it. The rule (R_SHIFT)
presents that the shift operator captures the continuation up to the closest reset opera-
tor. In the rule, the captured continuation is represented by pure evaluation contexts,
denoted by F, which are evaluation contexts [33] where the hole does not occur in
bodies of reset operators. Pure evaluation contexts are defined as follows:

Fu={[]|op(wi',F,T’)|Fs|vF|F:A=? B|F: G=x|FisG

As mentioned earlier, the body of the function representing the captured continuation
is enclosed by reset. A type test succeeds and returns true if the kind of a examined
value matches with the specified ground type (by (R_.ISTRUE)); otherwise, it returns
false (by (R_ISFALSE)).

There are six reduction rules for cast expressions. The rules (R_BASE) and (R_.DYN)
mean that casts between the same base type and between the dynamic type perform
no checks. We find (R_DYN), which does not appear in Ahmed et al. [7], matches
well with CPS transformation; we will discuss it in Section 2.4. The rule (R_.GROUND),
applied when the target type is the dynamic type but the source type is not, turns a cast
expression to a ground term by inserting a cast to the ground type G that represents
the kind of the value v. The relation ~, called compatibility, over two types is defined
by using rules in Figure 2.3. It intuitively means that a cast from A to B (and vice

18 Chapter 2. Gradual Typing with Delimited Control

Compatibility rules

C_DyYNTO C_DYNFrROM
A~ % * ~ B L~ L

A ~A B~B d~a p~f
Aja = BJB ~ AJal = BB

C_BASE

C_FuN

FIGURE 2.3: Compeatibility rules.

versa) can succeed; in other words, A ¢ B means that a cast will fail. One interesting
fact about compatibility is that, for any nondynamic type A, we can find exactly one
ground type that is compatible with A: If A is a base type, then G is equal to A and, if
A is a function type, then G is x / * — x /. As aresult, G in (R_GROUND) is uniquely
determined. The rules (R_.COLLAPSE) and (R_CONFLICT) are applied when a target
value is a ground value. When the kind G of the underlying value v is not compatible
with the target type of the cast, the cast is blamed with blame label p by (R_.CONFLICT).
Otherwise, the underlying value is coerced from the ground type of the ground value
to the target type of the cast by (R_.COLLAPSE).

The reduction rule (R_-WRAP), applied to casts between function types, is the most
involved. The rule means that the cast expression reduces to a lambda abstraction
that wraps the target value v. Since the wrapper function works as a value of type
A'Jo/ — B'/j, it takes a value of A’. Like function contracts [35], in the wrapper, the
argument denoted by z is coerced to argument type A of the source type to apply v
to it and the return value of v is coerced to return type B’ of the target type. Further-
more, to call the target function in a context of answer type «, the wrapper captures
the continuation in which the wrapper is applied by using shift, applies the captured
continuation to the result of the target function, and then coerces the result of the cap-
tured continuation to «. Since the wrapper is applied in a context of answer type o/,
the captured continuation returns a value of o’. By enclosing the cast to o with reset,
a continuation captured during the call to v returns a value of a. Finally, the wrapper
coerces the result of the reset operator from 3 to 3’ because the call to the target func-
tion modifies the answer type of the context to 3, and so the reset expression returns
a value of 3, and the wrapper is expected to modify the answer type to 5. The rule
(R-WRAP) reverses blame labels for casts from A’ to A and from o’ to a because target
values for those casts originate from the context side.

We illustrate how (R_WRAP) makes monitoring of capture and calls of continu-
ations possible, using choice in Section 2.1.3. By (R_GROUND), the cast from (int X
int)/bool — int/(intoption) to the dynamic type reduces to that to x /x — = /. By
(R_.WRAP), the cast generates a wrapper.

let f = in 5+ (suce (f (141,197)))

— let f = Az. SE'.| (k| (choice[Z]) |[) |in 5 + (suce (f (141, 197)))

Chapter 2. Gradual Typing with Delimited Control 19

The wrapper is applied to (141,197), so the evaluation proceeds as follows:

—* 5+ (suce (SK'.| (| k| (choice|(141,197))

-
~
~

— 5+ (|| (A\z. (succ z))|(choice|(141,197)|) || D

—* 5+ (| (| (A\z. (succe :c))l(Sk if k 141 then Some 1 else)l))

— 5+ <| (if v 141 then Some 1 else if v 197 then Some 2 else None) |)

where v = Ay. (| (Az. (succ z))[y][). We can observe that all borders in the last term are

monitored by casts.

Evaluation rules, presented at the bottom of Figure 2.2, are standard: (E_STEP) re-
duces a subterm that is a redex in a program and (E_ABORT) halts evaluation of a
program at blame when cast failure happens. To determine a redex in a program, we
use evaluation contexts [33], which are defined as follows.

E:::H|0p(7ii,E,7jj)|Es|vE|<E)\E:A:>pB|E:G:>*\EisG

This definition means that terms are evaluated from left to right. Unlike pure evalua-
tion contexts, evaluation contexts include a context where the hole is put in the body
of a reset operator.

2.2.3 Type System

This section presents a type system of our calculus. It is defined as a combination of
that of Danvy and Filinski and that of Wadler and Findler. As usual, we use typing
contexts, denoted by I', to denote a mapping of variables to types:

=0T z:A

Typing judgments in our type system take the form I';a = s : A; 3, which means
that term s is typed at type A under typing context I' and it modifies answer type « to
B when evaluated. Perhaps, it may be easier to understand what the typing judgment
means when its CPS transformation is considered. When we write [-] for the CPS
transformation, the typing judgment I';a = s : A; 3 is translated into the form [I'] +
[s] = (IA] — [e]) — [A] in the simply typed blame calculus (without shift/reset).
That is, type A of term s and type « are the argument type and the return type of
a continuation, respectively, and type 3 is the type of the whole computation result
when the continuation is passed.

Figure 2.4 shows typing rules for deriving typing judgments. Typing rules for shift
operators, reset operators, and terms from the lambda calculus are the same as Danvy
and Filinski’s type system. In (T_OP), we use function ty from primitive operator
names to their (first-order) types. Typing rules for terms from the blame calculus are
changed to follow Danvy and Filinski’s type system. In (T_CAST), following previous
work on the blame calculus, we restrict casts in well typed programs to be ones be-
tween compatible types. In other words, (T_CAST) rules out casts that will always fail.

20 Chapter 2. Gradual Typing with Delimited Control

Iiakt: A ﬁ‘ Typing rules

ty(op) = 4" = Tia e RTINS

T_CONST T_Op
Diatc:ty(c)a ;an Fop(') @ ;a0
T_BLAME Lo:difri: By T_ABS
I';abblamep : A;8 Diak Xzt : A/JB— B/v;a
z:A el iyt AJa— B/B;0 Ti;8E s Ay
— T_VAR T_Arpr
iakFz: A« IiakFts : B;d
IakFs: A;8 A~ B T CAST iakFs: Gy T GROUND
Iak(s: A=P B): B;g Diak(s: G=%): %0
Diabs: % D k:A)y — a/v;0 b s 0 658
T_Is T_SHIFT
I'a b sisG : bool; 8 IakFSk.s : A; B
IBEs: B A
PFs: BA & ppser

Diak (s) : A«

FIGURE 2.4: Typing rules.

The typing rule (T_-BLAME) seems to allow blame to modify answer types to any type
though blame does not invoke shift operator; this causes no problems (and is necessary
for type soundness) because blame halts a program.

2.24 Type Soundness

We show type soundness of our calculus in the standard way: Progress and Preserva-
tion [121]. In the presence of the dynamic type, we can write a divergent term easily,
and blame is a legitimate state of program evaluation. Thus, type soundness for our
calculus means that any well typed program (a closed term enclosed by reset) evalu-
ates to a well typed value, diverges, or raises blame. In what follows, we write —* for
the reflexive and transitive closure of —.

Theorem 1 (Type Soundness). If 0;a + (s) : A;«, then one of the followings holds:
e there is an infinite evaluation sequence from (s);
e (s) —™ blame p for some p; or
o (s) —™* v for some v such that);a b v : A;a.

The outermost reset is assumed to exclude terms stuck at a shift operator without a
surrounding reset. The statement of Progress shown before Preservation, however, has
to take into account such a possibility for proof by induction to work.

Lemma 1 (Progress). If ;o= s : A; 3, then one of the followings holds:
o s+ s’ forsome s’;
e sisavalue;

e s = blame p for some p; or

Chapter 2. Gradual Typing with Delimited Control 21

o s = F[Sk.t] forsome F, k and t.
Proof. Straightforward by induction on the typing derivation. O
Lemma 2 (Preservation). Suppose that 0;a b s : A; 5.
(1) If s — t, then Dy =t = A; B.
(2) If s— t, then Dy =t = A; B.

Proof. By induction on the typing derivation with case analysis on the reduction/eval-
uation rule applied to s. In the case for (R_SHIFT), we follow the proof in the previous
work on shift/reset [9]. O

Proof of Theorem 1. By Progress and Preservation. Note that the evaluation from (s) to
F[Sk. t] as stated in Progress does not happen since s is enclosed by reset and reset
does not appear in F. O

2.3 Blame Theorem

Blame Theorem intuitively states that values from the typed code will never be sources
of cast failure at run time and, more specifically, clarifies conditions under which some
blame never happens. Following the original work [120], we formalize such conditions
using a few, different subtyping relations. Our proof is based on that in Ahmed et al.’s
work [7], which defined a safety relation for terms and showed Blame Progress and
Blame Preservation like progress and preservation for type soundness.

2.3.1 Subtyping

To state a Blame Theorem, we introduce naive subtyping <:,, which formalizes the
notion of being “more precisely typed.” Roughly speaking, type A is a naive subtype
of B when A is obtained by substituting some types for occurrences of the dynamic
type in B. For example, int <:, x and int/int — int/int <:, */int — int/%x. Note that
argument types are covariant here. The Blame Theorem states that if type A is a naive
subtype of type B, then the side of A is never blamed, thatis, acasts : A = B does
not cause blamep and s : B =P A does not blame p.

To prove the Blame Theorem, we introduce positive and negative subtyping. In-
tuitively, that type A is a positive (resp. negative) subtype of B expresses that positive
(resp. negative) blame never happens for a cast from A to B. It turns out that naive sub-
typing can be expressed in terms of positive and negative subtyping, from which the
Blame Theorem easily follows. In addition, a cast from an ordinary subtype—where
argument types of function types are contravariant—to a supertype is shown not to
raise blame.

Subtyping relations—ordinary subtyping <:, naive subtyping <:,,, positive subtyp-
ing <:*, and negative subtyping <:~—are reflexive relations satisfying subtyping rules
presented in Figure 2.5. The idea shared across all subtyping rules for function types
is that function type A/ac — B/f is interpreted as if it takes the CPS-transformation
form A — (B — a) — S. In this form, A and a occur at negative positions while B and
B occur at positive positions.

We write A <: B to denote that A is a subtype of B. The rule (5.DYN) means
that any (nondynamic) type is a subtype of the dynamic type if it is a subtype of the
(unique) ground type compatible to it. The premise is needed for cases that the subtype

22 Chapter 2. Gradual Typing with Delimited Control

Subtype

S REFL A< G $.DYN Al<:A B<:B d<a B<:pf S FUN
A<A A<ix Ao — B/p <: A'Jo! — B/ B
Naive Subtype
A4 SN_REFL A< » SN_DYN

A<, A B<,B a<,d B<,p

SN_FuN
Ala— B/p <ip A'Ja! — B'/
Positive Subtype
+ +
A<:+AS,REFL A<:+*S,DYN
A< A B<tB od<i™ <t g
“ @ P 5 ST_FUN
Alao— B/p <+ A'Jo! — B'/f’
Negative Subtype
ST RERL S~ Dy AT G o ANy
A<= A *<:m A N A<~B AN
A<TA B<™ B od<Ta g<—p
S™_FUN

Alao— B/p <:= A'Jo! — B'/j’

FIGURE 2.5: Subtyping rules.

is higher order. Function types are covariant at positive positions and contravariant at
negative positions as usual.

As mentioned before, type A is a naive subtype of B when A is obtained by putting
some types in occurrences of the dynamic type in B. The rule (SN_DYN) means that the
dynamic type is least precise. In the rule (SN_FUN), function types for naive subtyping
are covariant in both positive and negative positions.

The definitions of positive and negative subtyping are mutually recursive. The
rule (ST_DYN) means that positive blame never happens when any value is coerced
to the dynamic type. Similarly to ordinary subtyping, in (S*_FUN), function types
are covariant at positive positions and contravariant at negative positions. Negative
subtyping is a reversed version of positive subtyping except for addition of (57 _ANY),
which is a combination of (S™_DYN) and the fact that a cast from type A to the dynamic
type never gives rise to negative blame when A is a negative subtype of its ground
type. The rule (5~ _ANY) follows from Ahmed et al.’s work [7] and represents a relaxed
form of the system of Wadler and Findler [120]. Notice that polarity of subtyping is
reversed at negative positions.

As mentioned above, we show that naive subtyping (and ordinary subtyping) can
be expressed in terms of positive and negative subtyping.

Lemma3. If A/a — B/ <:= G, then A= o =xand B <: ~yand <:~ ~y for any .
Lemma4. A <:, Biff A<:T Band B <:~ A.

Chapter 2. Gradual Typing with Delimited Control 23

ssfp A< B gppos 5P AT B oG SE_CONST
s: A=P Bsfp - s: A=P Bsfp - csfp
Vi. t; sf f f tsf
P gpop —— SFVAR —— 2 opAps —— P 'SP gp app
op(t")sfp xsfp Ax.ssfp stsfp
q#p q#Dp ssfp ssfp ssfp
SF.CAST ——————— SF.GROUND ——— SF._Is
s: A=49 Bsfp s: G=x*sfp sisGsfp
qFp ssfp ssfp
————— SF_BLAME ———— SF_SHIFT ——— SF_RESET
blame ¢gsf p Sk.ssfp (s)ysfp

FIGURE 2.6: Safety rules.

Lemmab5. A <: Biff A <:" Band A <:~ B.

The proofs of the direction from left to right are straightforward by induction on
the derivations of A <:, B and A <: B. The other direction is shown by structural
induction on A with Lemma 3.

2.3.2 Blame Theorem

The proof of the Blame Theorem is similar to progress and preservation for type sound-
ness. Instead of a type system, we introduce a safety relation using positive and neg-
ative subtyping and show Blame Progress, which states that a safe term does not give
rise to blame, and Blame Preservation, which states safety is preserved by evaluation.
In this section, we focus only on whether a term gives rise to blame or not and not on
whether a term gets stuck or not.

A term s is safe for blame label p, written as s sf p, if every cast with blame label p
in s is from a type to its positive supertype and every cast with p is from a type to
its negative supertype. We present inference rules for the safety relation in Figure 2.6.
From the definition, it is observed that a term safe for p does not contain blame with p;
this does not restrict a source program written by a programmer because it should not
contain any blame.

Blame Progress and Blame Preservation show that, if s sf p, term s never gives rise
to blame with label p. We write s —4 ¢ and s —4~* t to denote that term s does not
reduce to term ¢ in a single step and in multiple steps, respectively.

Lemma 6 (Blame Progress). If ssf p, then s —/ blame p.
Proof. Straightforward by induction on the derivation of s sf p. O
Lemma 7 (Blame Preservation). (1) If ssfpand s — ¢, then tsf p.

(2) If ssfpand s — t, then tsf p.

Proof. By induction on the derivation of s sf p with case analysis on the reduction/eval-
uation rule applied to s. In the case for (R_FUN), we use Lemma 3 for (5"_ANY). O

Finally, we show the Blame Theorem—values that flow from the more precisely
typed side never cause blame—and, furthermore, that casts from one type to its super-
type never give rise to blame.

24 Chapter 2. Gradual Typing with Delimited Control

Theorem 2 (Blame Theorem and Subtype Theorem). Let s be a term with a subterm t :
A =P B where cast is labeled by the only occurrence of p in s. Moreover, suppose that p does
not appear in s.

(1) If A <:* B, then s —~* blame p.

(2) If A <:~ B, then s —~* blame p.

(3) If A <y, B, then s —/"* blame p; if B <:j, A, then s —/* blame p.
(4) If A <: B, then s —/* blame p and s —/~* blame p.

Proof. The first and second cases are shown by Blame Progress and Blame Preservation
because ssf p in the first case and ssf p in the second case. The third case (resp. the
fourth case) follows from the first and second cases and Lemma 4 (resp. Lemma 5). O

2.4 CPS Transformation

The semantics of programming languages with control operators has often been estab-
lished by transformation of programs with control operators to continuation passing
style (CPS), a programming style where continuations appear in a program as argu-
ments of functions. For example, programs with Reynolds’s escape operator [55], cal-
1/cc in Scheme, shift/reset [25], and so on can be transformed to CPS form.

As a proof of correctness of our approach, we define a CPS transformation from
terms in our calculus to those in the simply typed blame calculus of Ahmed et al. [7]
and show that a well typed source term is transformed to a well typed target term
and, for any source terms such that one reduces to the other, their CPS-transformation
results are equivalent in the target calculus. The equational system is based on call-by-
value axioms [93] due to blame, which is effectful.

Before giving the CPS transformation, we modify the syntax and the reduction rule
(R_GROUND) of our calculus slightly in order to transform a ground value of the form
v : % /* — x/* = % to a value with a cast (the reason is detailed later). To assign a
blame label to the cast, the syntax is changed as follows:

vi=..| v:G=p * su=..| s: G=p *

Blame labels in ground terms and values are given as subscripts for ease of distinction
from casts. The reduction rule (R_GROUND) takes the following form:

v:iA=Px—(v:A=P G): G=p x (if A ~ Gand A # x) R.GROUND

Our CPS transformation, which mostly follows Danvy and Filinski [25], is shown in
Figure 2.7 in three parts: transformation for types, values, and terms. We use variable
k to denote continuations. The CPS transformation for types is standard. A function
of type A/av — B/ takes an argument of A, would pass a value of B to a continu-
ation that returns «, and results in a value of § as the computation result. The CPS
transformation for values maps values in our calculus to those in the blame calculus
without shift/reset. The definition shown in Figure 2.7 is easy to understand except for
ground values where the ground type is a function type. We might expect that the CPS-
transformation result of ground value v : G =, * can be defined as v* : [G] = ~.
However, that form would not be a valid term in the target calculus if the ground type
G is a function type, because the ground function type in the target calculus takes only

Chapter 2. Gradual Typing with Delimited Control 25

CPS Transformation (Types)
[l =¢ [xl = [A/a— B/B] = [A] — ([B] — [a]) — [5]
CPS Transformation (Values)

¥ =z c*=c (Az.s)* = Az.[9] (v:ie=%x)*"=0v":11=>%

(v:ix/x = */x=p %) = Az (0F2) : (x = %) 2 x=2P %) 1 % = k=%

CPS Transformation (Terms)

[v] | = Ak.KV*

Top(")] = e [t] Az1. ... [ta] Azn. 6 0p(7t)) ...)
[st] = Ak [s] Az. [t] (A\y.zy K))

()] = e ([s] Oz 2))

[Sk. s] = Ma. ([s] Az.z)) [k = Ax. A6 K (k)]

[s : A=P BJ = Ak [s] (Az.k(z : [A] =P [B]))

[s : G= %] = Ak [s](Az.k(z : G = %)%)

[sist] = Ak [s] (Az.k (zise))

[sis(x/* = */%x)] = A&.[s] (Az.k(zis(x = %)))

[blame p] = Ak.blamep

FIGURE 2.7: CPS transformation.

the form x — xbut [x/x — /%] = * = (x = %) — . Expecting a value will be trans-
lated to a value in the target calculus, we set a ground value v : * /% — x/x =, x to
be mapped to a value to which v* : [G] =" «reduces, instead. (Notice the superscript on
= Aterm v* : [G] =P xis a cast and always valid.) In the result, we omit the trivial
cast z : * =P x. The CPS transformation for terms is self-explanatory. It is worth not-
ing that, for type tests, there are two cases on tested types. The case that a tested type is
a base type is trivial. The other case translates function type x / x — %/« with answer
types to the function type x — x, where the type of continuations is not presented,
because the simply typed blame calculus does not support type tests with higher-order
types and, more unfortunately, we cannot investigate that a value of the dynamic type
would take functions as an argument (recall [x/* — */*] = * — (x — x) — %) in
general. Although this treatment of type tests with function types causes no problems
in this work, it would be problematic when we consider inverse of the CPS transfor-
mation as in completeness of axiomatization [57].

It is straightforward to show that well typed source terms are transformed to well
typed target terms. For any typing context I', we write [I'] for the typing context ob-
tained by applying the CPS transformation to types mapped by I'.

Theorem 3 (Preservation of Type). If I';a s : A; 3, then [I'] F [s] : ([4] — [o]) —
151.

Next, we define an equational system in the target calculus. The system consists of
axioms about casts as well as usual call-by-value axioms [93]. In what follows, we use
metavariables ¢, v, E, and A (and B) to denote terms, values, evaluation contexts, and

26 Chapter 2. Gradual Typing with Delimited Control

types in the target calculus, respectively, and write fv (v) and fv (E) for the sets of free
variables in v and E, respectively. In addition, let the relation — be the evaluation
relation in the target calculus.

Definition 1 (Term Equality). The relation ~ is the least congruence that contains the fol-
lowing axioms:

®] = ®9 r ¢ fu(v) z ¢ fu(E)
® N @ AL.VZ &V (Az.E[z])e = Ele]
e:*=>Pxrxe e 4 =2>Prxox=2PA-Bre:x=>P A B

We think that the last two axioms about casts are reasonable. The former, which
skips the trivial cast, is found in another blame calculus [103]. This axiom is introduced
mainly to ignore redundant casts that often happen in CPS-transformation results. The
latter axiom, which collapses two casts into one, is used to show terms reduced by
(R_.COLLAPSE) are equivalent after CPS transformation. The latter might be unneces-
sary if our calculus was able to investigate structures of values of the dynamic type as
Abadi et al. [1], but we leave it as future work.

Now, we show that the relationship between our semantics in direct-style and the
CPS transformation.

Theorem 4 (Preservation of Equality). If s — ¢, then [s] ~ [t].

Finally, we remark on (R_DYN). In fact, although we first had tried to show The-
orem 4 without (R_DYN), we could not. Without (R_DYN), we have to show that the
transformation results of v : G =, * =P xand v : G =P «* are equivalent because
the side condition A # xin (R_COLLAPSE) is not needed [/] and then the former would
reduce to the latter. Unfortunately, the results are not equivalent in our equational sys-
tem because the former refers to label ¢ but the latter does not. We consider that there
is room for improvement of the CPS transformation, the equational system, and the
proof of soundness of the transformation in this thesis; it is left as future work.

Chapter 3

Manifest Contracts with Parametric
Polymorphism

This chapter studies and establishes foundations of manifest contracts with type ab-
straction based on parametric polymorphism. Parametric polymorphism, which was in-
troduced by Girard [41] and Reynolds [59, 90] independently, is a key concept to reuse
program components and a basis of abstract types [75] and program reasoning [119].
We start with seeing that manifest contracts are suited with type-based abstraction
mechanisms based on parametric polymorphism through an example with abstract
datatypes (ADTs) and then describe our contributions.

A motivating example To motivate the combination of contracts and ADTs, consider
the interface of an ADT modeling the natural numbers, written in an ML-like language:

module type NAT =

sig
type t
val zero t
val succ t >t
val isZ t —-> bool
val pred t >t
end

It is an abstract datatype because the actual representation of t is hidden: users of NAT
interact with it through the constructors and operations provided. The zero construc-
tor represents 0; the succ constructor takes a natural and produces its successor. The
predicate isZz determines whether a given natural is zero. The pred operation takes a
natural number and returns its predecessor.

This interface, however, is not fine-grained enough to prevent misuse of partial
operations. For example, pred can be applied to zero, whereas the mathematical
natural-number predecessor operation is not defined for zero.

Using (refinement types with) contracts, we can explicitly specify the constraint that
an argument to pred is not zero:

module type NAT =

sig

type t

val zero : t

val succ : t > t

val isZ : t —-> bool

val pred : {x:t | not (isZ x)} -> t
end

27

28 Chapter 3. Manifest Contracts with Parametric Polymorphism

Thetype {x:t | not (isZ x)} isa refinement that denotes the set of values x such
that not (isZz x) evaluates to true. So, this new interface does not allow pred to be
applied to zero.

Polymorphic manifest contract calculus In fact, our work is not the first to combine
manifest contracts and parametric polymorphism. Gronski et al. have studied manifest
contracts in the presence of polymorphism by developing SAGE language [46], which
supports manifest contracts and polymorphism, in addition to the dynamic type [I,

, 101] and even the so-called “Type:Type” discipline [19]. However, consequences
of combining these features, in particular, interactions between manifest contracts and
type abstraction (provided by parametric polymorphism), are not studied in depth in
Gronski et al. [46].

To study type abstraction for manifest contracts rigorously, Belo et al. [14] devel-
oped a polymorphic manifest contract calculus Fy, an extension of System F with mani-
fest contracts, and investigated its properties, including type soundness and (syntactic)
parametricity. For Fy to scale up to polymorphism, they made two technical contribu-
tions to diverge from earlier manifest calculi such as Ay [37], a simply typed manifest
contract calculus. First, Fy gives the semantics of casts in the presence of so-called
“general refinements,” where the underlying type 7' in a refinement type {z:T | e} can
be an arbitrary type (not only base types like bool and int but also function, forall, and
even refinement types), when earlier manifest calculi restrict refinements to base types.
Support for general refinements is important because it means that an abstract datatype
can be implemented by any type. SAGE also allows arbitrary types to be refined but
the semantics of casts relies on the dynamic type, which is problematic for parametric-
ity [69]. Second, Belo et al. have proposed a new, two-step, syntactic approach to for-
malizing manifest calculi. The first step is to establish fundamental properties such
as type soundness for a calculus without subsumption (and subtyping), while earlier cal-
culi [64, 44] rest on subtyping and denotational semantics of types in their construction.
Technically, they replaced subtyping with a syntactic type conversion relation, which
is required to show preservation in the presence of dependent function types. The lack
of subsumption allows for an entirely syntactic metatheory but it also amounts to the
lack of static contract checking. The second step is to give static analysis to remove
casts that never fail in order to compensate the lack of static contract checking. In fact,
Belo et al. give “post facto” subtyping and examine a property called Upcast Lemma,
which says an upcast—a cast from one type to a supertype—is logically related (thus
equivalent in a certain sense) to an identity function, as a correctness property of static
contract checking.

Unfortunately, however, the proofs of type soundness and parametricity of Fy turn
out to be flawed and, worse, the properties themselves are later found to be false. In
fact, the type conversion makes an inconsistent contract system; if a cast-free closed
expression is well typed, then its type can be refined arbitrarily—e.g., integer 0 can be
given type {z:int | z = 42}! These anomalies are first recognized as a false lemma about
the type conversion relation. Greenberg [43] fixed the false lemma by changing the
conversion relation. Another key property, called cotermination and left as a conjecture
in both Belo et al. [14] and Greenberg [43], also turns out to be wrong.1 Inconsistency
and failure of type soundness and parametricity follow from counterexamples to these

'In the end of Section 4 of Belo et al. [14], the authors write “our proof of type soundness in Section 3
relies on much simpler properties of parallel reduction, which we have proved.” as if the type soundness
proof did not depend on cotermination, but this claim also turns out to be false.

Chapter 3. Manifest Contracts with Parametric Polymorphism 29

H Belo et al. [14] (Fy) ‘ Greenberg [43] ‘ Our work (Ff;) ‘

Lemma w.r.t. convertibility X v v
Cotermination X (conjecture) X (conjecture) v
Progress X X v
Preservation e e v
Parametricity X X v
Upcast Lemma el e ?

v---proved v’--- proved with flawed premises X--- flawed ?--- unknown

TABLE 3.1: The status of properties of polymorphic manifest calculi.

properties. As we will discuss in detail, the root cause of the problem can be attributed
to the fact that substitution can badly affect how casts behave.

Contributions In this chapter, we introduce a new polymorphic manifest contract
calculus Ff; that resolves the technical flaws in Fry. We call our calculus Ff; because it
takes the Fy from Belo et al. [14] and Greenberg [43] and introduces a new substitution
semantics using delayed substitutions, which we write 0. Delayed substitutions are close
to explicit substitutions [2] but only substitutions on casts are explicit (and delayed) in
Ff;. Although, in some work [47, 7], delayed substitutions, also called explicit bind-
ings, have been used to represent syntactic “barriers” for type abstractions, we rather
use them to determine how casts reduce statically. Thanks to delayed substitution,
the semantics of Ffj can choose cast reduction rules independently of substitution; this
property is crucial when we prove cotermination. We can finally show that type sound-
ness and parametricity all hold in Ffy—without leaving any conjectures. Consistency of
the contract system of Ff; is derived immediately from type soundness.

Table 3.1 summarizes the status of properties of polymorphic manifest calculi; the
columns and rows represent properties and work on polymorphic manifest contracts,
respectively. We wrote v for properties that are proved, v'* for properties with proofs
that are based on false premises, X for properties that are flawed, and ? for proper-
ties we are unsure of. We have not investigated the Upcast Lemma in Ff; because the
first step of Belo et al.’s approach—namely, establishing fundamental properties for a
manifest calculus without subsumption (hence static contract checking)—has turned
out to be trickier than we initially thought and is worth independent treatment. The
value of the Upcast Lemmas in Belo et al. [14] and Greenberg [43] is questionable, due
to the flaws on which the proofs of type soundness and parametricity rest, though the
properties themselves may still hold.

Outline The rest of this chapter is organized as follows. We start Section 3.1 with
a brief history of manifest contract calculi (both monomorphic and polymorphic) and
discuss their technical issues and our solutions. Section 3.2 defines Ff;. We prove type
soundness in Section 3.3, fixing Belo et al. [14] with common-subexpression reduction
from Greenberg [43] and our novel use of delayed substitutions. We prove parametric-
ity in Section 3.4; along with the proofs of cotermination and type soundness in the
prior section, this constitutes the first conjecture-free metatheory for the combination
of System F and manifest contracts, resolving issues in prior versions of Fy. Section 3.5

30 Chapter 3. Manifest Contracts with Parametric Polymorphism

compares Ff; with two variants of polymorphic manifest contracts [14, 43] and presents
counterexamples to broken properties in these earlier calculi.

3.1 Overview

This section first reviews manifest contract calculi [37, 44, 64]—proposed as founda-
tions of hybrid type checking, a synthesis of static and dynamic specification checking—
and earlier polymorphic extensions [14, 43] with their technical challenges; then we
describe problems in the earlier polymorphic calculi and our solutions.

3.1.1 Manifest Contract Calculus for Hybrid Type Checking

Flanagan [37] proposed hybrid type checking, a framework to combine static and
dynamic verification techniques for modularly checking implementations against
contract-based precise interface specifications, and formalized Ay as a theoretical foun-
dation to study hybrid type checking. Later work revised and refined those early
ideas [64, 44], named the core dynamic checking framework a “manifest contract calcu-
lus” (or simply, manifest calculus) [44].

Hybrid type checking reduces program verification to subtype checking problems,
solving them statically as much as possible and deferring checking to run time if a
problem instance is not solved statically. We describe how these ideas are formalized
in Ay below; briefly, characteristic features of manifest contract calculi (in particular,
early ones such as slightly different versions of A\y) could be summarized as:

o Type-based specifications: refinement types (and dependent function types) to rep-
resent specifications;

e Static checking: subtyping to model static verification; and

e Dynamic checking: casts to model dynamic verification.

Type-based specifications In Ay, specifications are expressed in terms of types, more
concretely, refinement types and dependent function types. A refinement type {z:B | e}
intuitively denotes the set of values v of base type B (e.g., int, bool, and so on) such that
[v/z]e reduces to true. In that type, e, also called a contract or a refinement, can be an
arbitrary Boolean expression, so refinement types can represent any subset of the base-
type constants as long as a constraint to specify the subset can be written as a program
expression. For example, prime numbers can be represented as {z:int | prime? z }, using
a primality test function prime?. A dependent function type z:77 — T denotes func-
tions taking arguments v of domain type 7% and returning values of codomain type
[v/z] T>. Dependent functions cleanly express the relation between inputs and outputs
of a function. For example, z:int — {y:int | y > z} denotes functions that return an
integer larger than the argument.

Manifest calculi need not have arbitrary Boolean expressions and dependent func-
tion types. For example, Ou et al. [52] restrict predicates to be pure expressions and
the blame calculus by Wadler and Findler [120] supports only non-dependent function
types. As we will discuss below, having arbitrary predicates and dependent functions
significantly complicates metatheory. We will call a manifest calculus with both of these
optional features a full manifest calculus.

Chapter 3. Manifest Contracts with Parametric Polymorphism 31

Static checking With these expressive types, program verification amounts to type
checking, in particular, checking subtyping between refinement types. For example,
to see if a prime number (of type {z:int | prime? z}) can be safely passed to a function
expecting positive numbers (of type {z:int | > 0}) is to see if the former type is a
subtype of the latter. Informally, a refinement type {z:B | e; } is a subtype of {z:B | ez}
when ey holds for any value of B satisfying e;. Formally, supposing that we use o to
denote substitutions and write I', z:{z:B | true} F ¢ to mean that o is a closing sub-
stitution respecting (I, z:{z:B | true}), Flanagan gives a subtyping rule for refinement
types like:?

Vo. (T, z:{z:B | true} o A o(e;) —* true) implies o(ez) —* true
F'F{z:B| e} < {z:B] e}

This formalization allows language designers to choose their favorite static checking
methods because it states what static checking verifies, rather than how a specific static
checking method works.

Dynamic checking Unlike previous work on refinement types [40, ,67,82], how-
ever, the predicate language is very expressive—in fact, too expressive to be decidable.
Flanagan’s approach to undecided subtyping is to defer subtyping check at run time
by inserting casts to where subtyping cannot be decided, rather than reject a program.
More concretely, if static checking cannot decide whether the type T} of a given expres-
sion e is a subtype of Ty, then the compiler inserts a cast—written (T} = Ty)'—from
Ty (called source type) to T (called target type) and yields (T; = T5)! e. At run time,
it is checked whether (the value of) e can behave as T,. The superscript [is called a
blame label, an abstract source location used to differentiate between different casts and
identify the source of failures; unlike the blame calculus in Chapter 2, we do not dis-
tinguish positive and negative blame in this chapter because we are not interested in a
theory of blame here.

We briefly explain how casts work in simple cases. At refinement types, casts ei-
ther return the value they are applied to, or abort program execution by raising blame,
which indicates that the supposed subtyping turns out to be false. For example, con-
sider a cast from positive integers {z:int | z > 0} to odd integers {x:int | odd z}. If we
apply cast ({z:int | z > 0} = {z:int | odd z})! to 5, we expect to get 5 back, since 5 is an
odd integer (that is, odd 5 evaluates to true). So,

({z:int | z > 0} = {z:int |odd z})'5 —* 5.

Then, 5 can be typed at {z:int | odd z}. On the other hand, suppose we apply the same
cast to 2. This cast fails, since 2 is even. When the cast fails, it will raise blame with its
label:

{z:int | 2 > 0} = {z:int | odd z})! 2 —* {1

Casts between dependent function types are also made possible in Ay by adapting
higher-order contracts by Findler and Felleisen [35].

Type soundness of \y Proving syntactic type soundness of a full calculus (such as
An) via progress and preservation is tricky. We identify two main issues here.

*Readers familiar with the systems will recognize that we have folded the implication judgment into
the relevant subtyping rule.

32 Chapter 3. Manifest Contracts with Parametric Polymorphism

The first issue is how to allow values to be typed at refinements they satisfy.
For example, the type system should be able to give integer 2 type {z:int | true},
{z:int | evenz}, or {z:int | prime? z}. Subtyping resolves it with the help of “selfified”
types [82], which are most specific types of constants—e.g., the selfified type of integer n
is {z:int | z = n}. For example, if ({z:int | true} = {z:int | 2 > 0})! n —* n, then n can
be given type {z:int | z > 0} by using the subtyping rule above because inhabitants of
the selfified type of n are only » and the dynamic check has ensured that » > 0 holds.

The second issue is standard in a typed calculus with dependent function types: if
e1 evaluates to ey, the type system must allow terms of [e; /2] T to be typed at [e2/z] T,
too, and vice versa to show preservation. Let us consider the case for a function ap-
plication v; e — vy €5. Since v; is at a function position, its type takes the form
z:T1 — T>. The return type of a function is dependent on an argument to the func-
tion, so types of v; ez and v; e} would be [ez2/z]T> and [e)/z] Ts, respectively. Since
preservation says that evaluation preserves types of well typed terms, v; e has to be
typed also at [ez2/z] T.

A typical solution found in dependent type theory [26, 13, 50] is to introduce a type
equivalence relation, which is congruence closed under (3 or sometimes 57) reduction.
Ou et al. [82] address this issue with subtyping; they show that, for any pure expres-
sions ej and ey, if g — ey, then [e2/2] T is a subtype of [e; /2] T Itis not clear, however,
how [e1 /2] T and [ez/z] T should be related in a full manifest calculus mainly due to the
above-mentioned subtyping rule for refinement types and the fact that computation is
effectful (recall that blame is an uncatchable exception). Unfortunately, earlier work is
not fully satisfactory in this regard. In fact, both Flanagan [37] and Knowles and Flana-
gan [64] do not discuss this issue and Greenberg et al. [44] sidestep it by showing only
semantic type soundness using a logical predicate technique, which is motivated by an-
other reason—see Section 3.1.2. (Knowles and Flanagan [64] and Greenberg et al. [44]
prove, though, a closely related property that, if g — ey, then [e;/z]T and [ez/z] T
are semantic subtypes of each other.)

In short, there is no fully satisfactory proof of syntactic type soundness of a full
manifest calculus. Semantic type soundness is fine but it will be hard to extend if
more features are added to the calculus. Thus, a more syntactic proof is desirable. In
fact, Belo et al. [14] have attacked this problem of proving type soundness in a more
syntactic manner when they extend a manifest calculus to parametric polymorphism.

3.1.2 Polymorphic Manifest Contract Calculus Fy

A full manifest calculus Fy [14] has been developed to study type abstraction provided
by parametric polymorphism in manifest contracts. Parametric polymorphism is a cor-
nerstone of reusability in functional programming. For example, polymorphism can
encode existentials, which are crucial for defining abstract datatypes and expressing
modularity. In this context, manifest contracts are also used to specify precise interfaces
of modules by refining existentials, as we discussed in the beginning of this chapter.
This section describes key ideas in that work, namely refinement types with arbitrary
underlying types and subsumption-free formalization, and the next presents technical
flaws in the metatheory of Fy.

Polymorphism and general refinements Adding polymorphism to manifest con-
tracts is not as simple as it might appear. The crux of the matter is this: we need to
be able to write {z:a | e} for refinements to interact with abstract datatypes in a useful
way. A question here is: What types can be instantiated for the type variable a? Earlier

Chapter 3. Manifest Contracts with Parametric Polymorphism 33

manifest calculi restrict refinements to base types, forbidding refinements of function
types like {f:(int—int) | f 0 = 0}. However, this restriction is severe and limits expres-
siveness of types excessively. For example, let us consider implementing the abstract
datatype for natural numbers in the beginning of this chapter by using the Church en-
coding. Since the natural number type is Va.co — (o« =) — «, predecessor function
pred over naturals has to be implemented as a function of type

{z:Vo.a— (a—a)—=a|not(isZz)} = (Va.a— (a—a) =),

in which, to restrict arguments to be nonzero, the domain type refines the Church nat-
ural number type Va.a — (o« = o) = a by substituting it for the abstract type but this
type is ill-formed because the underlying type is not a base type.

Fy supports general refinements, which allow type variables « to be instantiated with
any type, that is, not only base types like bool and int but also function, forall, and even
refinement types. Introducing general refinements calls for a new semantics for casts:
how do casts evaluate? A cast (T} = T2>l evaluates in several steps (we describe it in
detail in Section 3.2). Roughly speaking, the semantics forgets refinements in 77 and
then starts checking refinements in 75 from the inside out. The cast semantics of Fy
skips some refinement checks that appear to be unnecessary. For example, reflexive
casts of the form (T = T)!just disappear—this is motivated by parametricity: (o =
a)! should behave the same whatever the type variable « is bound to and the only
reasonable behavior seems to disappear like the identity function.

As we mentioned in the beginning of this chapter, SAGE also allows any type to
be refined; however, in SAGE, the source type in a cast is always the dynamic type.
While this makes the cast semantics much simpler, parametricity in the presence of the
dynamic type would not be straightforward [69].

Subsumption-free formulation Although subtyping plays a crucial role in manifest
calculi, it also brings a metatheoretic issue, as described by Knowles and Flanagan [64]
and Greenberg et al. [44]. The issue is that rules of the type system are not monotonic—
in particular, the subtyping rule for refinement types refers to well typedness in a neg-
ative position for well formed closing substitutions—and so it is not clear that the type
system is even well defined. Knowles and Flanagan [64] and Greenberg et al. [44] have
avoided it by giving denotational semantics (namely, logical predicates) of types and
changing the problematic subtyping rule so that it refers to the denotations instead of
well typedness. One (philosophical) problem is that soundness of the type system with
respect to the denotational semantics has to be shown before soundness with respect to
the operational semantics. Another, perhaps more serious problem is that the denota-
tional approach is expected to be hard to scale than standard syntactic methods (i.e.,
progress and preservation), when we consider other features such as polymorphism.
We discuss it in more detail in Section 5.2.

Fy addresses this issue by dropping subsumption (and hence subtyping) from the
type system. Since subtyping is removed, it is easy to see that the type system is well
defined. However, removing subtyping raises the two issues for type soundness again
and, additionally, another issue about how to deal with static verification, which is
based on subtyping in the original hybrid checking framework.

34 Chapter 3. Manifest Contracts with Parametric Polymorphism

{z:T | e} {z:T | 1}

reflexive cast
42 > 0&& e —" e

{2:T | ({ints—p = ints—0)'42) > 0&& e} {z:T | ((intraie = int5—0)' 42) > 0&& e}

((intrse = ints=0) 42) > 0&& e —* Nl

H 5 =0 — false H

[5=0/y — [false/y]
{z:T | ({inty = int5—0)' 42) > 0 && e} {z:T | ({int, = int5—0)' 42) > 0 && e}

FIGURE 3.1: An inconsistent derivation of Fy’s type conversion relation.

For the type soundness issues, Belo et al. introduce a special typing rule to give val-
ues any refinement they satisfy and a type conversion relation, which is based on (call-
by-value) parallel reduction.> With the type conversion relation, [e;/z] T and [ey/z] T
are convertible if e, — e and a typing rule that allows terms to be retyped at con-
vertible types is substituted for the subsumption rule. Using such a type system, they
claim to have “proved” type soundness in an entirely syntactic manner—via progress
and preservation—and also parametricity based on syntactic logical relations.

Although the resulting system can be formalized without resting on denotational
semantics, the lack of subsumption means that all refinements in a well typed program
will be checked at run time. As we have already mentioned in the beginning of this
chapter, Belo et al. recover static verification by introducing subtyping post facto and
examining sufficient conditions to eliminate casts.

3.1.3 Flaws in Fp—and How We Solve Them

Unfortunately, as mentioned in the beginning of this chapter, a few properties required
to show type soundness and parametricity turn out to be false. We will discuss the
flawed properties with their counterexamples in detail in Section 3.5 but, in essence, the
source of anomaly is that substitutions, which affect how casts behave, badly interact
with the type conversion. As we discussed above, for preservation, two types [e;/z] T
and [ex/z] T should be convertible if e; — e;. Naively allowing this, however, will
cause two refinement types {z:T | ;} and {z:T | ez} to be convertible (via {z:T | {}{})
for any Boolean terms e; and ex. So, Fy's (static) contract system is inconsistent in the
sense that a well typed cast-free term can be given any refinement.

Figure 3.1 shows such a derivation (here, given (closed) expression e, we write
int, for {z:int | e} and && stands for Boolean conjunction; the relation = denotes the
type conversion relation). The crux of this example is that substitution of 5 = 0 for y
yields a reflexive cast, while that of false for y yields a failing cast. Actually, the two
intermediate types are ill-formed, because 42 cannot be given type ints—g or intge—the
source types of the casts. Nevertheless, we cannot exclude such nonsense terms and
have to examine properties of a type conversion relation in the untyped setting until we
prove type soundness.

fy corrects this anomaly; in Ff,

{x:T | ((int5:0 = int5:0>l42) > 0&& 6} E= {xT ‘ ((intfa|se = int5:0>l42) > 0&& 6},

*Belo et al. [14] do not really show a formal definition of type conversion; it appears in Greenberg [43]
and will be presented in Section 3.5.

Chapter 3. Manifest Contracts with Parametric Polymorphism 35

avoiding {z:T | e} = {z:T | {t{}, whereas

[6=0/y] [false/y]
{z:T | ((int, = ints—0)! 42) > 0&& e} = {2:T | ({inty = int5—0)'42) > 0&& e}

does hold. At first, these (in)equations seem contradictory because the first type
{z:T | ({ints—op = ints—0)'42) > 0&& e} and the third [5 = 0/y|{=: T | ({int, =
ints—)! 42) > 0 && e} are usually syntactically equal and so are the second and fourth.
In fact, FY; distinguishes both pairs syntactically and obtains desirable type conversion,
as illustrated below.

{z:T | e} {w:Tm! 1}

{2:T | ((ints—o = ints—0)' 42) > 0&& e} {2:T | ((intraise = ints—0)! 42) > 0 && e}
#

[6=0/y] [false/y]

{z:T | ({inty = int5—0)' 42) > 0&& e} = {2:T | ({inty = int5—0)'42) > 0&& e}

This is achieved by (1) changing the syntax and semantics of casts so that substitution
does not affect how casts behave and (2) devising type conversion based on the notion
we call “common subexpression reduction” (or CSR).

Delayed substitutions for casts To distinguish [5 = 0/y](int, = ints—o)’ and
(ints—g = ints—p)?, F{; uses delayed substitutions o, which are also used to ensure that
substitution does not interfere with how casts evaluate. First, cast expressions are aug-
mented with delayed substitutions and take the form (77 = T3)!. (We often omit o
when it is empty.) Second, a substitution applied to casts is not forwarded to their tar-
get and source types immediately and instead stored as delayed substitutions—this is
the reason why o is called “delayed.” For example, when term 5 = 0 is substituted for
y in (int, = ints—o)’, the result is (int, = int5—o) where o maps y to 5 = 0. Delayed
substitutions attached to casts are ignored when deciding what steps to take to check
values. Thus, (int, = ints—o). does not disappear, even when [5 = 0/y]int, and ints—¢
are syntactically equal; instead, a check to see if 5 = 0 evaluates to true will run and the
cast will raise blame eventually.

New type conversion, common subexpression reduction The motivation for type
conversion was that we had to relate two types [e; /2] T and [ez/z] T if e, — e2. Now
that delayed substitutions make explicit what substitutions are applied, we can define
type conversion so that it relates two types only if their differences are in substituted
terms, not arbitrary subexpressions at the same position. Since the substituted terms
are related by reduction, we call the new type conversion relation = common subex-
pression reduction (or CSR). Consequently, CSR T; = T5 is given as congruence closed
under the following rule:

T, =Ty Vie{l,...,n}.e; —" e
{z:Th | ler/z1,...,en/ap)e} ={x:To | [e]/m1,. .., € /xn]e}

Now the two types {z:T | ({ints—¢9 = ints—0)!42) > 0&& e} and {z:T | ((intraise =
ints—)! 42) > 0&& e} are not convertible because it is not possible to “factor out” the
difference of the two types in the form of substitution [e/y] T'.

36 Chapter 3. Manifest Contracts with Parametric Polymorphism

Terms, substitutions, and contexts

Ty>T = Bla|zTh—Te|Va.T |{z:T| e}
o € (TmVar fig Tm) x (TyVar iy Ty)
I o= 0|z:T|T,«
Terms, values, results, and evaluation contexts
Tmae == z|k|op(er, ...,en) | AT . e|Aa.e|erex]eT |

(T = Do) [] ({a:T | er}, e2,0)!
= kAT e|Aa.e| (T = To)!
m= v |
E = H €2 | u1 H | H T | <{I:T | 6}, va>l | Op(Ul, e Vi1, []vei+17 ...,6n)

FIGURE 3.2: Syntax for F;

3.2 Defining Fy;
3.2.1 Syntax

The syntax of Ff; is given in Figure 3.2. For unrefined types we have: base types B,
which must include bool; type variables «; dependent function types z: T — T> where
z is bound in T5; and universal types Va. T, where « is bound in 7. Aside from depen-
dency in function types, these are just the types of the standard polymorphic lambda
calculus. For each B, we fix a set Kp of the constants in that type. We require the
typing rules for constants and the typing and evaluation rules for operations to respect
this set; we formally define requirements for constants and operations in Section 3.2.3.
We also require that Ky = {true, false}. We also have predicate contracts, or refinement
types, written {z:T | e}. Conceptually, {z:T | e} denotes values v of type T for which
[v/z]e reduces to true. As mentioned before, refinement types in Ff; are more general
than existing manifest calculi (except for SAGE [46]) in that any type (even a refinement
type) can be refined, not just base types (as in [37, 44, 45, 64, 82]).

In the syntax of terms, the first line is standard for a call-by-value polymorphic
language: variables, constants, several monomorphic first-order operations op (i.e., de-
structors of one or more base-type arguments), term and type abstractions, and term
and type applications. Note that there is no value restriction on type abstractions—as
in System F, we do not evaluate under type abstractions, so there is no issue with or-
dering of effects. The second line offers the standard constructs of a manifest contract
calculus [37, 44, 64], with a few alterations, discussed below.

As we have already discussed in the last section, casts in Ff; are of the form
(Ty = T»)!, where the delayed substitution ¢ is formally a pair of substitutions from
term and type variables to terms and types, respectively. When a cast detects a prob-
lem, it raises blame, a label-indexed uncatchable exception written {}{. The label [al-
lows us to trace blame back to a specific cast. (While labels here are drawn from an
arbitrary set, in practice [will refer to a source-code location.) Finally, we use active
checks ({z:T | e1}, e2, v)! to support a small-step semantics for checking casts into re-
finement types. In an active check, {z:T | e; } is the refinement being checked, e; is the
current state of checking, and v is the value being checked. The type in the first position
of an active check is not necessary for the operational semantics, but we keep it around
as a technical aid to our syntactic proof of preservation. The value in the third position
can be any value, not just a constant according to generalization of refinement types.
If checking the refinement type succeeds, the check will return v; if checking fails, the

Chapter 3. Manifest Contracts with Parametric Polymorphism 37

check will blame its label, raising {}/. Active checks and blame are not intended to oc-
cur in source programs—they are run-time devices. (In a real programming language
based on this calculus, casts will probably not appear explicitly either, but will be in-
serted by an elaboration phase. The details of this process are beyond the present scope.
Readers are referred to, e.g., Flanagan [37].)

The values in Ff are constants, term and type abstractions, and casts. We also
define results, which are either values or blame. Type soundness, stated in Theorem 7,
will show that evaluation produces a result, but not necessarily a value. We note that,
as in Chapter 2, function cast applications (z:T11 — Ti2 = x: T2 — ng)l v are not seen
as values, which simplifies our inversion lemmas, and instead casts between function
types will n-expand and wrap with the casts on the domain and the codomain their
argument. This makes the notion of “function proxy” explicit: the cast semantics adds
many new closures.

To define semantics, we use evaluation contexts [33] (ranged over by F), a standard
tool to introduce small-step operational semantics. The syntax of evaluation contexts
shown in Figure 3.2 means that the semantics evaluates subterms from left to right in
the call-by-value style.

As usual, we introduce some conventional notations. We write FV (e) (resp. FV(T))
to denote free term variables in the term e (resp. the type T'), which is defined as usual,
except for casts:

FV(T) = To)L) = (FV(Ty) UFV(Ty)) \ dom(c)) UFV (o)

where dom(o) is the domain set of ¢ and FV (o) is the set of free term variables in
terms and types that appear in the range of o. Similarly, we use FTV(e), FTV(T),
and FTV (o) for free type variables, and AFV(e), AFV(T), and AFV (o) for all free
variables, namely, both free term and type variables. We say that terms and types are
closed when they have no free term and type variables.

We define application of substitutions, which is almost standard except the case
for casts, below. To preserve standard properties of substitution, such as, “applying
a substitution to a closed term yields the same term,” we consider only terms with-
out garbage bindings in delayed substitutions and assume that dom(c) C AFV(T;) U
AFV(T:) holds for every cast (T} = Tb»).. Before defining application of substitu-
tion, we introduce a few auxiliary notations. For a set S of variables, o|g denotes the
restriction of o to S. Formally,

ols={z—o(z) |z € dom(c) N S}, {a— o(a) | a € dom(c) N S}).

We denote by 01 W 09 a delayed substitution obtained by concatenating substitutions
with disjoint domains elementwise.

Definition 2 (Substitution). Substitution in Ff; is the standard capture-avoiding substitution
function with a single change, in the cast case:

o((T1 = To)l,) = (Th = Tu)l,

where o9 = a(01) W (0|(AFV(T1)UAFV(T2))\dom(o))- Here, a(o1) denotes the (pairwise) com-
position of o and o; formally,

o(o1) = {z — o(o1(z)) | z € dom(oy)},{a— o(o1(a)) | @ € dom(o1)}).

38 Chapter 3. Manifest Contracts with Parametric Polymorphism

Reduction rules

op (U1, ..y Up) ~ [op] (v1y ...,) E_Opr
()\.T: T;. 612) () > ['Ug/x] €12 E_BETA
(Aa.e) T ~ [T/ale E_TBETA
(T = T). v ~ E_REFL
<$: TiH— T = z:T91— T22>LlT U~ E_FUN

)\x'ZO'(TQl). let Yy J(Tn) = <T21 = T11>(l71 T in <[y/x] Ty = T22>(lj2 (U y)
when z: T11— T2 7& z:To1 — Toy and z ¢ dOHl(U) and

y is fresh and, for i € {1,2}, 0; = |apv(7, ,JUAFV(T5.)

(Va.Ty = Va.To)l v~ Aa. ({[a/a] Ty = To). (va)) E_FORALL
when Va. Ty # Va.Ts and o € dom(o)

{z:Ty | e} = To)lv ~ (T1= To)l, v E_FORGET

when Ty # {z: T | e} and T # {y:{=:T1 | e} | e2}

(o' = U’AFV(Tl)uAFV(Tz))

(T = {o:Ta | el v ~ E_PRECHECK
(Ty = {o:Ta | e})}, (T1 = Ta)b, v)

when Ty # Toand Ty # {z:T" | €'}

(01 = O|AFV({2: Tu|er}) AN 02 = T| ARV (1)UAFV(T5))

(T={x:T|eplv ~ (o({z:T|e}),o([v/z]e),v) E_CHECK
Ho:T | e}, true,)l ~ E_OK
{z:T | e}, false,)t ~ 1l E_FAIL

Evaluation rules el — €

761 e E_REDUCE a— E_COMPAT ————— E_BLAME
el — €9 - E [61} — F [62] N E [ﬂl] — ﬂl -

FIGURE 3.3: Operational semantics for Fy

Notice that, in the definition of oy, the restriction on ¢ is required to remove garbage
bindings. We show that many properties of substitution in lambda calculi hold for our
substitution in Appendix.

Finally, we introduce several syntactic shorthands. We write T} — T5 for z:T1 — 1>
when z does not appear free in Ty and (T = To)! for (71 = T»). if the domain
of o is empty. A let expression let x : T = e; in ez denotes an application term of
the form (Az:T. ez) e;. We may omit the type if it is clear from the context. If 0 =
({z — e},0), then we write [e/z]e, [e/z]T’, and [e/z]o’ for o(e’), o(T'), and o(0”),
respectively. Similarly, we write [T'/a]e’, [T/a]T’, and [T /a]o’ for o(¢’), o(T'), and
o(0’), respectively, if o = (0, {oc — T}).

Chapter 3. Manifest Contracts with Parametric Polymorphism 39

3.2.2 Operational Semantics

The call-by-value operational semantics in Figure 3.3 is given as a small-step relation,
split into two sub-relations: one for reductions (~+) and one for subterm reductions and
blame lifting (—). We define these relations as over closed terms.

The latter relation is standard. The (E_REDUCE) rule lifts ~» reductions into —;
the (E_COMPAT) rule reduces subterms put in evaluation contexts; and the (E_BLAME)
rule lifts blame, treating it as an uncatchable exception. The reduction relation ~ is
more interesting. There are four different kinds of reductions: the standard lambda
calculus reductions, structural cast reductions, cast staging reductions, and checking
reductions.

The (E_BETA) and (E_-TBETA) rules should need no explanation—these are the stan-
dard call-by-value polymorphic lambda calculus reductions. The (E_OP) rule uses a
denotation function [—] to give meaning to the first-order operations. In Section 3.2.3,
we describe a property of [—] to be required for showing type soundness.

The (E_REFL), (E_LFUN), and (E_FORALL) rules reduce casts structurally. (E_REFL)
eliminates a cast from a type to itself; intuitively, such a cast should always succeed
anyway. (We discuss this rule more in Section 3.4.) When a cast between function types
is applied to a value v, the (E_FUN) rule produces a new lambda, wrapping v with a
contravariant cast on the domain and a covariant cast on the codomain. The extra sub-
stitution in the left-hand side of the codomain cast may seem suspicious, but in fact
the rule must be this way for type preservation to hold (see Greenberg et al. [44] for an
explanation). Just like substitution (Definition 2), (E_.FUN) and other cast rules restrict
the domain of each delayed substitution in the right-hand side of reduction to free vari-
ables in the source and the target types of the corresponding cast. Note that (E_LFUN)
uses a let expression—syntactic sugar for immediate application of a lambda—for the
domain check. This is a nicer evaluation semantics than one in the previous calculi
where the domain check can be duplicated by substitution. Avoiding this duplication
is more efficient and simplifies some of our proofs of parametricity—in particular, we
not need to show that our logical relation is closed under term substitution, i.e., two
open, logically related terms are related after replacing variables in them with logically
related terms. The (E_.FORALL) rule is similar to (E_FUN), generating a type abstraction
with the necessary covariant cast. A seemingly trivial substitution [a/a] is necessary
for showing preservation: the value v in this rule is expected to have Va. T} and then
v v is given type [a/a] T, which is not the same as 77 in general, even though 77 and
[a/a] T are semantically equivalent, since substitution is delayed at casts! So, after the
reduction, the source type of the cast has to be [a/a] T. Side conditions on (E_FORALL)
and (E_FUN) ensure that these rules apply only when (E_REFL) does not.

The (E_FORGET), (E_.PRECHECK), and (E_CHECK) rules are cast-staging reductions,
breaking a complex cast down to a series of simpler casts and checks. All of these
rules require that the left- and right-hand sides of the cast be different—if they are the
same, then (E_REFL) applies. The (E_LFORGET) rule strips a layer of refinement off the
left-hand side; in addition to requiring that the left- and right-hand sides are different,
the preconditions require that the right-hand side is not a refinement of the left-hand
side. The (E_.PRECHECK) rule breaks a cast into two parts: one that checks exactly one
level of refinement and another that checks the remaining parts. We only apply this
rule when the two sides of the cast are different and when the left-hand side is not a
refinement. The (E_.CHECK) rule applies when the right-hand side refines the left-hand
side; it takes the cast value and checks that it satisfies the right-hand side. (We do not
have to check the left-hand side, since that is the type we are casting from.) If the check

40 Chapter 3. Manifest Contracts with Parametric Polymorphism

succeeds, then the active check evaluates to the checked value (by (E_OK)); otherwise,
it is blamed with [(by (E_FAIL)).

We offer a few reduction examples, which are also put in Greenberg [43]. First, here
is a reduction using (E_CHECK), (E_COMPAT), (E_OP), and (E_OK):

(int = {z:int | # > 0})!'5 — ({zint| z > 0},5 > 0,5)!
— {{a:int | z > 0}, true, 5)!
— 5

A failed check will work in the same way until the last reduction, which will use
(E_FAIL) rather than (E_OK):

(int = {z:int | 2 > 0} (=1) — ({z:int| 2 >0},—-1>0,—-1)
— ({m:int | x > 0}, false, —1)!
— M

Notice that the blame label comes from the cast that failed. Here is a similar reduction
that needs some staging, using (E_FORGET) followed by the first reduction we gave:

Haziint |z =5} = {z:int |z > 0})!'5 — (int = {z:int | z > 0})!5
— {aint| z > 0},5 > 0,5)!
—* 5

There are two cases where we need to use (E_PRECHECK). First, when nested refine-
ments are involved:

(int = {z:{y:int | y >0} | 2 =5})!5

{y:int | y >0} = {z:{y:int | y > 0} | z =5})" ((int = {y:int | y > 0})!5)
{yiint | y >0} = {a:{y:int | y >0} |2 =5})'5

{z:{yiint |y >0} | 2 =5},5 =5,5)"

)

—
— ¥
—
—

*

Second, when a function or universal type is cast into a refinement of a different function
or universal type:

{(bool— {z:bool | x} = {f:bool—bool | f true = f false})! v
—+ (bool —bool = {f:bool— bool | f true = f false})’
({bool — {z:bool | z} = bool — bool)! v)

(E_REFL) is necessary for simple cases, like (int = int)!5 — 5. Hopefully, such a use-
less cast would never be written, but it could arise as a result of (E_FUN) or (E_FORALL).
(We also need (E_REFL) in our proof of parametricity; see Section 3.4.)

The two high-level ways given by Greenberg [43] would be useful to understand
the cast semantics in Ffj: one is a recursive function to unfold cast forms; the other
is a regular schema to indicate the order in which cast reduction rules are applied.
Interested readers can refer to his dissertation [43].

3.2.3 Static Typing

The type system comprises three mutually recursive judgments: context well formed-
ness (- I), type well formedness (I' - T'), and term typing (I' - e : T). The rules for
contexts and types are unsurprising. The rules for terms are mostly standard. First, the

Chapter 3. Manifest Contracts with Parametric Polymorphism 41

Context well formedness

FT T'HT
— WF_EMPTY ———————— WF_EXTENDVAR WF_EXTENDTVAR
F0 FD,z:T FI«
Type well formedness
T WF_BASE FT ael WF_TVAR Lol T WF_FORALL
I'B N I'Fa - I'EVa.T -
'eT, oy FTs WE.FUN 'ET T,z:TF e:bool WE_REFINE
kT — Ty - FH{z:T| e} -
Term typing
"L wTel T_VAR 7FF T_CONST —@FT - T_BLAME"
Fkz: T B Pk :ty(k) reql:7
'Ty T'o:Ty : T I'kte :(:T1— T I'ke: T
1 Dohiben: T er: (z:T1— To) e:l .,
F")\$ZT1.€12:$:T1—>T2 F}_€1€22[€2/Z‘]T2

T ty(op) =m:Th — ... 5 x,:Tp—T
Vie{l,...,n},I'F e :[e1/m, ..., ei—1/xi1]| T}

T_Opr
TC'Fop(er, ...,en):[er/x, ..., en/zn] T
INakFe: T T TABS I'kFe :VaT T'F Ty T TApP
'-Aa.e:Va.T I'ke To: [To/a]T -

'Fo(Th) Tho(Tz) Ti|| T AFV(e) C dom(T)

TF (T = Tl :o(T)) —o(Ty) T-CAsT

FT OF{z:T|e} OFv:T OF ex:bool [v/z]ey —* o

T_CHECK*
Tt {z:T | e}, e, v) : {z:T | e1}
FT QFe:T OFT T=T T Conv* FL Ok ov:{z:T|e} T FORGET*
'kFe: T - T'Fo: T N
FT OFov:T OF{z:T]e v/zle —* true
(T e} /s R

F'kFo:{z:T|e}

FIGURE 3.4: Typing rules for Ff;. The rules marked * are for “run-time”
terms.

42 Chapter 3. Maniftest Contracts with Parametric Polymorphism

(T-CoNST) and (T_OP) rules use the ty function to assign well-formed, closed (possibly
dependent) monomorphic first-order types to constants and operations, respectively.
To formalize the demand to constants, we define unref(7") as 7" without any outer re-
finements (though refinements on, e.g., the domain of a function would be unaffected):

wnref(T) = {unref(T’) if T = :{x:T’ | e}

T otherwise
We require constants to belong to IC, ety (k)) and satisfy the predicate (if any) of ty(k)
and [op] to be a function that returns a value satisfying the predicate of the codomain
type of ty(op) when each argument value satisfies the predicate of the corresponding
domain type of ty(op). The (T_APP) rule is dependent, to account for dependent func-
tion types. The (T_CAST) rule allows casts between compatibly structured well formed
types, demanding that both source and target types after applying delayed substitution
be well-formed. Compatibility of type structures is defined in Figure 3.5; intuitively,
compatible types are identical when predicates in them are ignored. In particular, it
is critical that type variables are compatible with only (refinements of) themselves be-
cause we have no idea what type will be substituted for «. If we allow type variable
a to be compatible with another type, say, B, then the check with the cast from « to B
would not work when « is replaced with a function type or a quantified type. More-
over, this definition helps us avoid nontermination due to non-parametric operations
(e.g., Girard’s] operator); it is imperative that a term like

let § = Aa. Azzov. (o = VB.B—= B zazind (VB.8—p)0

is not well typed. Note that, in (T_CAST), we assign casts a non-dependent function
type and that we do not require well typedness/formedness of terms/types that ap-
pear in the range of a delayed substitution in a direct way—though well typed pro-
grams will start with and preserve well typed substitutions. Finally, it is critical that
compatibility is substitutive, i.e., thatif T’ || T5, then ([e/z]T7) || T2 (Lemma B.3.8).
Some of the typing rules—(T_CHECK), (T_-BLAME), (T_EXACT), (T_.FORGET), and
(T_-CONV)—are “run-time only.” These rules are not needed to typecheck source pro-
grams, but we need them to guarantee preservation. (T_-CHECK), (T_EXACT), and
(T_-CONV) are excluded from source programs because we do not want the typing of
source programs to rely on the evaluation relation; such an interaction is acceptable in
this setting, but disrupts the phase distinction and is ultimately incompatible with non-
termination and effects. We exclude (T_-BLAME) because programs should not start with
failures. Finally, we exclude (T_FORGET) because we imagine that source programs
have all type changes explicitly managed by casts. The conclusions of these rules use a
context I', but all terms and types in premises have to be well typed and well formed
under the empty context. Even though run-time terms and their typing rules should
only ever occur in the empty context, the (T_APP) rule substitutes terms into types—so
a run-time term could end up under a binder. We therefore allow the run-time typ-
ing rules to apply in any well formed context, so long as the terms they typecheck are
closed. The (T_-BLAME) rule allows us to give any type to blame—this is necessary for
preservation. The (T_CHECK) rule types an active check, ({z:T | e1}, e2,v)!. Such a
term arises when a term like (7 = {2:T | e;})! v reduces by (E_CHECK). The premises
of the rule are all intuitive except for [v/z]e; —* ez, which ensures that e is an in-
termediate state during checking [v/z]e;. The (T_EXACT) rule allows us to retype a
closed value of type T at {z:T | e} if [v/z]e —* true. This typing rule guarantees type

Chapter 3. Manifest Contracts with Parametric Polymorphism 43

Type compatibility | T} || T»

——— SIM_VAR ——— SIM_BASE
all a B| B
T || T SIM_REFINEL || T SIM_REFINER
{.T:Tl ‘ 6} H TQ - T1 || {x:TQ ’ e} -
Ti || Tor Tiz || Ta2 Ty || To
SIM_FUN ————— SIM_FORALL
1’:T11—> T12 H x:T21—> T22 VCE.Tl H VO(.TQ
Conversion ’01 —* 02‘ ’ T = Tz‘
o1 st o e dom(c1) = dom(o2) C TmVar A
! 2 Va € dom(oy). o1(z) —™* o9(x)
C_VAR C_BASE oo—"on h=T1 C_REFINE
a=a B=B {z:T1 | o1(e)} ={z: T2 | o2(e)}
=T Ty=T) CF T=T C FORA
FUN — (RALL
e — Ty =a:T{—T) Va.T =Va.T'
T2 = T1 T1 = Tg Tz = T3
— C.SYy™m C_TRANS
T1 = T2 T1 = T3

FIGURE 3.5: Type compatibility and conversion for Ff;

preservation for (E_OK): ({z:T | e1},true, v)! — v. If the active check was well typed,
then we know that [v/z]e; —* true, so (T_LEXACT) applies. (T_EXACT) is a suitably
extensional, syntactic, and subtyping-free replacement for the technique using selfified
types and subtyping [52].

Finally, the (T_CONV) rule is motivated by the requirement that terms of [e; /z] T
and [e2/z] T should be able to be typed at both types if e; — ey—it is necessary to
prove preservation; see also the discussion in Section 3.1.2. These types are convert-
ible in F; and (T_CONV) allows terms to be retyped at convertible types. We define a
conversion relation =, which we also call common-subexpression reduction, or CSR, us-
ing rules in Figure 3.5. Roughly speaking, T} and 75 are convertible when there is a
common type 7" and subexpressions e; and e; of 77 and 75 such that 71 = [e;/z]T
and Ty = [ez2/z]T and e; —* e3. The only interesting rule is (C_REFINE), which says
that refinement types {z:77 | e} and {z:T5 | ez} are convertible when T} and T3
are convertible and there are some substitutions o1, o2 and a common subexpression
e such that e; = oi(e) and e; = o2(e) and each term which appears in the range of
o1 reduces to one of o9. We remark that this conversion relation is different from that
given in the prior ESOP 2011 work [14]*, where their conversion relation is defined in
terms of parallel reduction. As discussed in Section 3.1.3, however, it turns out that
their conversion relation is flawed. Another remark is that Belo et al. [14] also (falsely)
claimed that symmetry of convertible relation was not necessary for type soundness

*Actually, the paper omits a formal definition, which appears in Greenberg [43].

44 Chapter 3. Maniftest Contracts with Parametric Polymorphism

or parametricity, but symmetry is in fact used in the proof of preservation (Theorem 6,
when a term typed by (T_APP) steps by (E_REDUCE)/(E_REFL)).

3.3 Properties of F;

We show that well-typed programs do not get stuck—a well typed term evaluates to
a result, i.e., a value or a blame (if evaluation terminates at all’)—via progress and
preservation [121].

As Greenberg [43] has pointed out, the “value inversion” lemma (Lemma 13), which
says values typed at refinement types must satisfy their refinements, is a critical com-
ponent of any sound manifest contract system, especially for proving progress. The
type soundness proof in Belo et al. [14] is missing this lemma—and can never have
it, due to the flawed conversion relation. Greenberg [43] leaves a property which the
value inversion depends on as a conjecture—which turns out to be false. This value
inversion lemma is not merely a technical device to prove progress. Together with
progress and preservation, it means that if a term typed at a refinement type evaluates
to a value, then it satisfies the predicate of the type, giving a slightly stronger guarantee
about well typed programs.

Perhaps surprisingly, the value inversion lemma is not trivial due to (T_-CONV):
we must show that predicates of convertible refinement types are semantically equiv-
alent. The proof of this property rests on cotermination (Lemma 11), which says that
common-subexpression reduction does not change the behavior of terms. Finally, using
these properties, we show progress (Theorem 5) and preservation (Theorem 6), which
imply type soundness (Theorem 7). In this section, we only give statements of main
lemmas and theorems; proofs are in Appendix.

3.3.1 Cotermination

First, we show cotermination, which both type soundness and parametricity rest on.
We start with cotermination in the most simple situation, namely, where substitutions
map only one term variable, and then show general cases. The key observation in
proving cotermination is that the relation {([e;/z]e, [e2/z]e) | 1 — e2} is weak bisim-
ulation (Lemmas 8 and 9).

Lemma 8 (Weak bisimulation, left side). Suppose that e; — ea. If [e1/z]e — €/, then
[ea/z]e —* [ea/x]e” for some €” such that ¢/ = [e;/x]e”.

Lemma 9 (Weak bisimulation, right side). Suppose that e; — es. If [ea/z]e — €, then
[e1/x]e —* [e1/x]e” for some e” such that e’ = [ea/x]e”.

Lemma 10 (Cotermination, one variable). Suppose that e; —* es.
1. If [e1/x]e —* true, then [ez/x]e —* true.
2. If [ea/z]e —* true, then [e;/z]e —* true.
Lemma 11 (Cotermination). Suppose that o1 —* 3.
1. If o1(e) —* true, then oa(e) —* true.
2. If oa(e) —* true, then o1(e) —* true.

Proof. By induction on the size of dom(o;) with Lemma 10. O

5In fact, Ff; is terminating, as we will discover in Section 3.4.

Chapter 3. Manifest Contracts with Parametric Polymorphism 45

3.3.2 Type Soundness

Using cotermination, we show value inversion and then type soundness in a standard
syntactic way, starting with various substitution lemmas.

Lemma 12 (Cotermination of refinement types). If {z:T1 | e1} = {z: T2 | e2} then Ty =
T and [v/x]e; —* true iff [v/z]eg —* true, for any closed value v.

Value inversion (Lemma 13) uses unref,,, which is a function to remove only the
n outermost refinements, to ensure that the value satisfies all of the predicates in its
(possibly nested) refinement type. The function unref,, is defined as follows:

unref, _1(7") f T ={z:T'| e} and n >0
T otherwise

unref, (7T) = {

Lemma 13 (Value inversion). If) - v : T and unref,,(T) = {z:T), | e, } then [v/z]e, —*
true.

Lemma 14 (Term substitutivity of conversion).
If Ty = Tyand ey —* ey then [e1 /x| T1 = [e2/x] To.

Lemma 15 (Type substitutivity of conversion).
If Ty = Ty then [T/a)Th = [T/ a] To.

Lemma 16 (Term weakening). If z is fresh and T = T' then
1. IV e: TimpliesT,2:T', T+ e: T,
2. I b T implies T, x: T', 1"+ T, and
3. FI, IV implies+-T,z:T',T".
Lemma 17 (Type weakening). If « is fresh then
1. I')T"F e: TimpliesT,a,T'Fe: T,
2. I,)T"+ TimpliesT',o,T" + T, and
3. FT, T impliestT, o, T".
Lemma 18 (Term substitution). IfT'F ¢’ : T”, then
1. ifD,e:T' T e: Tthen T, [e'/z]T" & [¢//z]e : [¢//z] T,
2.0, x:T\T"+ T then T, [¢' /z|T" - [¢/ /2] T, and
3. ift T, z:T", T then =T, [/ /z]T".
Lemma 19 (Type substitution). If '+ T" then
1 ifT,a, Tk e: T, thenT,[T'/aJI" + [T /ale : [T'/a] T,
2. ifT,a,T" + T, then T, [T'/a]T' + [T' /o] T, and
3. if T, o, TV, then b T, [T']I,

As is standard for type systems with conversion rules, we must prove inversion
lemmas to reason about typing derivations in a syntax-directed way. We offer the state-
ment of inversion for functions here; the rest are in Section B.3.

46 Chapter 3. Manifest Contracts with Parametric Polymorphism

Lemma 20 (Lambda inversion). IfI' = \z:T}. e1a = T, then there exists some Ty such that
1. T+ Ty,
2. 0,2:T1 + ern: Ty, and
3. z:T1 — Ty = unref(T).

Inversion lemmas in hand, we prove a canonical forms lemma to support a proof of
progress. The canonical forms proof is “modulo” the unref function: the shape of the
values of type {z:T | e} are determined by the inner type T'.

Lemma 21 (Canonical forms). If) - v : T, then:
1. If unref(T) = B then v is k € Kp for some k.
2. Ifunref(T) = z:Th — Ty then
(a) vis \x:T. erp and T{ = T for some z, T{, and ey, or
(b) vis (T] = T4 and o(T]) = Ty and o(Ty) = T, for some T|, T, o, and I.
3. Ifunref(T) = Va.T’ then v is Ac. e for some e.
Theorem 5 (Progress). If O - e : T, then either
1. e — €, or
2. eisavresult r,i.e., avalue or blame.

The following regularity property formalizes an important property of the type sys-
tem: all contexts and types involved are well formed. This is critical for the proof of
preservation: when a term raises blame, we must show that the blame is well typed.
With regularity, we can immediately know that the original type is well formed.

Lemma 22 (Context and type well formedness). (1) IfI'+e: T, then =T and ' - T, and
(2)ifT = T then - T.

Theorem 6 (Preservation). If)t e: T and e — €/, then)t ¢': T.

Theorem 7 (Type Soundness). If) - ¢ : T and e —* ¢’ and ¢’ does not reduce, then ¢’ is
a result. Moreover, if ¢’ = vand T = {z:T" | "}, then [v/z]e” —* true.

Proof. The first half is shown by Theorems 5 and 6, and the second is by § - v : T and
Lemma 13. O

3.4 Parametricity

Parametricity, which is coined by Wadler [119] and was originally called abstraction
theorem [90], is a foundation of type abstraction [77] and information hiding [55, 107]
in lambda calculi. Intuitively, it means that a polymorphic function behaves in the
same way whatever types are substituted for the quantified type variable. We prove
relational parametricity for three reasons: (1) it yields powerful reasoning techniques
such as free theorems [119], contextual equivalence [57, 5], and the upcast lemma [14];
(2) itindicates that contracts do not interfere with type abstraction, i.e., that F{; supports
polymorphism in the same way that System F does; (3) we want to correct Belo et al.

Chapter 3. Manifest Contracts with Parametric Polymorphism 47

Closed results and terms ’7’1 ~ Ty T;O;é‘ ’ er~eg: T:60;6

k~Fk:B;0;0 <keKp
m~wia 0,0 <dRT1Ts, a— R, Ty, To €0 AN vy R vy
v ~ v (2T — T2); 056 <=Yo[vy, v ~ vy : T1;0;0 =
v1 v] >~ vo vy To;0;8[(v], vh)/x]
v~ vy V. T;0;0 <=VRT 1 T, vy Ty ~ v Ty : T;0[a — R, Ty, Ts]; 6
vy~ v {r:T | e};0;0 <=wv ~va: T;60;0 A
[v1/2]01(01(€e)) —* true A [va/z]02(d2(€)) —* true

M~ T80

e1 e T;0:0 <drm,e1 —" " ANe —"rmAr~nr:T;0;6

Types ’Tlf: Tg:*;@;é‘

B~ B:x0;6
a~o:x*0;0
:T11— Tio =2 x:To1— Tog : %;0;0 <= T11 = Toy : ;0,0 A
Yuoivg, vy ~ v : T11;0;6 =
Tio =~ Tag : %;0;6[(v1, va) /]
Va.Ty ~Va. Ty : %;0;0 <=VRT| Ty, Ty ~ Ty : x;0{a— R, T}, T4]; 6
{z:Ty | e1} =2 {z:Ty | e} : %,0;0 <=T1 ~ T : %;0;0 A
V’Ul’l}g,’Ul ~ U : T1;9;5 —
[v1/2]01(01(e1)) = [v2/2]02(52(e2)) : bool; 0;

Open terms and types ’I‘I—Q;é‘ ’Fl—elf:eQ:T‘ ’I‘I— leTQ:*‘

-0, <= Va:T el 61(01(z)) =~ 02(02(x)) : T;0;6 A
Vo e AR Ty, a— R, Ty, To € 6
FFe~e: T <= V06, TH0;0 = 01(d1(e1)) =~ 02(d2(e2)) : T50;6
FFTi~T:x <= V06, TFO0;6= T)>~Ts:%,0;6

FIGURE 3.6: The logical relation for parametricity

[14] and Greenberg [43]. The proof is mostly standard—we define a (syntactic) logical
relation on terms and types, where each type is interpreted as a relation on terms and
the relation at type variables is given as a parameter—except that our logical relation
includes not only well-typed terms and well-formed types but also ill-typed terms and
ill-formed types.

3.4.1 Logical Relation

We begin by defining two relations: 7 ~ rp : T'; ;0 relates closed results, defined by
induction on types; e; >~ e : T'; 0; § relates closed expressions which evaluate to results
in the first relation. (These results and expressions are not necessarily well typed. See
the discussion below.) The definitions are shown in Figure 3.6.° Both relations have

®To save space, we write 1 ~ M : T;0; § separately instead of manually adding such a clause for each
type.

48 Chapter 3. Manifest Contracts with Parametric Polymorphism

three indices: a (possibly open) type T, a substitution 6 for type variables, and a substi-
tution 0 for term variables. A type substitution 6, which gives the interpretation of free
type variables in 7, maps type variables « to triples (R, 11, T>) comprising a binary
relation R on closed results and two closed types T and 75, to be used as the concrete
substitution of & on the left- and right-hand terms. (The results in R and the two types
T1 and T» do not have to be well typed/formed.) A term substitution § maps from
variables to pairs of closed (not necessarily well typed) values. We write projections
d; (i = 1,2) to denote projections from this pair. We similarly write ¢; (¢ = 1,2) for a
substitution that maps a type variable « to T; where §(a) = (R, Ty, T2). We also use
the following notations:

Ola— R, T1,To] = 0U{a— R, Ty, T2} ifa ¢ dom(6)
S[(v1, v2)/x] SU{z — v, v} if z ¢ dom(9)

With these definitions out of the way, the result relation is mostly straightforward.
First, 1/ is related to itself at every type. A base type B gives the identity relation on
K B, the set of constants of type B. A type variable a simply uses the relation assumed
in the substitution . Related functions map related arguments to related results. Type
abstractions are related when their bodies are parametric in the interpretation of the
type variable. Finally, two values are related at a refinement type when they are related
at the underlying type and both satisfy the predicate; here, the predicate e gets closed
by applying the substitutions. We require that both values satisfy their refinements
rather than having the first satisfy the predicate iff the second does because we want
to know that values related at refinement types actually inhabit those types, i.e., actually
satisfy the predicates of the refinement. The ~ relation on results is extended to the
relation ~ on closed terms in a straightforward manner: terms are related if and only if
they both terminate at related results. Divergent terms are not related to each other—
though we will discover that divergent well typed terms do not exist in F;. We extend
the relation to open terms, written I' - e; =~ ey : T, relating open terms that are related
when closed by any “I'-respecting” pair of substitutions ¢ and § (written I' - 6; 6, also
defined in Figure 3.6).

To show that (well-typed) casts yield related results when applied to related inputs,
we also need a relation on types 11 >~ T3 : *;6;6; we define this relation in Figure 3.6.
We can use the logical relation on results to handle the arguments of function types and
refinement types. Note that the 77 and 73 in this relation are not necessarily closed;
terms in refinement types, which should be related at bool, are closed by applying
substitutions. In the function and refinement type cases, the relation on a smaller type
is universally quantified over logically related values. There are two choices of the
type at which they should be related (for example, the second line of the function type
case could change Ti; to T51). It does not really matter which side we choose, since
they are related types. We are “left-leaning.” Finally, we lift the type relation to open
types, writing I' = 77 ~ T : x when two types are equivalent for any I'-respecting
substitutions.

It is worth discussing two points peculiar to this formulation: terms in the logical
relation are not necessarily well typed, and the type indices are open.

We allow any relation on terms to be used in §; terms related at 7' need not be well
typed at 7. The standard formulation of a logical relation is well typed throughout,
requiring that the relation R in every triple be well typed, only relating values of type
T1 to values of type T» (e.g., Pitts [87]). We have two motivations for allowing ill
typed terms in our relation. First, functions of type z: T} — T» must map related values

Chapter 3. Manifest Contracts with Parametric Polymorphism 49

(1 ~ vy : T1) to related results... but at which type? While [v;/z]T> and [vp/z] T> are
related in the type relation, terms that are well typed at one type will not necessarily
be well typed at the other, whether definitions are left- or right-leaning. Second, this
parametricity relation is designed so that a certain kind of casts have no effect, as Belo
et al. [14] attempt. Ultimately, we would like to define a subtype relation 77 <: T5, and
show what we call upcast lemma that, if 77 <: T5, then (T} = To) ~ Az:Ty. 22 Ty —
Ty. That is, we want a cast (77 = T)!, of type 171 — T», to be related to the identity
Az:Ty. z, of type T1 — Ty. There is one small hitch: Az:T;. z has type T7 — T}, not
T1 — T5! We therefore do not demand that two expressions related at 7" be well typed
at T, and we allow any relation to be chosen as R.

The type indices of the term relation are not necessarily closed. Instead, just as the
interpretation of free type variables in the logical relation’s type index are kept in a
substitution ¢, we keep ¢ as a substitution for the free term variables that can appear
in type indices. Keeping this substitution separate avoids a problem in defining the
logical relation at function types. Consider a function type z: T — T»: the logical rela-
tion says that values v; and v, are related at this type when they take related values to
related results, i.e., if v] ~ v} : T1;0;0, then we should be able to find v v] ~ v v} at
some type. The question here is which type index we should use. If we keep type in-
dices closed (with respect to term variables), we cannot use 7 on its own—we have to
choose a binding for 2! Knowles and Flanagan [64] deal with this problem by introduc-
ing the “wedge product” operator, which merges two types—one with v substituted
for z and the other with v} for z—into one. Instead of substituting eagerly, we put
both bindings in ¢ and apply them when needed—the refinement type case. We think
this formulation is more uniform with regard to free term/type variables, since eager
substitution is a non-starter for type variables, anyway.

As we developed the original proof [14], we found that the (E_REFL) rule (7' =
T)' v ~ v is not just a convenient way to skip decomposing a trivial cast into smaller
trivial casts (when 7' is a polymorphic or dependent function type); (E_REFL) is, in
fact, crucial to obtaining parametricity in this syntactic setting. On the one hand, the
evaluation of well-typed programs never encounters casts with uninstantiated type
variables—a key property of our evaluation relation. On the other hand, by parametric-
ity, we expect every value of type Vo.ao — o to behave the same as the polymorphic
identity function (modulo blame). One of the values of this type is Aa. (o = a)l.
Without (E_REFL), however, applying this type abstraction to a compound type, say
bool — bool, and a function f of type bool — bool would return, by (E_FUN), a wrapped
version of f that is syntactically different from the f we passed in—that is, the func-
tion broke parametricity! We expect the returned value should behave the same as the
input, though—the results are just syntactically different. With (E_REFL), (T = T)! re-
turns the input immediately, regardless of T—just as the identity function. So, this rule
is a technical necessity, ensuring that casts containing type variables behave paramet-
rically.

3.4.2 Parametricity

Now we can set about proving parametricity. The proof of parametricity (Theorem 8)
of FYj is trickier than that of the standard polymorphic lambda calculus, due to (1)
dependent functions, (2) type convertibility, and (3) casts. Before stating parametricity,
we discuss these issues; see Appendix for the proofs of it and lemmas.

In Ffj, It is not as easy as in System F to show that a well-typed term application
is logically related to itself due to dependent function types. To see the reason, let us

50 Chapter 3. Manifest Contracts with Parametric Polymorphism

Complexity of casts

cc({(T = T) =1
CC((IITH—) Tio = x:T91— T22>l) = CC(<[y/I] T = T22>l) + CC(<T21 = T11>l) +1
(y is fresh)
cc((Va. Ty = Ya. Ty)Y) =cc((Ty = To)) +1
ce({{z: T | e} = To)h) =cc((T1 = To)!) +1
(if To £ {x:Ty | e} and Ty # {y:{z:T1 | e} | €'})
cc({Ty = {z:T1 | e}))) =1
cc({Ty = {z:Ta | e}))) =cc((T1 = To)!) +2

(if T # T> and Tj is not a refinement type)

FIGURE 3.7: Complexity of casts

consider term application v; v2 such that v; and vy are typed at z:77 — T and T7,
respectively. Parametricity states that, if v; and v, are logically related to themselves
with 0 and ¢, respectively, then so is v v at [v2/2]T>. The definition of the logical
relation, however, states only that v; v, are logically related to T%, not [vy/z] T2, with
0 and d[(we, v2)/z]. Fortunately, as expected, these are equivalent: v; vy are logically
related to itself at [vy/2] T» with § and ¢ iff v; vy are logically related to itself at 75 with
0 and §[(v2, v12)/z]. Term compositionality stated below generalizes this.

Lemma 23 (Term compositionality). If 61(d1(e)) —* v and 02(02(e)) —* vy then
ri~ 1y T50;0[(vr, v) /2] iff 11 ~ ro: [e/x]T;0;0.

For a similar reason, we show type compositionality, which is used also in other
polymorphic lambda calculi (e.g., Pitts [87]). In what follows, we write R g s for
{(7’1,7’2) | m~Te: T;H; (5}

Lemma 24 (Type compositionality).
o~y T8l — Royrgs,01(01(T7)), 02(02(T"))]; 0 iff ri ~ 1o 2 [T /] T'; 65 6.

For the typing rule (T_CONV) with type convertibility, we have to show that terms
are logically related to themselves at convertible types.

Lemma 25 (Convertibility). If T = Ty then ry ~ 1o @ T1;0;0 iff 1 ~ 1o : T3 6;94.

Showing that casts are logically related to themselves is the most cumbersome case
in the proof of parametricity. We prove it by induction on a cast complexity metric, cc,
defined in Figure 3.7. The complexity of a cast is the number of steps it and its subparts
can take. This definition is carefully dependent on our definition of type compatibil-
ity and our cast reduction rules. Doing induction on this metric greatly simplifies the
proof: we show that stepping casts at related types yields either related non-casts, or
lower complexity casts between related types. Note that we omit the o, since the eval-
uation of casts does not depend on delayed substitutions. It may be easier for the reader to
think of cc({T; = Tb)!) as a three argument function—taking two types and a blame
label—rather than a single argument function taking a cast. The cc is well defined
though the case for casts between dependent function types chooses an arbitrary fresh
variable, because, for any variable y and z, cc({[y/z] T1 = T2)!) = cc({[z/z] Th = T»)")
if y and z do not occur free in T7 and T5.

Lemma 26 (Cast reflexivity). If - T'and Ty || Toand I' + o(Th) ~ o(Ty) : s and ' +-
o(Ty) ~ o(Ty) : * and AFV () C dom(T), then I' - (T = To)! ~ (T} = Ty)! :
O'(,ITl*) TQ)

Chapter 3. Manifest Contracts with Parametric Polymorphism 51

Finally, we can prove relational parametricity—every well-typed term (under I') is
related to itself for any I'-respecting substitutions.

Theorem 8 (Parametricity). (1) If ' = e : TthenI' - e ~ e : T;and (2) if ' = T then
T ~T:x

We have that logically related programs are by definition behaviorally equivalent: if
() - e1 =~ ey : B, then e; and ey coterminate at equal results. Ideally, logically related
terms are also contextually equivalent and vice versa, but we leave study of this prob-
lem for future work.

3.5 Three Versions of Fy

We compare Ffj with two prior formulations of Fy; without delayed substitution: Belo
et al. [14] from ESOP 2011 and Greenberg’s thesis [43]. Both of these define variants of
Fy, claiming type soundness, parametricity, and upcast elimination. All of these results
depend on two properties of the Fyj type conversion relation: substitutivity (Lemma 14)
and cotermination (Lemma 11).

3.5.1 Fy 1.0: Belo et al.”s Work

Belo et al. [14] got rid of subtyping and explicitly used the symmetric, transitive clo-
sure of parallel reduction = (Figure 3.8, quoted from Greenberg [43]) as the conversion
relation. (Parallel reduction is reflexive by definition.) The use of parallel reduction
is inspired by Greenberg et al. [44], in which type soundness of Ay is proved by us-
ing cotermination and another property called substitutivity (if e; = e and e] = e
then [e] /z]e; = [e}/x]e2) of parallel reduction. These properties were needed also for
type soundness of Fyy. Unfortunately, it turns out that parallel reduction in Fy is not
substitutive—the proof was wrong—and cotermination, which was left as a conjecture
([14], p. 15), does not hold, either. Figure 3.9 offers three counterexamplesz7 two to
substitutivity and one to cotermination.

Why does not substitutivity hold in Fy, when it did (so easily) in Ai? Sources of the
trouble are that (1) the Fy cast rules depend upon certain (syntactic) equalities between
types and that (2) parallel reduction is defined over open terms. As a result, substitu-
tion may change reduction rules to be applied—both counterexamples to substitutivity
in Figure 3.9 take advantage of it.

Cotermination breaks also because substitutions can affect which reduction rule
applies to a cast, which in turn can force us to perform checks under one substitution
that are not performed under another, related one (counterexample 3 in Figure 3.9).

3.5.2 Fy 2.0: Greenberg’s Thesis

In his thesis, Greenberg tried to correct this problem using a fix due to Sekiyama: he
takes common-subexpression reduction (CSR) as the conversion relation [43]. We repeat
F{;’s identical definition of CSR (Figure 3.5) again here, in Figure 3.10. As we can see
from the definition, CSR is designed to be substitutive (and is substitutive). However,
cotermination still fails: we can construct ill-typed terms that do not satisfy cotermina-
tion in Greenberg’s operational semantics—they look like the term in counterexample 3

"The first two have been shown in Greenberg [43] but they are discovered by Igarashi, Greenberg, and
Sekiyama.

52 Chapter 3. Manifest Contracts with Parametric Polymorphism

Parallel term reduction

. / ! /
W= EpROP 22 02 2% pp pRprs
op (V1 .y V) = [op] (v, ..., v}) Ax:T. e12) 1o = [vh/x]e]s
ee Ty=> T, v= 0
EP_RTBETA EP_RREFL
(Aa. €) To = [Th/a)e’ (T=T)Yv=v
To#{e:Ty|e} Ta#{y{eTi|e}|et Th=>T To=>T), v=>0 EP. RFORGET

{z:T1 | e} = o)l o= (T = T

T T, Th£{x:T|et Th=2T) To=>T) ee v
(T = A{z: Ty | e}l v = (Ty = {z: T3 | '} (T = T3)' ")

T=1T e= e v= 0

EP_RPRECHECK

(T = @ T] eNlo s (T | e o ale, o)l o Roreek
L= EP_ROK EP_RFAIL
{z:T | e}, true,v)t =o' {z:T | e },false,v)t = 1

x:T11— Tho # x: T — Toao
T = T, T2 = Ty Ty = T4 Too = Ty v=
(2: Ty — Tio = 2:To1 — Too)l v =
ATy (T3 = Ti1) /2] Tiy = Tiy)' (v (T3 = Ti1)' @)
Va.Ti #¥a. Ty T T To=T, o=
Va. Ty = Va. To) v = Aa. ((T] = T (v @)

T T! ’ , ,
EP_REFL 1= = 612, Ep Aps AT e 5)/ eh
e= e Az:Ty. e10 = Az Ty ef, e1es > € e

e= ¢ e =>ef Th=T)
EP_TABS
! €1 T2 = 6{ T2/

Aa. e = Aa. e
i ! T T T T
G264 EP_OP s W e el W
op (€1, ..., en) = op(e], ... eh) (Th = Te)t= (T = T})

T=T ¢=¢ tbchupek —— EP.BLAME
T B S (T, o PIEY

Parallel type reduction
01 —* 09 T1 = T2

EP_TREFL EP_TREFINE
T3 T {.CL'ITl ‘0’1(6)}3{332712 |O’2(6)}

EP_RFUN

EP_RFORALL

EP_APP

EP_TAPP

EP_CAST

=T T2 T T=T
EP_TFUN ————— EP_TFORALL
v —Ty= T —T) Va.T = Va. T’

FIGURE 3.8: Parallel reduction (for open terms).

Chapter 3. Manifest Contracts with Parametric Polymorphism 53

Counterexample 1: substitutivity
Let T be a type with a free variable z.

er = (T = {y:[5/z]T |true})t0
eo = ([5/a]T = {y:(5/a] T | true})’ ((T = [5/2] T)' 0)
5

€] =e) =
Observe that ef = €} (by (EP_REFL)) and e; = ey (by (EP_.RPRECHECK)) but
[5/z]er = ([5/7]T = {y:[5/] T | true})' 0 = ({y:[5/x] T | true}, true, 0)! by

(EP_RCHECK), not [5/z]e2. Note that the definition of substitution [¢’/z]e is a
standard one, in which substitution goes down into casts.

Counterexample 2: substitutivity

Let T5 be a type with a free variable z.

e = <T1—>T2 = T1—>[5/x]T2>lv
o = AT Ty = [5/2]Ty)! (v ((T1 = T1)'y))
ej=¢ey, = 5

Observe that ef = ¢} (by (EP_REFL)) and e; = ez (by (EP_RFUN)). We have
[5/z]er = (T1—[5/2] Te = T1—[5/7] Ta)! v = [5/x]v by (EP_RREFL), not [5/z]es.

Counterexample 3: cotermination

e = ({z:bool | false} = {z:bool | y})true
el = 0=5
es = false

Observe that e, — €3 (and so e; = ey, by (EP_ROP)) and cotermination says that
[e1/y]e terminates at a value iff so does [ez/z]e. Here, by (E_CHECK),
[e1/y]e — ({z:bool | e1}, e1,true)l —* 1l but by (E_REFL), [e2/7]e —> true.

FIGURE 3.9: Counterexamples to substitutivity and cotermination of
parallel reduction in Fy

54 Chapter 3. Manifest Contracts with Parametric Polymorphism

Conversion |07 —* 02‘ ’ T = Tg‘

dom(c1) = dom(o2) C TmVar A

TV 02 T yp e dom(o). 01(z) —* 0a(2)

o1 — oo Th =Ty

C_VAR C_BASE C_REFINE
a=a B=B {z:Ty | o1(e)} = {z: T2 | 02(e)}
h=h T=T C_FuN r=r C_FORALL
rTh—To=xT —-T) Va.T =Va. T!
Ty =T, Th=T, To=T3
—— C.SYy™Mm C_TRANS
Tl = T2 T1 = T3

FIGURE 3.10: Type conversion via common-subexpression reduction

(Figure 3.9). The essential issue is that we can fire (E_REFL) under one substitution and
force a check under another. If the term is ill typed, then we have no way of knowing
whether the argument of the cast satisfies its input type—so the check can fail where
(E_REFL) succeeded. Well typed terms do not have this problem, but we need our con-
version relation to prove progress and preservation—we cannot use arguments about
typing in our proof of cotermination. In short, Greenberg’s Conjecture 3.2.1 on page 88
is false; it seems that the evaluation relation is defined in such a way that substitutions
can affect which cast reduction rules are chosen.

353 F;

Our calculus, Ffj, can see statically which cast reduction rule is chosen thanks to our
definition of substitution (Definition 2). In Lemma 11, we show that terms related by
CSR coterminate at true using FY;’s substitution semantics; this is enough to prove type
soundness and parametricity. Fy tried to use entirely syntactic techniques to achieve
type soundness, avoiding the semantic techniques necessary for Ayy. But we failed: we
need to prove cotermination to get type soundness; our proof amounts to showing that
type conversion is a weak bisimulation. Our metatheory is, on the one hand, simpler
than that of Greenberg et al. [44], which needs cotermination and semantic type sound-
ness. On the other hand, we must use a nonstandard substitution operation, which is
a hassle.

Chapter 4

Manifest Contracts with Algebraic
Datatypes

This chapter extends manifest contracts with algebraic datatypes. The idea of in-
troducing algebraic datatypes to manifest contracts is natural because manifest con-
tracts make fine-grained specifications explicit as types and algebraic datatypes, which
are often formalized as the combination of sum types and recursive types, are com-
mon in type systems with data structures, especially, in functional programming (e.g.,
[40, 59, 15, 68, 66]); in fact, as we will see later, the manifest contract calculus given
in this chapter can represent various specifications on data structures. We also inves-
tigate representation of contracts on datatypes through our manifest contract calculus
with algebraic datatypes. In particular, we focus on a computational aspect of con-
tract checking. Since contracts were originally conceived as a mechanism to check
software properties dynamically, it was also clear that contract checking could cause
significant overhead. This overhead is specially notable when we consider contracts
on data structures because naive contract checking for datatypes can make asymptotic
time complexity worse, as pointed out by Findler et al. [36]. To see how representation
of contracts affects computational efficiency, we start with comparison of two simple,
complementary approaches to giving refinements to data structures.

Refinements on type constructors versus refinements on data constructors There are
two approaches to specifying contracts for data structures. One is to put refinements
on the type constructor for a plain data structure and the other is to put refinements
on (types for) data constructors. For example, a type slist for sorted integer lists can be
written {xz:int list | sorted 2} in which sorted is a familiar Boolean function that returns
whether the argument list is sorted in the former, or defined as another datatype with
refined cons of type z:int x {zs:slist | nil zs or z < head zs} — slist in the latter. Here, the
argument type is a dependent product type, expressing the relationship between the
two components in the pair. However, as pointed out by Findler, Guo, and Rogers [36],
neither approach by itself is very satisfactory.

On the one hand, the former approach, which is arguably easier for ordinary pro-
grammers, may cause significant overhead in contract checking to make asymptotic
time complexity worse. To see how it happens, let us consider function insert_sort
for insertion sort. The sorting function and its auxiliary function insert can be defined
in the ML-like syntax as follows.

type slistl = {x:int list | sorted x}
let rec insert (x:int) (l:slistl) : slistl =

match 1 with
| 1] -> (slistl < int list) [x]

55

56 Chapter 4. Manifest Contracts with Algebraic Datatypes

| y::ys —>
if x <=y then (slistl < int 1ist)® (x::1)
else (slistl < int 1list)®
(y::(insert x ((slistl < int listy4 ys)))

let rec insert_sort (l:int list) : slistl =
match 1 with
[[1 -> [1

| xX::xs —> insert x (insert_sort xs)

Without gray-colored casts, insert_sort would be an ordinary insertion-sort func-
tion. However, in insert, the four subexpressions [x], x::1, y:: (insert x ys)
and ys, which are given type int 1ist, are actually expected to have type s1ist1 by
the context. To fill the gap', we have to check whether these subexpressions satisfy the
contract sorted. Notice that these casts cannot be eliminated by simple subtype check-
ing because int 1list isobviously nota subtype of s1ist1. As far as we understand,
existing technologies cannot verify these casts will be successful, at least, without giv-
ing hints to the verifier. Unfortunately, leaving these casts (especially ones with /5, /3,
and /4) has an unpleasant effect: They traverse the entire lists to check sortedness, even
though the lists have already been sorted, making the asymptotic time complexity of
insert from O(m) to O(m?), where m stands for the length of the input.

On the other hand, the latter approach, which exploits refinement in argument
types of data constructors, does not have this efficiency problem (if not always). For
example, we can define sorted lists as a datatype with refined constructors:

type slist2 =
SNil
| SCons of
X:int X {xs:slist2 | nil xs or x <= head xs}

Here, nil and head are functions” that return whether a given list is empty and the
first element of a given list, respectively, and a type of the form z: T} x 75 is a dependent
product type, which denotes pairs (v1, v2) of values such that v; and v, are of types T}
and T, {v;/z}, respectively. So, SCons takes an integer x and a (sorted) list whose
head (if any) is equal to or greater than x. Using s1ist2, we can modify the functions
insert and insert_sort to perform less dynamic checking.

let rec insert’ (x:int) (l:slist2) : slist2 =
match 1 with
| SNil -> SCons (x,(slist, < slist2)® sSNil)
| SCons (y, ys) —>
if x <=y then SCons (x,(slist, < slist2)’ 1)
else SCons
(y,(slisty < slist2)® (insert’ x ys))

let rec insert_sort’ (l:int list) : slist2 =
match 1 with
| 1] -> SNil
| x::xs —> insert’ x (insert_sort’ xs)

! Actually, there are subexpressions whose expected types are int 1ist butactual types are s1ist1.
We assume that s1ist1 can be converted to int 1ist for free.

2Precisely speaking, these functions have to be defined together with s1ist2 but we omit them for
brevity.

Chapter 4. Manifest Contracts with Algebraic Datatypes 57

Here, slist, stands for {xs:slist2 | nil xs or e <= head xs}. Since the
contract in the cast (slist, < slist2)’ does not traverse xs, it is more efficient
than the first definition; in fact, the time complexity of insert’ remains to be O(m).
Moreover, it would be possible to eliminate the cast on 1 by collecting conditions (1 is
equal to SCons (y, ys) and x <= y) guarding this branch [91]. (It is more difficult
to eliminate the other cast because the verifier would have to know that the head of the
list returned by the recursive call to insert’ is greater than y.)

However, this approach has complementary problems. First, we have to main-
tain the predicate function sorted and the corresponding type definition slist2
separately. Second, it may not be a trivial task to write down the specification
as data constructor refinement. For example, consider the type of lists whose el-
ements contain a given integer n. A refinement type of such lists can be written
{l:int list | member n 1} using the familiar member function. One possible
datatype definition corresponding to the refinement type above would be given by
using an auxiliary datatype, parameterized over an integer n and a Boolean flag p to
represent whether n has to appear in a list.
type incl_aux (p:bool, n:int) =

INil of {unit]|not p}
| LCons of x:int x incl_aux (not (x=n) and p, n)

type list_including (n:int) = incl_aux (true,n)

(Notice that incl_aux(false, n) is essentially int 1list and, if a list without 7 is
given type incl_aux(p,n), then p must be false.) We do not think it is as easy to
come up with a datatype definition like this as the refinement type above.

Another issue is interoperability between a plain type and its refined versions: Just
as casts between slistl and int list are allowed, we would hope that the lan-
guage supports casts between s1ist2 and int 1list, even when they have different
sets of data constructors. Such interoperability is crucial for code reuse [36]—without
it, we must reimplement many list-processing functions, such as sort, member, map,
etc., every time a refined datatype is given. As pointed out in Vazou, Rondon, and
Jhala [116], one can give one generic datatype definition, which is parameterized over
predicates on components of the datatype, and instantiate it to obtain plain and sorted
list types but, as we will show later, refined datatype definitions may naturally come
with more data constructors than the plain one, in which case parameterization would
not work (the number of constructors is the same for every instantiation).

In short, the two approaches are complementary.

Contributions Our work aims at taking the best of both approaches. First, we give
a provably correct syntactic translation from refinements on type constructors, such
as the Boolean function sorted, to equivalent type definitions where data construc-
tors are refined, namely, s1ist2. This translation is closely related to the work by
Atkey, Johann, and Ghani [10] and McBride [70], also concerned about systematic
generation of a new datatype; see Section 5.6 for comparison. Second, we extend
casts so that casts between similar but different datatypes (what we call compatible
types, which are declared explicitly in datatype definitions) are possible. For example,
(slist2 < int list>€ (1 :: 2 :: [])yieldssCons (1, SCons (2, SNil)),
whereas (s1ist2 < int 1ist)’ (1 :: 0:: []) raises blame {. Thanks to the
two ideas, a programmer can automatically derive a datatype definition from a familiar
Boolean function, exploit the resulting datatype for less dynamic checking as we saw in

58 Chapter 4. Manifest Contracts with Algebraic Datatypes

the example of insertion sort, and also use it, when necessary, as if it were a refinement
type using the Boolean function.

We formalize these ideas as a manifest contract calculus Aff, and prove basic proper-
ties such as progress and preservation. A, is defined by following the ideas in Chap-
ter 3—i.e., A, does not have subsumption (for subtyping) and its cast semantics is
designed to be insensitive to substitutions—but it does not use delayed substitution,
unlike Ff; given in Chapter 3. In Chapter 3, delayed substitution played a crucial role
to determine how casts reduce statically (in the presence of the reduction rule (E_REFL)
to eliminate reflexive casts) and prove parametricity whereas it made the metatheory
of Ff; more complicated than Fy [14, 43]. To make the metatheory of A, as simple
as possible, we do not introduce delayed substitution in this chapter. The lack of de-
layed substitution, however, raises one question: without delayed substitutions, how
can we obtain cast semantics where substitutions do not affect the behavior of casts?
We achieve it by designing cast semantics where all refinements on target types of casts
are checked regardless of what values are substituted.

Our contributions are summarized as follows:

e We propose casts between compatible datatypes to enhance interoperability
among a plain datatype and its refined versions.

o We define a manifest contract calculus /\f;{’t to formalize the semantics of the casts.

e We formally define a translation from refinements on type constructors to type
definitions where data constructors are refined and prove the translation is cor-
rect.

We note that this work gives type translation but does not give translation from a
program with refinement types to one with refined datatypes, so if a programmer has
a program with, for example, s1ist1, then he has to rewrite it to one with a datatype
like s1ist2 by hand. Automatic program transformation is left as future work.

Outline The rest of this chapter is organized as follows. Section 4.1 gives an overview
of our datatype mechanism and Section 4.2 formalizes)\f{t , shows its type soundness,
and compares it with Fy; in detail. Section 4.3 gives a translation from refinement types
to datatypes and proves its correctness.

4.1 Overview

In this section, we informally describe our proposals of datatype definitions, casts be-
tween compatible datatypes, and translation, mainly by means of examples.

As we have seen already in the example of sorted lists, our datatype definition al-
lows the argument types of data constructors to be refined using the set comprehension
notation {z:T | e} and dependent product types z: T} x T>. We also allow parameteri-
zation over terms as in incl_aux in the previous section.

4.1.1 Casts for Datatypes

As we have discussed in the beginning of this chapter, in order to enhance interoper-
ability between refined datatypes, we allow casts between two different datatypes if
they are “compatible”; in other words, compatibility is used to disallow casts between
unrelated types (for example, the integer type and a function type). Compatibility for

Chapter 4. Manifest Contracts with Algebraic Datatypes 59

types other than datatypes means that two types are the same by ignoring refinements;
compatibility for datatypes means that there is a correspondence between the sets of
the data constructors from two datatypes and the argument types of the corresponding
constructors are also compatible. In our proposal, a correspondence between construc-
tors has to be explicitly declared. So, the type s1ist 2 in the previous section is actually
written as follows:

type slist2 =

SNil || []
| SCons || (::) of
x:int X {xs:slist2 | nil xs or x <= head xs}
The symbol || followed by a data constructor from an existing datatype de-

clares how constructors correspond. The types int list and slist2 are com-
patible because both SNil and [] take no arguments and the argument type
x:int X {xs:slist2 | nil xs or x <= head xs} of SCons is compatible with
int x int list of (::). (Precisely speaking, compatibility is defined coinductively.)
Readers may think that explicit declaration of a correspondence of data constructors
seems cumbersome. However, we could replace these declarations by a compatibility
declaration for type names as s1ist2 || int 1list and let the system infer the cor-
respondence between data constructors. Such inference is easy for many cases, where
the argument types of data constructors are of different shapes, as in this example.

A cast for datatypes converts data constructors to the corresponding ones and puts
a new cast on components. For example, (slist < int list)* (1::2::3::[]) reduces to
SCons (1,SCons (2,SCons (3, SNil))) as follows:

(slist < int list)? (1::2::3::[])
— SCons({z:int x {xs:slist | nil zs or z < head zs} < int x int list)*
(1,2::3::[]))
— SCons(1, ({as:slist | nil zs or 1 < head zs} <= int list)* (2::3::[]))
— ...
— SCons (1,SCons (2, SCons (3, SNil)))

In the example above, the correspondence between data constructors is bijec-
tive but we actually allow nonbijective correspondence, too. This means that a new
datatype can have two or more (or even no) data constructors corresponding to a sin-
gle data constructor from an existing type. For example, an alternative definition of
list_includingis as follows:
type list_including (n:int) =

LConsEg || (::) of {x:int|x=n} X int list
| LConsNEg || (::) of
{x:int|x<>n} X list_including (n)

This version of 1ist_including has no constructors compatible to Nil because the
empty list does not include n. By contrast, there are two constructors, LConsEq and
LConsNEq, both compatible to (: :). The constructor LConsEq is used to construct lists
where the head is equal to n, and LConsNEq to construct lists where the head is not
equal to n but the tail list includes n. A cast to the new version of 1ist_including
works by choosing either LConsEqg or LConsNEqg, depending on the head of the input
list:

(list_including(0) <= int list)* [] —*

(list_including(0) < int list)* (2::0::1::[]) —*

LConsNEq (2, (LConsEq (0,1::]])))

60 Chapter 4. Manifest Contracts with Algebraic Datatypes

This cast does not have to traverse a given list when it succeeds (notice int list in the
argument type of LConsEq and 1 :: [] in the second example above).

Although it is fairly clear how to choose an appropriate constructor in the example
above, it may not be as easy in general. In the formal semantics we give in this chapter,
we model these choices as oracles. In practice, a constructor choice function is specified
along with a datatype definition either manually or often automatically—in fact, we
will show that a constructor choice function can be systematically derived when a new
datatype is generated from our translation. More interestingly, the asymptotic time
complexity of the cast from a plain list to the generated datatype is no worse than the
cast to the original refinement type. In this sense, the translation preserves efficiency of
casts. This efficiency preservation lets us conjecture that, when a programmer rewrites
a program with the refinement type to one with the generated datatype, the asymptotic
time complexity of the latter program becomes no worse than the former. We discuss
efficiency preservation in detail in Section 4.3.3.

Allowing nonbijective correspondence between constructors simplifies our transla-
tion and makes dynamic contract checking more efficient as in the example above.

4.1.2 Ideas for Translation

We informally describe the ideas behind our translation through the example of
list_including above. We start with the refinement type {z:int list | member n z}, where
member n x isa usual function, which returns whether n appears in list x:

let rec member (n:int) (l:int list) =
match 1 with
| [] -> false

| x::xs —>
if x = n then true
else member n xs

Through this chapter, we always suppose that some logical operations such as
&& and || are desugared to simplify our formalization, and so here we write
if x = n then true else member n xsinsteadofx = n || member n xs.
We examine how list_including corresponds to member. For reference, the definition of
list_including is shown below again:
type list_including (n:int) =
| LConsEq || (::) of {x:int|x=n} X int list
| LConsNEqg || (::) of

{x:int|x<>n} x list_including (n)

We expect that a value of list_including (n) returns true when it is passed to member n
(modulo constructor names).

It is not difficult to observe two things. First, each constructor and its argument
type represent when the predicate returns true. In this example, there are two reasons
that member n x returns true: either (1) n is equal to the first element of x or (2) n is
not equal to the first element of x but member n is true for the tail of x. The construc-
tors LConsEq and LConsNEq and their argument types represent these conditions. Since
member n x never returns true when x is the empty list, there is no constructor in
list_including. Second, a recursive call on a substructure corresponds to type-level recur-
sion: member n xs in the else-branch in member is represented by list_including(n)
in the argument type of LConsNEq.

Chapter 4. Manifest Contracts with Algebraic Datatypes 61

Types

T == bool|z:Ty — To|x:Ty x To | {x:T|e} | 7(e)
Constants, Values, Terms

¢ = true | false

v = c|fixf(x:Ty):Te = e | (T1 < T

)| (v, 02) | Cledo
clz|fixf(z:Th):Te=e|erez | (e1,€2) [el]e2]
C{e1)ey | match ewith Cj z; — e;' |
if e then e; else e ‘ <T1 = T2>£
Datatype definitions

¢ v= Ty =C,: T |T{=:T)=C; [D; : T;
Y ou= 0%

%

FIGURE 4.1: Program syntax.

TypDefOfy,(7) The definition of 7.

ArgTypeOfy, () The parameter name and its type of 7.
CtrsOfy, (1) The set of constructors that belong to 7.
TypSpecOfs,(C') The type specification of C.
TypNameOf,(C) The datatype that C belongs to.
CtrArgOfs,(C) The argument type of C.

TABLE 4.1: Lookup functions.

So, the basic idea of our translation scheme is to analyze the body of a given pred-
icate function and collect guarding conditions on branches reaching t rue. As men-
tioned above, recursive calls on the tail become type-level recursion. This correspon-
dence between execution paths and data constructors is also useful to derive a con-
structor choice function for a cast. For example, a cast to list_including(n) will choose
LConsEq when (the list being checked is not empty and) the head is equal to n, just
because LConsEq corresponds to the path guarded by x=n in the definition of member.

4.2 A Manifest Contract Calculus \

We formalize a manifest contract calculus Aﬁlt of datatypes with its syntax, type system,
and operational semantics, and prove its type soundness. Following Belo et al. [14], we
drop subtyping and subsumption from the core of the calculus to simplify the defini-

tion and metatheory.

In the following, we write a sequence with an overline: for example, ﬁii € {Lm}

means a sequence C1, . .., C, of data constructors. We often omit the index set {1,...,n}
when it is clear from the context or not important. Given a binary relation R, the rela-
tion R* denotes the reflexive and transitive closure of R.

4.2.1 Syntax

We present the program syntax of Aff; in Figure 4.1, where there are various metavari-
ables: T ranges over types, 7 names of datatypes, C' and D constructors, ¢ constants,

62 Chapter 4. Manifest Contracts with Algebraic Datatypes

z, y, 2, [, etc. variables, v values, e terms, ¢ blame labels, I' typing contexts, ¢ datatype
definitions, ¥ type definition environments.

Types consist of base types (we have only Boolean here but addition of other base
types causes no problems), dependent function types, dependent product types, refine-
ment types, and datatypes. In a dependent function type z: 77 — T and a dependent
product type z:T} x T, variable z is bound in 7. A refinement type {z:7'| e}, in
which z is bound in e, denotes the subset of type 7' whose value v satisfies the Boolean
contract e, that is, e {v/z} evaluates to true. Finally, a datatype 7(e) takes the form of
an application of 7 to a term e. Note that, similarly to Ffj, the predicate e is allowed
to be an arbitrary Boolean expression, which may diverge or raise blame, unlike some
refinement type systems [123, ,91, 59, ,], which aim at decidable static veri-
fication. Static verification amounts to checking a given cast is in fact an upcast, where
the source type is a subtype of the target, and subtyping is not, in general, decidable
but the language is not equipped with subsumption.

Terms are basically those from the A-calculus with Booleans, recursive functions,
products, datatypes, and casts. A term fix f(z:71):T» = e represents a recursive func-
tion in which variables z and f denote an argument and the function itself, respectively,
and are bound in e. We often omit type annotations. A data constructor application
C(e1) ey takes two arguments: e; represents one for the type definition and e; for data

constructors, respectively. A match expression match ewith C; z; — e; is as usual and
binds each variable z; in ¢;.

The last form is a cast (7} < TQV, consisting of a target type 771, a source type T»,
and a label ¢/, and, when applied to a value v of type T5, checks that the value v can
behave as 7. The label / is used to identify the cast when it is blamed. Unlike Fj, casts
in A\, do not contain delayed substitutions.

A datatype definition ¢ can take two forms. The form 7 (z:T) = C; : T ii, where
z is bound in T;', declares a datatype 7, parameterized over z of type T, with data

constructors C; whose argument types are 7;. The other form 7 (z:T) = C; || D; : Tz-l
is the same except that it declares that C; is compatible with D; from another datatype.

A type definition environment ¥ is a sequence of datatype definitions. We assume
that datatype and constructor names declared in a type definition environment are dis-
tinct. Table 4.1 shows metafunctions to look up information on datatype definitions.
Their definitions are omitted since they are straightforward. A type specification, re-
turned by TypSpecOf and written z: T ~— T3 — 7(z), of a constructor C consists of the
datatype 7 that C' belongs to, the parameter = of 7 and the type T of z, and the argu-
ment type T of C. In other words, 7 = TypNameOfs,(C), z: Ty = ArgTypeOfy,(7) and
Ty = CtrArgOfs,(C). We omit the subscript ¥ from these metafunctions for brevity if
it is clear from the context.

We use the following familiar notations. We write FV (e) to denote the set of free
variables in a term e, and e {¢’/z} capture avoiding substitution of ¢’ for z in e. We
apply similar notations to values and types. We say that a term/value/type is closed
if it has no free variables, and identify a-equivalent ones. In addition, we introduce
several shorthands. A function type 77 — T» means z:7; — T, where the variable
x does not occur free in T5. We write A z:T}.e to denote fix f(z:T1): Ty = e if f does
not occur in the term e. A let-expression letz = e in ez denotes (Az:T.ez) e where T
is an appropriate type. Finally, a datatype 7 is said to be monomorphic if the definition
of 7 does not refer to a type argument variable, and then we abbreviate 7(e) to 7 and
C(e1)ez to C ea when C'is a data constructor of 7.

Chapter 4. Manifest Contracts with Algebraic Datatypes 63

Typing Context Well-Formedness Rules

WC_EMPTY —F L ref WC_EXTENDVAR
[- FT,z:T -

I' = T| Type Well-Formedness Rules

FT WT_BASE ' T,oTy - Ty WT.FUN
I' + bool - 'tz : T — Ty -

Ty I'z:Ty F Ty WT_PROD I'T T,z:T F e : bool WT.REFINE
T F 11 x Ty - D {a:T e} 7
ArgTypeOf (1) = o:T T'Fe: T
I' F 7(e)

WT_DATATYPE

I' - e: T| TypingRules

F T ¢ € {true,false} T CONST FT =T el T VAR
I' - ¢ : bool - 'tz : T -
fi(e:Ty — To),z:Ti e Ty f ¢ FV(Ty)
IFfixf(x:Th):To=e€: x:Ty — Ty
Ty T'E Ty T To T CAST I'te Ty —> Ty T'F e : T T App
TF (=D : o1 TF eres: To{eaja}
DTy BTy ThEe : Ty TFoe: To{e/z}
I'F (e1,e2) @ 2:T1 x T
I'ke:x:Ty x Ty I'kFoe:x:Ty x Ty

T_PRrOJ1
F'kFel: Ty J 'k e2: Ty{el/x}

I'Fe :bool T'He : T TI'Fe3: T
I' - ifegthenegyelsees : T
TypSpecOf (C) = z:T1 — T — 7(x)
ke Ty Tk e : Tof{e/z} T F 7(e)
' Cler)es = 7(e1)
'kFe:7(e) THT
CtrsOf (1) = [ArgTypeOf (1) = y: T’
for all i, CtrArgOf (C;) = T; foralli, ' a;:Ti{e/y}t F e : T
1€{1,...,n} e

T_ABS

T_PAIR

T_PRrROJ2

T_IF

T_CTR

T_-MATCH
I' + match ey with C; z; — ¢;

FIGURE 4.2: Typing rules for /\fft .

4.2.2 Type System

This section introduces a type system for source programs in A\, ; later we extend the
syntax to include run-time terms to define operational semantics and give additional
typing rules for those terms. The type system consists of three judgments: context well-
formedness ¥ F T, type well-formedness ¥;I" - T, and typing ;' F e : T. Here, a

64 Chapter 4. Manifest Contracts with Algebraic Datatypes

Ty || To| Type Compatibility
Ty || T»
{.I‘:Tl ‘ 61} || T

TprefOf(ﬁ) = (type T <Z‘T> = C; H D; : T;)
for all i, TypNameOf (D;) = 1

T1(e1) || T2(e2)

C_REFINEL

C_DATATYPE

FIGURE 4.3: Type compatibility for)\Igt .

typing context I is a sequence of variable declarations:
=0 |T,z:T

where declared variables are pairwise distinct. We show inference rules in Figure 4.2,
where a type definition environment ¥ in judgments are omitted for simplification.
Typing rules for atomic terms, such as Booleans, variables, etc. demand that types of
a typing context of a judgment be well-formed; in other rules, well-formedness of a
typing context and a type of a term is shown as a derived property.

Inference rules for context and type well-formedness judgments are standard ex-
cept for (WT_DATATYPE), which requires an argument to a datatype 7 to be typed at
the declared argument type.

Most of typing rules are also standard or similar to the previous work [14]. The rule
(T_CAST) means that the source and target types in a cast have to be compatible. Intu-
itively, two types are compatible when a cast from one type to the other may succeed.
More formally, type compatibility, written 77 || T, is the least congruence satisfying
rules in Figure 4.3: the rule (C_REFINEL) allows casts from and to refinement types;
and the rule (C_DATATYPE) says that if datatypes are declared to be compatible in the
type definition, then they are compatible. The typing rule (T_CTR) demands that argu-
ments e; and e; respect the argument types of C and the datatype that C belongs to,
respectively. The rule (T_-MATCH) for match expressions demands the matched term ¢
to be typed at a datatype 7(e). Using the metafunction CtrsOf, the rule demands that

the patterns C; 7; be exhaustive. Moreover, each branch e; has to be given the same
type T, which cannot contain pattern variables z; (and so is well formed under I').

4.2.3 Semantics

The semantics of M\, is given in the small-step style by using two relations over
closed terms: the reduction relation (~+), which represents basic computation such as
B-reduction, and the evaluation relation (—), in which a subexpression is reduced.

The semantics is parameterized by a type definition environment and a constructor
choice function 6, which is a partial function that maps a term of the form (71(e1) <
ma(e2))t Cy(e)w to a constructor €. We introduce this function as an oracle to decide
which constructor a given constructor is converted to by a cast between datatypes, as
discussed in Section 4.1. The constructor C; has to not only belong to 7 but also be
compatible with C;. We will give a more precise condition on ¢ later.

Precisely speaking, the two relations are parameterized by ¥ and ¢ but we fix certain
¥ and ¢ in what follows and usually omit them from relations and judgments.

Chapter 4. Manifest Contracts with Algebraic Datatypes 65

Reduction Rules

(fix f(z:T1): Ty = e)v ~ e{v/z, fix f(x:T1): T2 = e/f} (R_BETA)
(v1,v2).1 ~ vy (R_PrOJ1)

(v1,12).2 ~ vy (R_PrOJ2)

if true then e; else e3 ~ e; (R_IFTRUE)

if falsethen e; else e5 ~> ey (R_IFFALSE)

match Cj(e)v with Cizi o e~ ej{v/zj} (where C; € h (R-MATCH)
(bool < bool)t v ~ v (R_BASE)

<$:T11 — T12 = $2T21 — T22>€ vV~
(/\ ac:T11.|ety = <T21 = T11>ZI in <T12 = (T22 {y/x})>€ (1) y))

(where y is fresh) (R_FUN)

(.Z':TH X T12 = x:Tgl X T22>€ (Ul, ()

)~
letz = <T11 <~ T21>£ v1in (l“, <T12 <~ (TQQ {1}1/1‘}»Z ’UQ) (R_PrROD)
(T) = {:Ta| e})f v~ (T) = To)'v (R_FORGET)
Ho:Ty| e} <= To)ov ~ ({z:T1 | e}, (T < To)t v)t (R_PRECHECK)

(where T3 is not a refinement type)

<7'1<61> = 7—2<62>>€ CQ<6>’U s 01<61>(<T{ {61/1171} <~ Té {62/£E2}>£ v) (R,DAT