
Stateful Manifest Contracts

Abstract
We integrate static and dynamic contract-based verification of
stateful programs. Although contracts are useful to reason about
programs, naive introduction of mutable references makes the rea-
soning difficult because state-dependent contracts that have been
successfully checked can be invalidated by state mutation. The
problem is more acute in manifest contract systems, in which con-
tracts are part of static types, in that the naive introduction of as-
signments would break their important soundness properties.

We address this problem by designing a manifest contract sys-
tem where specifications of pure code fragments are represented by
refinement types and specifications of impure ones are by compu-
tational Hoare types—a variant of Nanevski et al’s Hoare types—
which express pre- and postconditions of stateful computations in
the same language as programs. To prevent troubles caused by
abusing references in contracts, we introduce a region-based ef-
fect system, which allows contracts in refinement types and Hoare
types to manipulate references as long as they are observationally
pure and read-only, respectively. We show that our calculus has the
same kind of soundness property as existing pure manifest calculi
and, furthermore, stateful computations satisfy their postconditions
if they terminate without dynamic contract violation.

Following Belo et al., static verification in this work is “post
facto”, that is, we define the manifest contract system so that all
contracts are checked at run time, formalize what dynamic checks
can be eliminated safely, and show that programs with and with-
out such checks are contextually equivalent—intuitively, checks of
contracts can be eliminated when their satisfaction is derived from
other, already established contracts. We also apply the idea of post
facto verification to region-based local reasoning, which shows that
satisfaction of preconditions which do not refer to references mu-
tated by a computation is preserved even after executing the com-
putation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Programming by contracts;
D.3.1 [Programming Languages]: Formal Definitions and Theory;
F.3.1 [Specifying and Verifying and Reasoning about Programs]:
[Assertions]

General Terms Languages, Design, Theory, Verification

Keywords contracts, refinement types, computational effects, dy-
namic verification, assertion

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
1.1 Software Contracts with States
In many programming languages, such as C/C++, Java, Python,
JavaScript, ML, etc., data can be stored to and retrieved from muta-
ble memory cells and such imperative programming features are
crucial to design many efficient data structures and algorithms.
Stateful (and even stateless) data structures and algorithms of-
ten rest on certain specifications to guarantee correctness of their
behavior—e.g., the binary search algorithm on arrays demands that
the input array be sorted to find a correct answer. Although static
verification methods for stateful programs have been extensively
studied, verification of large-scale practical programs with states
is still very challenging. Thus, in practice, software development
often uses dynamic verification.

Software contracts are a common tool used broadly for dynamic
verification of stateful programs. Roughly speaking, contracts are
program specifications written in the same programming language
as the target program and support a mechanism to check given spec-
ifications at run time. Most languages with imperative features pro-
vide contract systems as a standard library or a dedicated feature:
the C language supports the assert macro, which checks a given
Boolean expression and raises a run-time error if it fails; Eiffel,
which advocates “Design by Contracts” [28], can check pre- and
postconditions of methods and class invariants; Racket provides
various advanced contracts such as higher-order contracts [14].

Software contracts are useful, especially in pure languages, to
reason about program behavior—e.g., one would use an integer as
a divisor if it has been checked successfully by the contract that
accepts only positive integers—but naive introduction of mutable
references makes such reasoning difficult because state-dependent
contracts that have been successfully checked can be invalidated
by assignment afterwards and, thus, it is often hard to grasp which
contracts are still valid and which are not at a given program
point. To see the problem, consider a string table, implemented by
a mutable reference to a string list whose elements are pairwise
distinct, and a function add to add a new string to a given table. A
contract for add would specify that (1) the given table points to a
list of unique strings; (2) the given string is not a member of the
old table; and (3) after calling add, the added string really becomes
a member of the updated table. It is easy to check these conditions
at run time: (1) and (2) can be checked at the beginning of add as
preconditions and (3) can be checked at the end as a postcondition.
When (3) has been checked successfully, one may reason about the
table by using the contract information that the table contains some
string. For example, the table may be expected to be nonempty.
However, it does not always hold because (3) will be invalidated if,
say, the table is cleaned, whereas some contracts, e.g., (1), are still
valid after the clean.

To make the problem more acute, we introduce manifest con-
tract systems [3, 15, 19, 25, 38, 39], in which contracts are part
of static types. Manifest contract systems are equipped with refine-
ment types of the form {x:T|e}, which means a value v (of type T)
satisfying the Boolean expression, also called a contract or refine-

1 2016/10/13

type tbl = { l:string list | uniq l } ref

val add : t:tbl ->
s:{s:string|not (mem !t s)} ->
{u:unit|mem !t s}

val size : t:tbl -> {x:int|x = length !t}
val clear : tbl -> unit

let t : tbl = ...
let s : {s:string|not (mem !t s)} = ...
let x : {u:unit|mem !t s} = add t s

let _ = f ()
let rate = 1 / (size t)

Figure 1. A program using functions for string table

ment, e, i.e., {v/x}e reduces to true. For example, if x is given
{x:int| x > 0}, then x is positive everywhere it is referenced.
However, naive introduction of assignments would break this im-
portant property of a manifest contract system.

We rephrase the problematic scenario above by using the code
in Figure 1, which is written in an ML-like language with manifest
contracts. The code generates a string table, calls add discussed
above with the table, and produces the reciprocal of the size of the
table after computing something by calling f . From the interpreta-
tion of refinement types above, it is not hard to see the meaning of
add’s type agrees with the contract for add. Notice that add is given
a dependent function type—dependent function types x:T1->T2
mean functions which, when taking values v of T1, return values of
{v/x}T2. One should expect from a sound manifest contract sys-
tem that mem !t s evaluates to true everywhere in the scope of
x and the last division will always succeed since the table would
be nonempty and size would return the size of the table. How-
ever, it is not quite true here, because f may call clear! Even
worse, manifest contracts with such an inconsistent contract sys-
tem, where values may not satisfy refinements of their types, would
be unsound [18, 39].

A lesson from the discussion above is that state-dependent con-
tracts are necessary for specifying behavior of stateful computa-
tions but they may be invalidated during program execution and
should not appear in refinement types. Although indeed there is ex-
tensive work which studies contracts for imperative programs [11,
12, 16, 20, 44], their work is not very satisfactory because they (1)
focus on how to enforce contracts for references but not on abuse of
references in contracts, or (2) restrict contracts excessively. For ex-
ample, Flanagan, Freund, and Tomb [16] have addressed the prob-
lem by allowing only pure expressions as refinements, but contracts
for operations on mutable data structures such as add would not be
given because they are usually state-dependent.

1.2 Our Work
The goal of this paper is to introduce a sound yet expressive man-
ifest contract calculus with mutable states, in particular, to deal
with specifications about states, e.g., the property of add as dis-
cussed above. To express such specifications, we develop compu-
tational Hoare types, a variant of Hoare types in Nanevski et al.’s
Hoare Type Theory (HTT) [31, 32]—unlike HTT, the specifica-
tions in computational Hoare types are contracts, that is, executable
computations—while state-independent specifications can be rep-
resented by refinement types as usual. For short, computational
Hoare types are simply called Hoare types if it is clear from the
context that the computational version is meant.

We introduce a manifest contract calculus λH
ref , where, using

Hoare types, the type system tracks what state-dependent contracts

hold and what may have been invalidated. This characteristic of
the type system solves the problem in Section 1.1 because the type
system finds out that the contract mem !t s may be invalidated
after calling f and so the dynamic check to verify whether the size
of t is nonzero is needed before calculating the reciprocal, unless
f ensures that t still contains some strings after executing it.

What follows describes our contributions in more detail.

Hoare types with state-dependent contracts Hoare types are
a kind of dependent types inspired by Hoare triples in Hoare
logic [21]. A Hoare triple {P} c {Q} means that stateful com-
putation c demands that precondition P hold and, after computing
c, guarantees that postcondition Q holds. Similarly, Hoare types,
written as {A1}x :T{A2} in this work, denote stateful computa-
tions which assume precondition A1 before their execution, return
values of T , and ensure postcondition A2 after their execution;
variable x represents the return values of the computations in A2.
A1 and A2 are possibly state-dependent contracts and program
states have to satisfy these contracts before and after executing
computations of the Hoare type. From a denotational point of view,
computations of the Hoare type can be interpreted as functions over
states such that they take states satisfying A1 and return states satis-
fying A2 with some value x of T . Using Hoare types, for example,
the specification given to add in Figure 1 can be presented as:

t :tbl→ s:string→ {not (mem !t s)}x :unit{mem !t s},

which describes that add accepts a string table t and a string s
and insists that s is not a member of t in the state in calling add;
when these all specifications are met, add computes something
to result in the state where t contains s . Following HTT, λH

ref

classifies programs into pure and impure fragments in the monadic
style [30, 50], and contracts for pure computations are represented
by refinement types as in prior manifest calculi and ones for impure
computations are by Hoare types.

Dynamic checking All contracts in λH
ref are checked at run time

by using either of two mechanisms: casts (called also type con-
version), a customary means in manifest contracts to check refine-
ments in pure fragments, and assertions, a new means to check
pre- and postconditions of stateful computations—in both mecha-
nisms, if a dynamic check fails, an uncatchable exception (called
blame [14]) will be raised to notify contract violation. We extend
the cast-based mechanism to reference types and Hoare types—
casts for these types produce wrappers which check properties
about states when they evaluate in impure fragments. For refer-
ence types, we use the idea of views and guards in the earlier
work [11, 16, 20, 44]. λH

ref also provides an assertion-based check-
ing mechanism to check pre- and postconditions at run time. When
computation c needs some preconditions to be satisfied, we can
check them at run time before executing c; if they hold, the remain-
ing computation proceeds; otherwise, an uncatchable exception is
raised. On the contrary, when c is required to ensure postcondi-
tions, we can also check them at run time with the execution result
of c; if they hold, the whole computation returns the result of c;
otherwise, an uncatchable exception is raised.

Type-and-effect system We design a type system of λH
ref to not

only ensure that values of refinement types satisfy their refine-
ments, which is a key property in manifest contracts [18, 38, 39],
but also identify how long state-dependent contracts that have been
checked remain true. We hope that contracts are as expressive as
possible, but computations with assignments to references in pro-
grams should not be accepted as contracts because, intuitively, con-
tracts are specifications and so should not affect the program be-
havior and, technically, type soundness needs that run-time con-
tract checking be recalculatable, at least immediately after ending

2 2016/10/13

the check, but such assignments would make it impossible. To pre-
vent troubles caused by assignments in contracts, we introduce a
region-based effect system [7, 26, 47], which allows contracts in
refinement types and Hoare types to manipulate references as long
as they are observationally pure and read-only, respectively—that
is, refinements can manipulate only locally allocated references and
pre- and postconditions can dereference any memory cell in addi-
tion to arbitrary manipulation of locally allocated references. In this
paper, we simply call such contracts pure and read-only.

Static verification of state-dependent contracts The effect sys-
tem is also useful for static verification of state-dependent con-
tracts. Following Belo et al., this work studies “post facto” static
verification, that is, we define λH

ref so that all contracts are checked
at run time, formalize what dynamic checks can be eliminated
safely, and show that programs with and without such checks are
contextually equivalent. Intuitively, dynamic checks of contracts
can be eliminated when their satisfaction is derived from other, al-
ready established contracts. For example, computations ensuring
postcondition mem !t "foo" also guarantee another postcondition
(length !t)>0 without additional assertions if it is proven that the
former implies the latter—although what it says would seem triv-
ial, showing soundness of static verification in manifest contracts
is usually not easy [3, 25, 39].

We also apply post facto verification to region-based local rea-
soning, which is inspired by the frame rule in Separation Logic [34,
36] and means that satisfaction of preconditions which do not refer
to references mutated by a computation is preserved even after exe-
cuting the computation. The local reasoning would enable modular
verification because we can verify subcomponents of a program
without having to know the entire contract of the program.

Although, unlike the original work of manifest contracts [3, 15,
25], this work does not study static verification of refinements due
to the difficulty from higher-order types, we expect that our work
would be a foundation for such verification.

Organization The rest of this paper is organized as follows: we
describe an overview of λH

ref in Section 2; Sections 3, 4, and 5
offer the program syntax, the type system, and the operational
semantics of λH

ref , respectively, and Section 6 shows type soundness
after extending the type system with run-time typing rules. After
showing static verification in Section 7, we discuss related work in
Section 8 and conclude in Section 9.

We omit the proofs of our technical development from this
paper; interested readers can refer to the supplementary material.

2. Overview of λH
ref

This section gives an overview of λH
ref , focusing on four key ideas:

first, classification of programs to pure and impure fragments in the
monadic style; second, computational Hoare types; third, a region-
based effect system; and finally, an assertion-based mechanism to
check pre- and postconditions of Hoare types at run time.

2.1 Terms and Computations in Monadic Style
Following HTT, the program syntax of our calculus consists of two
syntax classes: terms, which are considered as “almost” pure pro-
gram fragments and can be typed at refinement types, and compu-
tations, which are considered as impure program fragments and can
be typed at Hoare types. Terms do not manipulate references but in-
clude cast applications, so they raise exceptions if some cast fails;
this is the reason why terms are “almost” pure. To classify programs
into terms and computations, we adopt the monadic style [30, 50],
which is a well-known syntactic discipline to distinguish between
program fragments with and without computational effects.

In fact, we would meet difficulties without any mechanism
to distinguish pure and impure computation. One issue is how

to deal with dependent types. Let us consider function applica-
tion e1 e2 where e1 and e2 are typed at dependent function type
x :T1 → T2 and type T1. We expect the result type of e1 e2 to be
return type T2, but T2 is dependent on the argument variable x of
T1. Thus, a standard typing rule [43] gives e1 e2 type [e2/x]T2

with substitution of e2 for x . However, this approach is unsound if
term e involves stateful effects. This problem has been addressed
by using existential quantifier to hide information of substituted
terms [13, 24]; however, this remedy cannot be directly applied
to our calculus—hidden information cannot be recovered, unlike
Knowles and Flanagan [24], due to effects in terms, and, even
worse, it is very difficult (possibly impossible) to check specifica-
tions with existential quantifier at run time in an algorithmic way.

The monadic style solves this problem. Since arguments to
functions must be pure, we can adopt the standard substitution-
based rule. It is also convenient in formalizing typing rules, thanks
to the fact that intermediate results during computation are all
named. Another advantage is that it is easy to analyze when state-
dependent contracts may be invalidated since the monadic style
sequentializes effects, in particular, assignment, which is the only
effect that can invalidate them.

Terms Terms e are mostly from the lambda calculus and man-
ifest contracts. The most distinguishing construct from manifest
contracts is casts ⟨T1 ⇐ T2⟩ℓ, which check that, when applied
to values of source type T2, they can behave as target type T1. For
example, since 3 is positive, the cast application ⟨{x :int | x>0} ⇐
int⟩ℓ 3 succeeds and returns 3 whereas, since 0 is not positive,
⟨{x :int | x > 0} ⇐ int⟩ℓ 0 gives rise to an uncatchable excep-
tion ⇑ℓ with label ℓ to notify contract violation (the label ℓ is used
to identify the program point with the cast). Terms also contain
thunks, an usual construct in monadic languages. Thunks, written
as do c using computation c, are introduced to deal with compu-
tations in the context of terms. Using thunks, for example, we can
write functions with stateful effects. Thunks will be executed when
they are connected with the top-level computation.

Computations Computations, denoted by c, are constructed as
usual by two constructs: return and bind. The return construct
return e returns the evaluation result of term e as a computation
result. The bind construct x ← e1; c2 evaluates term e1 to thunk
do c1, and then computes c1 and c2 sequentially. The computation
c2 can refer to the result of c1 as x . Moreover, since our interest
is in stateful programs, computations can deal with operations on
mutable references. Such operations are written as

x ⇐ ref e1; c2 x ⇐ !e1; c2 x ⇐ e1 := e ′
1; c2

which represent memory allocation, dereference, and assignment,
respectively. After doing the corresponding action, they compute
c2 by binding x to the result of the action. The assignment action
returns the unit value.

Example Let us consider a function that takes a reference that
points to an integer value, increments the contents, and then returns
the old value of the reference. Such a function can be written as:

f
def
= λx :Ref int.do y ⇐ !x ; ⇐ x := y + 1; return y

Here, Ref int is the type of integer references and “ ” means an
unused variable. We can call f by passing a reference to an integer:

x ⇐ ref 1; y ← f x ; z ⇐ !x ; return y + z

This computation returns integer 3 because the contents of x are
updated to 2 and f returns the old value 1.

2.2 Hoare Types
Hoare types have pre- and postconditions of stateful computations.
In our work, these conditions are sequences A of Boolean compu-

3 2016/10/13

tations. Intuitively, condition A means that the conjunction of all
contracts in A; since the empty sequence means the contract which
always hold, we write ⊤ for it. Formalizing pre- and postcondi-
tions as sequences of computations simplifies the metatheory of our
calculus—e.g., it allows strengthening preconditions and weaken-
ing postconditions in a natural way. Computations of Hoare type
{A1}x :T{A2} demand A1, produces values v of type T (if any),
and ensures [v/x]A2.

Example Let us consider a contract that a computation requires
reference x to point to an integer list each of which is a prime
number, add new prime numbers to x , and returns the length of
the result list. Using Hoare types, the contract is given as follows:

{y ⇐ !x ; return (for all prime? y)}
z :int

{y ⇐ !x ; return (for all prime? y) & (length y = z)}
where for all prime? y returns whether each element in integer
list y is a prime number and length returns the length of the
argument list. The pre- and postcondition are allowed to read an
integer list from reference x since contracts of Hoare types can be
state-dependent, unlike refinement types. Similarly, add in Figure 1
can be given:

t :tbl→ s:string→
{x ⇐ !t ; return not (mem x s)}y :unit{x ⇐ !t ; return (mem x s)}.

2.3 Region-Based Effect System
As mentioned in Section 1.2, we have to restrict refinements to pure
computations and pre- and postconditions to read-only computa-
tions. One naive approach to it is to restrict refinements to terms
and pre- and postconditions to computations involving with only re-
turn and dereference constructs (binds may introduce assignments
as thunks). However, it limits expressive power of contracts exces-
sively. For example, it would disallow contracts to reuse imperative
libraries, e.g., hash tables and regular expression matching [27].

Our solution to reconciling restriction and expressive power
of contracts is to design an effect system with locally scoped re-
gions [26, 47]. The effect system accepts pure computations, which
manipulate only locally allocated references, as refinements and
read-only computations, which do not apply assignment to refer-
ences allocated in programs, as pre- and postconditions.

To observe whether contracts are independent of references in a
program, our effect system tracks which program point references
are allocated at, using a region, which intuitively identifies a pro-
gram point, in a standard manner [7, 26, 47]. Regions, denoted by
r , are introduced by let-region νr . c [7, 47], which computes c un-
der the local region r . If c manipulates only references allocated in
r , it appears to be pure for a client of the let-region. Similarly, if it
does not write data to references allocated in other regions, it ap-
pears to be read-only. Which regions references are allocated at is
embedded into reference types, as usual in the work on region cal-
culi with states [7, 26]. Reference types RefrT denote references
which point to contents of T and are allocated at r .

To ensure that refinements are pure and pre- and postcondi-
tions are read-only, we track what operations contracts apply to
references as effects and check that forbidden effects are not in-
volved. Since all contracts are computations, effects in contracts
are given to Hoare types. In the effect system, Hoare types take
the form {A1}x :T{A2}⟨γr,γw⟩, where γr and γw are sets of re-
gions whose references are readable and writable in computations
of the Hoare type, respectively. Refinements have to be typed at
{⊤}x :bool{⊤}⟨∅,∅⟩, where: γr = γw = ∅ means that the refine-
ments have to be pure; A1 = ⊤ that the refinements cannot sup-
pose any precondition, since values of the refinement type must be
copiable to any contexts; and A2 = ⊤ that it is not needed to guar-

antee any postcondition. Pre- and postconditions have to be typed at
{A1}x :bool{⊤}⟨γr,∅⟩ for some A1 and γr, where: γw = ∅ means
that the conditions have to be read-only—in other words, they are
allowed to read data from references in regions γr; and the condi-
tions can assume some A1 established before checking them.

Moreover, to enhance reusability of program components, we
introduce region abstractions [26, 47], which are abstracted over
region variables, so they can be used in any contracts. Region
polymorphic types ∀r .T are types for region abstractions.

Example The effect system allows many efficient algorithms and
data structures with mutable references to be reused in contracts
as well as programs. For example, using the let-region construct,
an efficient implementation of regular expression matching, which
often rests on mutable references, would be given the following
type because it would rest on only locally allocated references:

string→ string→ {⊤}x :bool{⊤}⟨∅,∅⟩,

where the first and second arguments mean regular expressions and
target strings, respectively. The Hoare type means that the regular
expression matching is pure, so contracts can use it.

Moreover, the effect system enables contracts to mention “hid-
den states” of an abstracted data structure via interface functions for
it. For example, functions mem and add for an abstracted version of
tbl would be given the following types for some r :

mem : tbl→ string→ {⊤}x :bool{⊤}⟨{r},∅⟩
add : t :tbl→ s:string→ {y ← mem t s; return not y}

x :unit
{y ← mem t s; return y}⟨{r},{r}⟩

where read and write effects in mem are {r} and ∅, respectively,
because it would dereference a string table pointer at r but would
not update it, and both of read and write effects in add are {r}
because it would add a string to a string table after dereference.
Under the naive syntactic restriction, this add would be rejected
because the contracts for it use bind constructs.

2.4 Run-time Checking of Pre- and Postconditions
To check pre- and postconditions of Hoare types, we provide a
new computation construct, assertions. Assertion assert (c1)

ℓ; c2
first checks contract c1 and then: if the contract checking suc-
ceeds, i.e., c1 returns true, the remaining computation c2 will be
executed; otherwise, if it fails, an uncatchable exception ⇑ℓ will
be raised. Perhaps assertions might appear to be able to check
only preconditions, but they can also be used to check postcon-
ditions. For example, we can write a computation that first ex-
ecutes c1 and then check postcondition c2, using assertions, as
x ← do c1; assert (c2)

ℓ; return x . For short, we write this com-
putation as c1;λx .assert (c2)

ℓ .

Example Let us consider whether a computation c satisfies the
first contract in Section 2.2, that is, when reference x points to a
prime number list, after computing it, the contents of x are still a
prime number list and the computation returns the length of the list
referred to by x . Using assertions, it is checked as follows:

assert (y ⇐ !x ; return (for all prime? y))ℓ1 ;
c;
λz .assert (y ⇐ !x ;

return (for all prime? y) & (length y = z))ℓ2

Note that the contracts checked by these assertions match the pre-
and postcondition of the Hoare type given in Section 2.2. When this
computation is executed, first of all the precondition is checked; if
the reference x does not refer to a prime number list, exception ⇑ℓ1
is raised; otherwise, the computation c is performed. If c terminates

4 2016/10/13

and returns a value, then, as a postcondition, whether reference x
still points to a prime number list and whether the integer result
of c is the length of the prime number list are checked. If the
checking succeeds, the result of c is returned as the result of the
whole computation; otherwise, ⇑ℓ2 is raised.

As a more interesting example, we consider an implementation
of add, the Hoare type of which is given in Section 2.2:

λt :tbl.λs:string. do
l ⇐ !t ;
let l ′ = ⟨{l ′:string list | uniq l ′} ⇐ string list⟩ℓ1 (s :: l);
⇐ t := l ′;
return ();
λ .assert (x ⇐ !t ; return (mem x s))ℓ2

Here, let x = e1; c2 is an abbreviation of x ← do return e1; c2.
This function accepts a string table t and a string s and returns a
thunk that adds s to t . The thunk first dereferences t and obtains a
list l whose elements are distinct from each other. Then, it checks
with a cast that the new string s is fresh for l , and updates the string
table with the new list if the check succeeds. Finally, the postcondi-
tion is checked by the assertion, in which x ⇐ !t ; return (mem x s)
states that t contains s . This function involves two run-time checks:
the cast ⟨{l ′:string list | uniq l ′} ⇐ string list⟩ℓ1 and the asser-
tion assert (x ⇐ !t ; return (mem x s))ℓ2 . It is obvious that the latter
check always succeeds while whether the former succeeds rests on
whether string s is not contained in table t before calling add: if s is
not in t , the check succeeds; otherwise, it fails. Since s is passed by
clients of add, we require them to pass strings which do not occur
in t .1 As a result, the Hoare type of add is given as in Section 2.2.

Contrary to the fact that add ensures the postcondition by asser-
tions, its client does the precondition. For example, a function that
extends a given string table with the string "foo" is written as:

λt :tbl. do assert (x ⇐ !t ; return not (mem x "foo"))ℓ;
← add t "foo"; return ()

where the precondition of add is checked before calling it.
Fortunately, we do not need the precondition check if it is

ensured by the preceding computation. For example, let fresh str
be a function which takes a string table and returns some string not
contained in the table. It would be typed at

t :tbl→ {⊤}s:string{x ⇐ !t ; return not (mem x s)}.

After calling fresh str, we can omit checking the precondition of
add because it is ensured by (the postcondition of) fresh str:

λt :tbl. do s ← fresh str t ; ← add t s; return ()

3. Syntax
We show the program syntax of λH

ref in Figure 2. The syntax uses
various metavariables: B ranges over base types, A lists of pre- and
postconditions of computations, T types, k constants, e terms, d
commands, c computations. We use x , y , z , etc. as term variables,
r and s as region variables, γ as sets of region variables, and ϱ as
pairs of region sets. We write ϱ1∪ϱ2 for the element-wise union of
ϱ1 and ϱ2, ⟨γr, γw⟩ ⊎ γ for ⟨γr ⊎ γ, γw ⊎ γ⟩, where ⊎ is the union
operation defined only when the given two region sets are disjoint,
and γ, r for γ ⊎ {r}.

Types offer base types, dependent function types, and refine-
ment types from usual manifest calculi, in addition to reference
types and Hoare types, which are already described in Section 2.2
in detail. We do not fix base types but assume bool and unit at least

1 The cast is still left in well-typed programs because static verification of
contracts are “post facto” [3].

Variables
x , y , z ::= term variables r , s ::= region variables

γ ::= finite sets of region variables ϱ ::= ⟨γr, γw⟩

Types
B ::= bool | unit | ... A ::= ⊤ | A, c
T ::= B | x :T1 → T2 | {x :T | c} |

RefrT | {A1}x :T{A2}ϱ | ∀r .T

Constants, Terms, Commands, and Computations
k ::= true | false | () | ...
e ::= x | k | op(e1, ... , en) | λx :T .e | ⟨T1 ⇐ T2⟩ℓ |

e1 e2 | e1 == e2 | do c | λr .e | e{r}
d ::= refre | !e | e1 := e2
c ::= return e | x ← e1; c2 | x ⇐ d1; c2 | νr . c | assert (c1)ℓ; c2

Figure 2. Program syntax in λH
ref .

for contracts and assignment. Function types x :T → T ′, refine-
ment types {x :T | c}, and Hoare types {A1}x :T{A2}ϱ bind vari-
able x in T ′, c, and A2, respectively. Region polymorphic types
∀r .T bind region r in T .

Terms are usual lambda terms with constants, casts, pointer
equality tests, thunks, region abstractions and applications. Con-
stants include, at least, Boolean values true and false and the unit
value (). A pointer equality test expression e1 == e2 returns whether
two pointers e1 and e2 are equal. λr .e , where r is bound in e , ab-
stracts regions and e{r} applies region abstraction e to region r .

Computations consist of return, bind, operations on references,
let-region, and assertion. Region r in refre specifies where a mem-
ory cell storing e is allocated. x ← e1; c and x ⇐ d1; c bind
variable x in c; νr . c binds r in c.

Finally, we introduce usual notations. We write [e ′/x] e for
capture avoiding substitution of e ′ for x in e . α-equivalent terms
are identified and a term without free term variables is said to be
closed. These notions are applied to other syntactic categories such
as computations and types. We use function frv (c), which returns
the set of free region variables in computation c. As shorthand, we
write: T1 → T2 for x :T1 → T2 when x does not occur free in
T2; and let x = e1 in e2 for (λx :T .e2) e1 where T is an adequate
type.

4. Type System
This section introduces a type system for programs in λH

ref . The
goal of the type system is to guarantee that well-typed programs
can’t go wrong except for contract violations, i.e., they evaluate
to values, raise exceptions by cast or assertion failure, or diverge.
The type system is not strong enough to exclude possible contract
violations; however, it does guarantee that result values and result
stores of well-typed programs satisfy the contracts on their types.
The type system has five judgments defined mutually recursively
by rules in Figure 3: typing context well-formedness γ ⊢ Γ, type
well-formedness γ; Γ ⊢ T , assertion well-formedness γ; Γ ⊢ϱ
A (where ϱ stands for effects which may occur in computations
of A), term typing judgment γ; Γ ⊢ e : T , and computation
typing judgment γ; Γ ⊢ c : {A1}x :T{A2}ϱ. Typing contexts
Γ, sequences of term and region variable declarations, are defined
in a standard manner:

Γ ::= ∅ | Γ, x :T | Γ, r
Region variables declared in Γ are introduced by region abstrac-
tion, whereas those in γ are by let-region. The two kinds of region
variables are distinguished to reflect the fact that ν-bound variables

5 2016/10/13

γ ⊢ Γ γ; Γ ⊢ T γ; Γ ⊢ϱ A Well-Formedness Rules for Typing Contexts, Types, and Assertions

γ ⊢ ∅ WF EMPTY
γ ⊢ Γ γ; Γ ⊢ T

γ ⊢ Γ, x :T
WF EXTENDVAR

γ ⊢ Γ r /∈ γ

γ ⊢ Γ, r
WF EXTENDREGION

γ ⊢ Γ

γ; Γ ⊢ B
WF BASE

γ; Γ ⊢ T1 γ; Γ, x :T1 ⊢ T2

γ; Γ ⊢ x :T1 → T2
WF FUN

γ; Γ ⊢ T γ; Γ, x :T ⊢ c : {⊤}y :bool{⊤}⟨∅,∅⟩

γ; Γ ⊢ {x :T | c} WF REFINE

γ; Γ ⊢ T r ∈ γ ∪ regions (Γ)

γ; Γ ⊢ RefrT
WF REF

γ; Γ ⊢ϱ A1 γ; Γ ⊢ T γ; Γ, x :T ⊢ϱ A2

γ; Γ ⊢ {A1}x :T{A2}ϱ
WF HOARE

γ; Γ, r ⊢ T

γ; Γ ⊢ ∀r .T WF RFUN

γr ∪ γw ⊆ γ ∪ regions (Γ)

γ; Γ ⊢⟨γr,γw⟩ ⊤
WF EMPTYASSERT

γ; Γ ⊢⟨γr,γw⟩ A γ; Γ ⊢ c : {A}x :bool{⊤}⟨γr,∅⟩

γ; Γ ⊢⟨γr,γw⟩ A, c
WF EXTENDASSERT

γ; Γ ⊢ e : T Term Typing Rules

γ ⊢ Γ x :T ∈ Γ

γ; Γ ⊢ x : T
T VAR

γ ⊢ Γ

γ; Γ ⊢ k : ty (k)
T CONST

γ ⊢ Γ ty (op) = x1:T1 → ...→ xn :Tn → T
∀ i ∈ {1, ... ,n}. γ; Γ ⊢ ei : [e1/x1, ... , ei−1/xi−1]Ti

γ; Γ ⊢ op(e1, ... , en) : [e1/x1, ... , en/xn]T
T OP

γ; Γ, x :T1 ⊢ e : T2

γ; Γ ⊢ λx :T1.e : x :T1 → T2
T ABS

γ; Γ ⊢ T1 γ; Γ ⊢ T2 T1 ∥ T2

γ; Γ ⊢ ⟨T1 ⇐ T2⟩ℓ : T2 → T1
T CAST

γ; Γ ⊢ c : {A1}x :T{A2}ϱ

γ; Γ ⊢ do c : {A1}x :T{A2}ϱ
T DO

γ; Γ ⊢ e1 : x :T1 → T2 γ; Γ ⊢ e2 : T1

γ; Γ ⊢ e1 e2 : [e2/x]T2
T APP

γ; Γ ⊢ e1 : RefrT1 γ; Γ ⊢ e2 : RefsT2 T1 ∥ T2

γ; Γ ⊢ e1 == e2 : bool
T EQ

γ; Γ, r ⊢ e : T

γ; Γ ⊢ λr .e : ∀r .T T RABS
γ; Γ ⊢ e : ∀s.T r ∈ γ ∪ regions (Γ)

γ; Γ ⊢ e{r} : [r/s]T
T RAPP

γ; Γ ⊢ c : {A1}x :T{A2}ϱ Computation Typing Rules

γ; Γ ⊢ e : T γ; Γ, x :T ⊢ϱ A

γ; Γ ⊢ return e : {[e/x]A}x :T{A}ϱ CT RETURN

γ; Γ ⊢ e1 : {A1}y :T1{A3}ϱ1 γ; Γ ⊢ {A1}x :T2{A2}ϱ1∪ϱ2

γ; Γ, y :T1 ⊢ c2 : {A3}x :T2{A2}ϱ2

γ; Γ ⊢ y ← e1; c2 : {A1}x :T2{A2}ϱ1∪ϱ2
CT BIND

γ; Γ ⊢ e : T ′ γ; Γ ⊢ {A1}x :T{A2}⟨γr,γw∪{r}⟩

γ; Γ, y :RefrT
′ ⊢ c : {A1}x :T{A2}⟨γr,γw⟩

γ; Γ ⊢ y ⇐ refre; c : {A1}x :T{A2}⟨γr,γw∪{r}⟩ CT NEW

γ; Γ ⊢ e : RefrT
′ γ; Γ ⊢ {A1}x :T{A2}⟨γr∪{r},γw⟩

γ; Γ, y :T ′ ⊢ c : {A1}x :T{A2}⟨γr,γw⟩

γ; Γ ⊢ y ⇐ !e; c : {A1}x :T{A2}⟨γr∪{r},γw⟩
CT DEREF

γ; Γ ⊢ e1 : RefrT
′ γ; Γ ⊢ {A1}x :T{A2}⟨γr,γw∪{r}⟩

γ; Γ ⊢ e2 : T ′ γ; Γ, y :unit ⊢ c3 : {⊤}x :T{A2}⟨γr,γw⟩

γ; Γ ⊢ y ⇐ e1 := e2; c3 : {A1}x :T{A2}⟨γr,γw∪{r}⟩ CT ASSIGN
γ; Γ ⊢ c2 : {A1, c1}x :T{A2}ϱ

γ; Γ ⊢ assert (c1)ℓ; c2 : {A1}x :T{A2}ϱ
CT ASSERT

γ; Γ ⊢ {A1}x :T{A2}ϱ

γ, r ; Γ ⊢ c : {A1}x :T{A2}ϱ⊎{r}

γ; Γ ⊢ νr . c : {A1}x :T{A2}ϱ
CT LETREGION

γ; Γ ⊢ c : {A′
1}x :T{A′

2}ϱ A′
1 ⊆ A1

A2 ⊆ A′
2 γ; Γ ⊢ {A1}x :T{A2}ϱ

γ; Γ ⊢ c : {A1}x :T{A2}ϱ
CT WEAK

Figure 3. Type system for λH
ref .

are never replaced by substitution. We assume that term and re-
gion variables declared in typing contexts are distinct and write
regions (Γ) for the set of region variables declared in Γ.

Inference rules for typing context and type well-formedness
judgments are standard [3, 18, 38, 39] or straightforward except
(WF REFINE) and (WF HOARE). The rule (WF REFINE) means
that refinements must be pure (⟨∅, ∅⟩) and cannot assume but do not
have to ensure anything. The rule (WF HOARE) states that the pre-
and postcondition of a Hoare type with effect ϱ should be no more
effectful than ϱ.

Assertion well-formedness is derived by two rules. In the rule
(WF EXTENDASSERT), which is applied to append another con-
dition c to a sequence A, the second premise means that: the ap-
pended condition c can assume that the preceding conditions A
hold, has to be read-only, and does not have to ensure anything.

Typing rules for terms are syntax-directed and almost standard.
The rules (T CONST) and (T OP) use metafunction ty , which re-

turns the type of each constant and each operator. The rule (T APP)
substitutes an argument term e2 for variable x bound in return type
T2. This substitution causes no problems because terms in our cal-
culus are almost pure—i.e., they return values or raise exceptions—
and it is known that some computational effects, such as raise of
uncatchable exceptions and nontermination, do not cause problems
in manifest contracts [3, 39]. The rule (T CAST) requires the source
and target types of a well-typed cast to be well formed and compat-
ible [19, 25]. Intuitively, a type T1 is compatible with another type
T2 when they are identified after dropping all contracts and region
information. Formally, compatibility ∥ is the congruence satisfy-
ing {x :T | c} ∥ T , RefrT ∥ RefsT , and {A11}x :T{A12}ϱ1 ∥
{A21}x :T{A22}ϱ2 . The rule (T EQ) allows terms typed at com-
patible reference types to be compared because the same pointer
can be cast to different (reference) types; note that T1 ∥ T2 iff
RefrT1 ∥ RefsT2 for any r and s . The compatibility check in

6 2016/10/13

(T CAST) and (T EQ) reports casts that always fail and equality
tests that always return false without evaluating.

Computation typing rules are more interesting. The typing rule
(CT RETURN) gives return e the Hoare type {[e/x]A}x :T{A}ϱ
where T is the type of e and ϱ is effects which may occur in
A. If [e/x]A is satisfied, return e results in a store satisfying
A because x in A denotes the value of e and return e does not
manipulate stores. The rule (CT BIND) for x ← e1; c2 requires
e1 to evaluate to a thunk and allows the remaining computation
c2 to refer to, by x , the result of computing the thunk. Since
x ← e1; c2 involves effects of the thunk and c2, the effect of the
result type is the union ϱ1 ∪ ϱ2 of effects of e1 and c2. Satisfac-
tion of the precondition of c2 has to be promised by the postcon-
dition of the thunk of e1 because c2 will be computed immedi-
ately after executing the thunk. Moreover, (CT BIND) demands
that the result type {A1}x :T2{A2}ϱ1∪ϱ2 be well formed under
the typing context Γ without y since y is a variable locally bound
by bind—other typing rules need similar conditions. The typing
rules (CT NEW), (CT DEREF), and (CT ASSIGN) are applied to
a computation with memory allocation, dereference, and assign-
ment, respectively. In these rules, the corresponding effect is added
to the result Hoare type. The first two rules are not surprising. The
rule (CT ASSIGN) says that the remaining computation c3 can-
not assume anything (hence the empty condition) because the as-
signment could invalidate the precondition A1—for example, the
condition x ⇐ !e; return x = 0 does not hold after executing
e := 2. In general, we do not know which conditions still hold and
which conditions do not, so we suppose the worst-case scenario,
that is, that all conditions are invalidated. In fact, we can do bet-
ter because if references manipulated by assignment are allocated
at r , conditions which do not involve effects including r will not
be invalidated—we discuss this recovery of preconditions of the
remaining computation in Section 7. Finally, the result of assign-
ment is the unit value, so the typing context in the third premise of
(CT ASSIGN) includes y :unit. The rule (CT LETREGION) is ap-
plied to let-region νr . c and requires the body c to be well typed
under the region set including region r . The well-formedness of
the result Hoare type under the region set without r ensures that
access to r is not observed by clients. An assertion assert (c1)

ℓ; c2
is typed by (CT ASSERT), which allows the remaining compu-
tation c2 to assume that the condition c1 holds since its satis-
faction is ensured at run time; well typedness of c1 is ensured
by the preceding typing derivation. The last rule (CT WEAK) al-
lows strengthening preconditions, weakening postconditions, and
permuting them. The partial order A1 ⊆ A2 over conditions
means that, for any c in A1, there exist some A and A′ such that
A2 = A, c,A′. Although (CT WEAK) manipulates conditions
syntactically, static verification in Section 7 enables more flexi-
ble manipulation. For example, the technique in that section allows
computations of {⊤}t :tbl{x ⇐ !t ; return (mem x "foo")}ϱ to be
regarded as ones of {⊤}t :tbl{x ⇐ !t ; return (length x > 0)}ϱ
(if it can be proven that the former postcondition implies the lat-
ter), which cannot be derived from (CT WEAK). Finally, we make
a remark about effect weakening—well typed computations can be
given a Hoare type with more effects. Although there is no rule for
effect weakening, it is admissible:

Lemma 1 (Effect Weakening). If ⟨γr, γw⟩ ⊆ ⟨γr′, γw′⟩ and
γr

′, γw
′ ⊆ γ ∪ regions (Γ) and γ; Γ ⊢ c : {A1}x :T{A2}⟨γr,γw⟩,

then γ; Γ ⊢ c : {A1}x :T{A2}⟨γr
′,γw

′⟩.

5. Semantics
In this section, we define small-step call-by-value operational se-
mantics for λH

ref . The semantics mainly consists of two relations,
reduction relation ⇝ for terms and computation relation −→ for

computations. In what follows, we begin with describing intuition
about run-time checking introduced in this work—casts for refer-
ence types and Hoare types, and contract checks with local regions
and local stores. Then, we formalize the semantics after extending
the program syntax with run-time terms and computations.

5.1 Run-time Checking for References and Thunks
In this section, we outline how casts for reference types and
Hoare types work. Casts for other types are similar to the previ-
ous work [3, 15, 25, 38, 39].

Casts between reference types with the same region generate
reference guards T1 ⇐ℓ T2 : v , which are a key construct in the
earlier work on dynamic checking with references [11, 16, 20, 44]:

⟨RefrT1 ⇐ RefrT2⟩ℓ v ⇝ T1 ⇐ℓ T2 : v R REF

Otherwise, if the regions are different, the cast fails:

⟨RefrT1 ⇐ RefsT2⟩ℓ v ⇝ ⇑ℓ (where r ̸= s) R REFFAIL

Reference guards are “proxies” to monitor dereference and assign-
ment operations at run time so that they behave as the target refer-
ence type. When reference guard T1 ⇐ℓ T2 : v is dereferenced,
the run-time system checks that the contents of v can work as T1:

x ⇐ !(T1 ⇐ℓ T2 : v); c −→ y ⇐ !v ; let x = ⟨T1 ⇐ T2⟩ℓ y ; c.
When it is assigned a value v ′ of T1, it is checked that v ′ can be
assigned to v :

x ⇐ (T1 ⇐ℓ T2 : v) := v ′; c −→ x ⇐ v := ⟨T2 ⇐ T1⟩ℓ v ′; c.

Casts between Hoare types are similar to casts between func-
tion types [14, 15] in the sense that computations are functions over
states. Since a cast is a term-level construct, the result of cast appli-
cation ⟨{A11}x :T1{A12}ϱ1 ⇐ {A21}x :T2{A22}ϱ2⟩ℓ v (where
v ’s type is {A21}x :T2{A22}ϱ2) is a thunk, which triggers execu-
tion of v with additional checks: it is ensured that the thunk does
not hide the effects of v ; the precondition A21 of v is checked be-
fore its execution; the result of v is cast back to T1 from T2; and,
finally, the postcondition A12 is checked. Formally, the cast appli-
cation reduces as follows:

⟨{A11}x :T1{A12}ϱ1 ⇐ {A21}x :T2{A22}ϱ2⟩ℓ v ⇝
do assert (A21)

ℓ; y ← v ; let x = ⟨T1 ⇐ T2⟩ℓ y ;
assert (A12)

ℓ; return x (where ϱ2 ⊆ ϱ1) R HOARE

where y is a fresh variable and notation assert (A)ℓ; c means, for
A = c1, ..., cn , assert (c1)ℓ; ...; assert (cn)ℓ; c. If ϱ1 is not more
effectful than ϱ2, the cast fails:

⟨{A11}x :T1{A12}ϱ1 ⇐ {A21}x :T2{A22}ϱ2⟩ℓ v ⇝ ⇑ℓ
(where ϱ2 ̸⊆ ϱ1) R HOAREFAIL

5.2 Contract Checking with Local Stores
Effects for references at locally introduced regions in contracts
must not be observed by programs, which is important especially
for showing correctness of static verification in Section 7. Unfor-
tunately, this request makes it difficult to apply the small-step op-
erational semantics of the previous work on a region calculus [7],
where reduction of let-regions changes program stores, to our work
because it is unclear how to distinguish changes to program stores
by programs and those by contracts.

Our approach to the request is to introduce local stores to inter-
mediate states of contract checking and design a semantics where
memory allocation and assignment operations with respect to lo-
cally introduced regions in contracts are applied to the local stores.
Thanks to local stores, during contract checking, program stores do
not change and, as a result, effects involved by contracts are not
observed.

7 2016/10/13

Stores, Values, Terms, Computations, and Checking States
a, b ::= memory addresses µ ::= {ai@ri 7→ vi}i

v ::= k | λx :T .e | ⟨T1 ⇐ T2⟩ℓ | do c | λr .e |
a@r | T1 ⇐ℓ T2 : v

e ::= ... | a@r | T1 ⇐ℓ T2 : v |
⇑ℓ | ⟨⟨ {x :T | c}, e ⟩⟩ℓ | ⟨{x :T | c}, p, v⟩ℓ

c ::= ... | ⇑ℓ | ⟨assert (c1), p2⟩ℓ; c3 p ::= νγ.⟨µ | c⟩

Figure 4. Run-time syntax in λH
ref .

Formally, we introduce an expression of the form νγ.⟨µ |
c⟩ (called checking state), where γ, µ, and c are a set of local
regions, a local store, and a computation, respectively, to express
a program state during contract checking. Starting with checking a
contract c, the run-time system generates an initial checking state
ν∅.⟨∅ | c⟩, where there are no locally introduced regions and no
locally allocated references, and then starts computing c. During
the check, newly introduced regions are added to the local regions,
new memory cells are allocated to the local store, and dereference
and assignment for memory cells at the local regions are applied to
the local store. If c results in return true, the check succeeds; if c
results in return false, it fails.

5.3 Definition
5.3.1 Run-time Syntax
We show the run-time syntax in Figure 4. We use a and b to denote
memory addresses. The definition of values v is not surprising
except that memory addresses are given regions to indicate which
region they are allocated at. Stores, ranged over by µ, are finite
mappings from pairs of a memory address and a region to closed
values. We write µ1 ⊎ µ2 for the concatenation of µ1 and µ2 with
disjoint domains. Checking states νγ.⟨µ | c⟩, denoted by p, bind γ
in µ and c.

The forms of run-time terms are straightforward except for the
last two constructs, which represent intermediate states of refine-
ment checking. A waiting check ⟨⟨ {x :T | c}, e ⟩⟩ℓ, introduced by
Sekiyama et al. [38] to prove a critical property of a manifest con-
tract calculus with Belo et al.’s approach [3, 18], waits for evalu-
ation of e before starting a check that the value of e satisfies the
contract c. An active check ⟨{x :T | c}, p, v⟩ℓ is verifying that the
value v satisfies the refinement c; p is an intermediate state of a
check which has been started by running [v/x] c. If the interme-
diate computation of p results in true, the active check evaluates to
v ; otherwise, if it results in false, ⇑ℓ will be raised.

Run-time computations have two additional constructs: excep-
tion ⇑ℓ and assertion intermediate state ⟨assert (c1), p2⟩ℓ; c3 of a
check of contract c1: if the check succeeds, the remaining compu-
tation c3 will be executed, and if it fails, ⇑ℓ will be raised.

5.3.2 Reduction
The reduction ⇝, defined over closed run-time terms, is given
by using rules shown at the top of Figure 5, together with rules
presented in Section 5.1. The first three rules are standard in lambda
calculi with call-by-value semantics, or straightforward. [[−]] in
(R OP) assigns a function over base type values to an operation
op. Reduction of pointer equality tests uses ungrd to peel off all
reference guards:

ungrd (a@r) = a@r ungrd (T1 ⇐ℓ T2 : v) = ungrd (v)

The next several rules are cast reduction rules, some of which
are similar to the ones in the previous work [38, 39]. The rule
(R RFUN) generates a region abstraction that wraps the target

value, like cast reduction for type abstractions [3, 39]. The rule
(R FUN) produces a “function proxy” [5, 19], which applies the
contravariant cast on argument types to an argument, passes its re-
sult to the original function, and applies the covariant cast on return
types to the value returned by the original function. To avoid cap-
ture of variable x bound in the source return type, it is renamed with
a fresh variable y . By (R FORGET) and (R PRECHECK), a cast
application for refinement types first forgets all refinements in the
source type and then reduces to a waiting check which verifies that
the target value satisfies the outermost contract after checks of in-
ner contracts. The side condition in (R PRECHECK) makes the se-
mantics deterministic. After checks of inner contracts, (R CHECK)
produces an active check to verify the outermost contract. The rule
(R CHECKING) reduces the active check by evaluating the con-
tract checking state under the empty store—we see how checking
states reduce later—and exceptions that happen during the check
are lifted up by (R BLAME). If the checking succeeds, the active
check returns the target value (R OK); otherwise, if it fails, the
check raises ⇑ℓ (R FAIL).

5.3.3 Computation
The computation −→, defined over pairs of a store and a closed
run-time computation, is given by rules at the bottom of Figure 5
and auxiliary rules in the middle of Figure 5 to execute commands.

The rules (C RED) and (C COMPUT) are applied to reduce sub-
terms and subcomputations of a computation, using computation
contexts on terms, ranged over by C e:

E ::= [] | op(v1, ... , vn ,E , e1, ... , en) | E e2 | v1 E |
E == e2 | v1 == E | E{r} | ⟨⟨ {x :T | c1},E ⟩⟩ℓ

D ::= refrE | !E | E := e2 | v1 := E
C e ::= returnE | x ← E ; c2 | x ⇐ D ; c2

The definition above means that subterms reduce from left to right.
Exceptions raised by subterms and subcomputations are lifted

up by (C RBLAME) and (C CBLAME), respectively. The rule
(C CBLAME) also lifts up exceptions raised by contracts, using
computation contexts on exceptions.

C l ::= x ← do [] ; c2 | ⟨assert (c1), νγ.⟨µ | []⟩⟩ℓ; c3

The rule (C RETURN) performs, when term e1 of bind x ← e1; c2
reduces to a thunk (by (C RED)) and the thunk returns a value
v (by (C COMPUT)), the remaining computation [v/x] c2. Let-
regions are lifted up to checking states by (C REGION) in order
to propagate newly created regions. For example, checking state
νγ.⟨µ | ...νr . c′...⟩, where the let-region will evaluate, go on to
νγ.⟨µ | νrc′...⟩ by (C REGION). The rule (C COMMAND),
applied to execute commands, rests on the command relation ↣,
which transforms a command to a computation with an adequate
action by rules shown in the middle of Figure 5. The first three
command rules are standard except for use of regions. The last two
rules are used for dereference from and assignment to reference
guards, as described in Section 5.1; there variable x can be arbi-
trarily chosen since commands are closed.

Other computation rules are applied to check contracts with
assertion. The rule (C ASSERT) produces an assertion intermediate
state, which proceeds with the program store by (C CHECKING)
and: if the checking succeeds, the remaining computation c2 starts
(C OK); otherwise, if it fails, ⇑ℓ is raised (C FAIL).

Finally, computation of checking state νγ.⟨µ1 | c1⟩ under
global store µ proceeds by two rules. (P COMPUT) computes c1
under the concatenation of the program store and the local store.
The result store µ⊎µ2 means that the global store remains the same
and, although dereference from the global is possible, memory
allocation and assignment cannot take place only on it. The rule

8 2016/10/13

e1 ⇝ e2 Reduction Rules

op(k1, ... , kn) ⇝ [[op]](k1, ... , kn) R OP (λx :T .e) v ⇝ [v/x] e R BETA (λr .e){s} ⇝ [s/r] e R RBETA
v1 == v2 ⇝ true (where ungrd (v1) = ungrd (v2)) R EQ v1 == v2 ⇝ false (where ungrd (v1) ̸= ungrd (v2)) R NEQ

⟨B ⇐ B⟩ℓ v ⇝ v R BASE ⟨∀r .T1 ⇐ ∀r .T2⟩ℓ v ⇝ λr .⟨T1 ⇐ T2⟩ℓ (v{r}) R RFUN

⟨x :T11 → T12 ⇐ x :T21 → T22⟩ℓ v ⇝ λx :T11.let y = ⟨T21 ⇐ T11⟩ℓ x in (⟨T12 ⇐ [y/x]T22⟩ℓ (v y))
(where y is fresh) R FUN

⟨T1 ⇐ {x :T2 | c2}⟩ℓ v ⇝ ⟨T1 ⇐ T2⟩ℓ v R FORGET ⟨{x :T1 | c1} ⇐ T2⟩ℓ v ⇝ ⟨⟨ {x :T1 | c1}, ⟨T1 ⇐ T2⟩ℓ v ⟩⟩ℓ
(where T2 ̸= {y :T | c} for any y , T , and c) R PRECHECK

⟨⟨ {x :T | c}, v ⟩⟩ℓ ⇝ ⟨{x :T | c}, ν∅.⟨∅ | [v/x] c⟩, v⟩ℓ R CHECK ⟨{x :T | c}, νγ.⟨µ | ⇑ℓ′⟩, v⟩ℓ ⇝ ⇑ℓ′ R BLAME

⟨{x :T | c}, νγ.⟨µ | return true⟩, v⟩ℓ ⇝ v R OK ⟨{x :T | c}, νγ.⟨µ | return false⟩, v⟩ℓ ⇝ ⇑ℓ R FAIL

⟨{x :T | c}, p, v⟩ℓ ⇝ ⟨{x :T | c}, p′, v⟩ℓ (where ∅ | p ↪→ p′) R CHECKING

µ1 | d1 ↣ µ2 | c2 Command Rules

µ | refrv ↣ µ ⊎ {a@r 7→ v} | return a@r C NEW µ ⊎ {a@r 7→ v ′} | a@r := v ↣ µ ⊎ {a@r 7→ v} | return () C ASSIGN

µ | !a@r ↣ µ | returnµ(a@r) C DEREF µ | !(T1 ⇐ℓ T2 : v) ↣ µ | x ⇐ !v ; return (⟨T1 ⇐ T2⟩ℓ x) C GDEREF

µ | (T1 ⇐ℓ T2 : v2) := v1 ↣ µ | x ⇐ v2 := (⟨T2 ⇐ T1⟩ℓ v1); return () C GASSIGN

µ1 | c1 −→ µ2 | c2 Computation Rules

e1 ⇝ e2

µ | C e [e1] −→ µ | C e [e2]
C RED

µ1 | c1 −→ µ2 | c′1
µ1 | x ← do c1; c2 −→ µ2 | x ← do c′1; c2

C COMPUT

µ | C e [⇑ℓ] −→ µ | ⇑ℓ C RBLAME µ | x ← do return v1; c2 −→ µ | [v1/x] c2 C RETURN
µ | C l [⇑ℓ] −→ µ | ⇑ℓ C CBLAME µ | x ← (do νr . c1); c2 −→ µ | νr . (x ← do c1; c2) (where r /∈ frv (c2)) C REGION

µ1 | d1 ↣ µ2 | c1
µ1 | x ⇐ d1; c2 −→ µ2 | x ← do c1; c2

C COMMAND
µ | p1 ↪→ p2

µ | ⟨assert (c1), p1⟩ℓ; c2 −→ µ | ⟨assert (c1), p2⟩ℓ; c2
C CHECKING

µ | assert (c1)ℓ; c2 −→ µ | ⟨assert (c1), ν∅.⟨∅ | c1⟩⟩ℓ; c2 C ASSERT µ | ⟨assert (c1), νγ.⟨µ | return true⟩⟩ℓ; c2 −→ µ | c2 C OK
µ | ⟨assert (c1), νγ.⟨µ | return false⟩⟩ℓ; c2 −→ µ | ⇑ℓ C FAIL

µ | p1 ↪→ p2 Checking State Computation Rules
µ ⊎ µ1 | c1 −→ µ ⊎ µ2 | c2

µ | νγ.⟨µ1 | c1⟩ ↪→ νγ.⟨µ2 | c2⟩
P COMPUT µ | νγ.⟨µ′ | νr . c⟩ ↪→ ν(γ, r).⟨µ′ | c⟩ P REGION

Figure 5. Operational semantics.

(P REGION) adds regions bubbled up by (C REGION) to the local
regions.

Top-level programs are executed in the form of checking
states. We call computations c such that {r}; ∅ ⊢ c :
{⊤}x :T{A2}⟨{r},{r}⟩ programs. A program c with designated
region r , which stands for the global store, is executed by starting
computation from ν∅.⟨∅ | νr . c⟩ and program execution is per-
formed by evaluation of checking states µ | p1 ↪→∗ p2, which
means that there are p′

1, ..., p
′
n such that µ | p1 ↪→ p′

1, µ | p′
1 ↪→

p′
2, ..., µ | p′

n ↪→ p2. Thus, the program evaluation that the pro-
gram c results in v is denoted by ∅ | ν∅.⟨∅ | νr . c⟩ ↪→∗ νγ.⟨µ |
return v⟩, where µ is the result global store.

6. Type Soundness
Following Belo et al. [3], which avoided semantic type soundness
proofs, we show type soundness of λH

ref via standard syntactic
approaches (namely, progress and preservation [51]). In particular,
we show that (1) a well-typed program returns a value, raises an
exception, or diverges and (2) the result value and the result store
of a well-typed program satisfies contracts on its type.

6.1 Run-time Type System
To prove type soundness, we extend the type system in Section 4 to
deal with run-time terms and computations. As usual, we introduce
store typing contexts, ranged over by Σ, to record the type of the

value that each reference points to. They are defined as follows:

Σ ::= ∅ | Σ, a@r :T

We assume that references declared in store typing contexts are
distinct and write Σ,Σ′ for the concatenation of Σ and Σ′.

As shown in Figure 6, the run-time type system consists of
extensions of judgments in Section 4 with store typing contexts—
in addition, the computation typing judgment µ; Σ; γ; Γ ⊢ c :
{A1}x :T{A2}ϱ refers to µ denoting current stores—and two new
judgments for checking states µ; Σ; γ ⊢ p : T γ′

, which means
that the computation of p may refer to memory cells at γ′ and
returns a value of T (if any) under the store µ together with the
local store of p, and stores γ ⊢ µ : Σγ′

, which means that all
memory cells in store µ are allocated at γ′ and their contents are
assigned types by Σ. The computation and checking state typing
judgments need a current store µ for simulating contract checks
in the type system; see (CT CHECK) below for details. In what
follow, we write µ |= A when, for any c ∈ A, µ | ν∅.⟨∅ | c⟩ ↪→∗

νγ′.⟨µ′ | return true⟩.
Figure 6 shows selected rules for well-formedness and typ-

ing judgments. The rules for typing context well-formedness, type
well-formedness, and assertion well-formedness are similar to the
rules in Figure 3 except for use of store typing contexts. Since
contracts are specifications, refinements, pre- and postconditions
should not depend on a current store, so they must be well typed
under the empty store.

9 2016/10/13

Σ; γ ⊢ Γ Σ; γ; Γ ⊢ T Σ; γ; Γ ⊢ϱ A Σ; γ; Γ ⊢ e : T Run-time Term Typing Rules (Selected)

Σ; γ ⊢ Γ a@r :T ∈ Σ Σ; γ; ∅ ⊢ RefrT

Σ; γ; Γ ⊢ a@r : RefrT
T ADDRESS

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ v : RefrT2 T1 ∥ T2 Σ; γ; ∅ ⊢ RefrT1

Σ; γ; Γ ⊢ T1 ⇐ℓ T2 : v : RefrT1
T GUARD

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ T

Σ; γ; Γ ⊢ ⇑ℓ : T
T BLAME

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ {x :T | c} Σ; γ; ∅ ⊢ e : T

Σ; γ; Γ ⊢ ⟨⟨ {x :T | c}, e ⟩⟩ℓ : {x :T | c}
T WCHECK

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ {x :T | c} Σ; γ; ∅ ⊢ v : T

∅; Σ; γ ⊢ p : bool∅ ∅ | ν∅.⟨∅ | [v/x] c⟩ ↪→∗ p

Σ; γ; Γ ⊢ ⟨{x :T | c}, p, v⟩ℓ : {x :T | c}
T ACHECK

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ {x :T | c} Σ; γ; ∅ ⊢ v : T ∅ |= [v/x] c

Σ; γ; Γ ⊢ v : {x :T | c}
T EXACT

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ v : {x :T | c}
Σ; γ; Γ ⊢ v : T

T FORGET
Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ e : T1 T1 ≡ T2 Σ; γ; ∅ ⊢ T2

Σ; γ; Γ ⊢ e : T2
T CONV

µ; Σ; γ; Γ ⊢ c : {A1}x :T{A2}ϱ Run-time Computation Typing Rules (Selected)

Σ; γ ⊢ Γ Σ; γ; ∅ ⊢ {A1}x :T{A2}ϱ

µ; Σ; γ; Γ ⊢ ⇑ℓ : {A1}x :T{A2}ϱ
CT BLAME

Σ; γ ⊢ Γ µ; Σ; γ; ∅ ⊢ c1 : {A1}y:T1{A3}ϱ1
∅; Σ; γ; y :T1 ⊢ c2 : {A3}x :T2{A2}ϱ2 Σ; γ; ∅ ⊢ {A1}x :T2{A3}ϱ1∪ϱ2

µ; Σ; γ; Γ ⊢ y ← do c1; c2 : {A1}x :T2{A2}ϱ1∪ϱ2
CT CBIND

Σ; γ ⊢ Γ ∅; Σ; γ; ∅ ⊢ c3 : {A1, c1}x :T{A2}⟨γr,γw⟩ µ; Σ; γ ⊢ p2 : boolγr µ | ν∅.⟨∅ | c1⟩ ↪→∗ p2

µ; Σ; γ; Γ ⊢ ⟨assert (c1), p2⟩ℓ; c3 : {A1}x :T{A2}⟨γr,γw⟩
CT CHECK

Σ; γ ⊢ Γ µ; Σ; γ; ∅ ⊢ c : {A11}x :T1{A12}ϱ {A11}x :T1{A12}ϱ ≡ {A21}x :T2{A22}ϱ Σ; γ; ∅ ⊢ {A21}x :T2{A22}ϱ

µ; Σ; γ; Γ ⊢ c : {A21}x :T2{A22}ϱ
CT CONV

µ; Σ; γ ⊢ p : Tγ′
γ ⊢ µ : Σγ′

Checking State Typing and Store Well-Formedness Rules

γ, γ′ ⊢ µ′ : (Σ,Σ′)γ
′

dom (µ′) = dom (Σ′) µ ⊎ µ′; Σ,Σ′; γ, γ′; ∅ ⊢ c′ : {A1}x :T{⊤}⟨γ
′∪γ′′,γ′⟩ µ ⊎ µ′ |= A1

µ; Σ; γ ⊢ νγ′.⟨µ′ | c′⟩ : Tγ′′ PT

dom (µ) = dom (Σ |γ′) ∀ a@r ∈ dom (µ).Σ; γ; ∅ ⊢ µ(a@r) : Σ(a@r)

γ ⊢ µ : Σγ′ WF STORE

Figure 6. Run-time typing rules.

There are several additional typing rules for run-time terms.
In these typing rules, typing contexts in their premises are empty
since run-time terms are closed; however, the conclusions allow
nonempty typing contexts because run-time terms can be put under
binders by substitution in (T APP). The first five typing rules are
syntax-directed. The rule (T GUARD) requires the contents types
of a reference guard to be compatible since the reference guard
uses casts between these types when dereference and assignment
are applied. Exceptions can be typed at any well-formed type by
(T BLAME)—it is important for showing preservation. The rule
(T ACHECK) requires p in an active check to return Boolean val-
ues (if any) in the fourth premise and to be an intermediate state
of the checking in the last premise. The rule (T EXACT) allows
values of T satisfying a contract c to be typed at the refinement
type {x :T | c}. By the rule (T FORGET), which corresponds with
(R FORGET), we can peel off the outermost contract of a refine-
ment type. The final rule (T CONV) is introduced by Belo et al. [3]
to show subject reduction in manifest contracts with dependent
function types. To see its motivation, let us consider well typed
term application v1 e2. From (T APP), the type of v1 e2 would be
[e2/x]T2 for some x and T2. If e2 reduces to term e ′

2, the type
of the application changes to [e ′

2/x]T2, which is different from
[e2/x]T2 in general. Thus, subject reduction would not hold if
there are no ways to connect [e2/x]T with [e ′

2/x]T . In fact, the
rule (T CONV) does connect these two types by allowing terms to
be retyped at different, but equivalent types. The type equivalence,
denoted by ≡, is given as follows:

Definition 1 (Type Equivalence). T1 ⇛ T2 iff there exist some
T , x , E , e1, and e2 such that T1 = [E [e1]/x]T , T2 =

[E [e2]/x]T , and e1 ⇝ e2. Type equivalence ≡ is the symmetric
and transitive closure of⇛.

Computation typing rules are also added. The rule
(CT CBIND), which looks similar to (CT BIND), accepts
bind constructs x ← do c1; c2 where c1 and c2 are typed under the
current store µ and the empty store, respectively; the differences
of stores in c1 and c2 stems from the fact that c1 will be executed
under µ but c2 may or may not (since c1 can mutate the store).
Similarly, remaining computations in other rules are also required
to be typed under the empty store. The rule (CT CHECK), applied
to assertion checks, requires the checking state p to be well typed
under the current store µ in the third premise and be an actual
intermediate state in the last premise. The final rule (CT CONV)
is needed because thunks can be typed at equivalent types by
(T CONV).

Store well-formedness is derived by (WF STORE), which de-
mands that all memory cells in well-formed stores be allocated at
given regions γ′ and their contents have types given by store typing
contexts; Σ |γ′ is the same store typing context as Σ except that its
domain is restricted to addresses with regions in γ′.

Finally, using a local store typing context Σ′, the rule (PT) gives
type T to checking state νγ′.⟨µ′ | c′⟩ if and only if the followings
hold. First, the local store µ′ maps only references at the local
regions γ′ and each contents in it have the type assigned by Σ′.
Second, the domains of µ′ and Σ′ coincide. Third, using the local
information µ′, Σ′, and γ′, c′ can be given a Hoare type whose
result type is T , allowed to read data from references at regions
γ′′. Finally, the precondition of c′ holds under the concatenation of
the program store and the local store.

10 2016/10/13

6.2 Type Soundness
We show type soundness, which says that, given a well typed
program c of {⊤}x :T{A2}⟨{r},{r}⟩, p = ν∅.⟨∅ | νr . c⟩ results
in a value, raises an exception, or diverges and, moreover, if p
terminates at value v with store µ, v satisfies refinements in T
and µ |= [v/x]A2 holds. Although the proof of type soundness
follows progress and preservation as in the previous work [38], this
paper states just their simplified versions; the full statements are
shown in the supplementary material. We assume that ty (op) and
[[op]] agree in a certain sense; also see the supplementary material
for details.

Lemma 2 (Value Inversion). If Σ; γ; ∅ ⊢ v : {x :T | c}, then
∅ |= [v/x] c.

Lemma 3 (Progress). If ∅; Σ; γ ⊢ p : T ∅, then: (1) ∅ | p ↪→ p′

for some p′; (2) p = νγ′.⟨µ′ | return v ′⟩ for some γ′, µ′, and v ′;
or (3) p = νγ′.⟨µ′ | ⇑ℓ′⟩ for some γ′, µ′, and ℓ′.

Lemma 4 (Preservation). If ∅; Σ; γ ⊢ p : T ∅ and ∅ | p ↪→ p′,
then ∅; Σ; γ ⊢ p′ : T ∅.

Lemma 5 (Postcondition Satisfaction). If (1) µ; Σ; γ; ∅ ⊢ c :
{A1}x :T{A2}⟨γ,γ⟩, (2) γ ⊢ µ : Σγ , (3) µ |= A1, and (4)
∅ | νγ.⟨µ | c⟩ ↪→∗ νγ′.⟨µ′ | return v ′⟩, then µ′ |= [v ′/x]A2.

Theorem 1 (Type Soundness). Suppose that ∅; ∅; {r}; ∅ ⊢ c :
{⊤}x :T{A2}⟨{r},{r}⟩. Let p = ν∅.⟨∅ | νr . c⟩. Then, one of the
followings hold: (1) ∅ | p ↪→∗ νγ.⟨µ | return v⟩ for some γ, µ, and
v ; (2) ∅ | p ↪→∗ νγ.⟨µ | ⇑ℓ⟩ for some γ, µ, and ℓ; or (3) there is an
infinite sequence of computation ∅ | p ↪→ p1, ∅ | p1 ↪→ p2, · · · .
Moreover, if (1) holds, then: (a) if T = {x :T0 | c0}, then
∅ |= [v/x] c0; and (b) µ |= [v/x]A2.

Proof. By Progress and Preservation. The properties (a) and (b) are
shown by Lemmas 2 and 5.

7. Static Contract Verification
This work studies “post facto” static verification of state-dependent
contracts—more precisely, we identify assertions such that pro-
grams with and without them are contextually equivalent [3]. This
paper focuses on two verification techniques: elimination of as-
sertions for pre- and postconditions and region-based local rea-
soning. Note that, although we are interested in, this paper is not
concerned about specific verification algorithms; instead, we study
what static checking can verify as in the earlier work on manifest
contracts [3, 15, 25]. We do not present the formal definition of
contextual equivalence here; interested readers are referred to the
supplementary material.

7.1 Elimination of Pre- and Postcondition Assertions
Intuitively, a precondition of a computation always holds if it is
implied from the other, already established preconditions of the
computation. For example, for string table t and string s in Fig-
ure 1, the contract x ⇐ !t ; return (length x ̸= 0), which is
needed to calculate the reciprocal of t’s size, would be implied from
x ⇐ !t ; return (mem x s) with the aid of a theorem prover (here, !t
can be seen as an uninterpreted function which returns a list with s).
To formalize this “implication”, we consider closing substitutions,
which give interpretations to free variables, and possible stores un-
der which contracts evaluate. In what follows, σ denotes mappings
from term variables to values and from region variables to region
variables and write σ(γ) for the image of γ under σ.

Definition 2 (Closing Substitution and Possible Store). We write
Σ; γ; Γ ⊢ ⟨µ, σ⟩⟨γr,γw⟩ when there exist some Σ′ and γ′ such
that: (1) Σ ⊆ Σ′; (2) γ ⊆ γ′; (3) for any r ∈ γ, r /∈

dom (σ); (4) for any r ∈ Γ, σ(r) ∈ γ′; (5) for any x :T ∈ Γ,
Σ′; γ′; ∅ ⊢ σ(x) : σ(T); and (6) γ′ ⊢ µ : Σ′σ(γr)∪σ(γw). We
write Σ; γ; Γ ⊢ σ for Σ; γ; Γ ⊢ ⟨∅, σ⟩⟨∅,∅⟩.

What is meant by “contract A′ is implied from A” is that, for
any interpretation of free variables and store such that A results in
true, so does A′. We write A,A′ for the concatenation of A and
A′.

Definition 3 (Contract Implication). Suppose that γ; Γ ⊢ϱ A,A′.
Then, A′ is implied from A if, for any µ and σ such that ∅; γ; Γ ⊢
⟨µ, σ⟩ϱ and µ |= σ(A), µ |= σ(A′) holds.

Lemma 6 (Precondition Assertion Elimination). Suppose that
γ; Γ ⊢ c : {A1, c1}x :T{A2}ϱ. If c1 is implied from A,
assert (c1)

ℓ; c and c are contextually equivalent.

Since postcondition checks are a derived form using assertions,
we can show elimination of postcondition assertions as a corollary.

Corollary 1 (Postcondition Assertion Elimination). Suppose that
γ; Γ ⊢ c : {A1}x :T{A2}ϱ. For any c2, if γ; Γ, x :T ⊢ϱ A2, c2
and c2 is implied from A2, then c;λx .assert (c2)

ℓ and c are
contextually equivalent.

These elimination techniques of assertions enable us to
strengthen preconditions and weaken postconditions semantically.

Corollary 2 (Semantic Weakening). Suppose that γ; Γ ⊢ c :
{A1}x :T{A2}ϱ. For any A′

1 and A′
2, if γ; Γ ⊢ϱ A′

1 and
γ; Γ, x :T ⊢ϱ A′

2 and A1 is implied from A′
1 and A′

2 is implied
from A2, then assert (A1)

ℓ1 ; c;λx .assert (A′
2)

ℓ2 and c are con-
textually equivalent at {A′

1}x :T{A′
2}ϱ.

7.2 Region-Based Local Reasoning
Local reasoning allows applying verification methods to subcom-
ponents of a program locally, so it is important to scale up verifica-
tion to large programs. We achieve region-based local reasoning in
the form similar to Separation logic [34, 36], where the so-called
frame rule plays an important role: given a computation requiring
precondition P , which specifies a heap before the computation, and
guaranteeing postcondition Q, which specifies the heap after the
computation, the rule allows the computation to require a condition
R separated from P and Q and guarantee the same condition. It is
represented in the form of Hoare triples as follows:

{P} c {Q}
{P ∗R} c {Q ∗R}

where P ∗ R is the separating conjunction of P and R and states
that P and R specify disjoint heaps. In our context, computation
c can require and guarantee any condition A if A never mentions
references mutated by c. The effect system in Section 4 is useful to
verity whether A mentions such references because it can analyze
what references computations manipulate with the help of regions.
To formalize the local reasoning, we first introduce the notion of
“disjointness” of regions—region sets γ1 and γ2 are disjoint if the
results of application of any region substitutions are disjoint.

Definition 4 (Disjoint Regions). We write Σ; γ; Γ ⊢ γ1 disj γ2
when, for any σ such that Σ; γ; Γ ⊢ σ, σ(γ1) ∩ σ(γ2) = ∅.

Lemma 7 (Local Reasoning). Suppose γ; Γ ⊢ c :

{A1}x :T{A2}⟨γr,γw⟩. For any A and γr
′ ⊆ γr, if γ; Γ ⊢⟨γr

′,∅⟩ A
and ∅; γ; Γ ⊢ γr

′ disj γw, then, for any fresh y , c;λy .assert (A)ℓ

and c are contextually equivalent at {A1,A}x :T{A2,A}⟨γr,γw⟩

The local reasoning enables us to recover contract information
lost by assignment.

11 2016/10/13

Corollary 3. Suppose that (1) γ; Γ ⊢ e1 : RefrT
′; (2) γ; Γ ⊢

e2 : T ′; (3) γ; Γ ⊢⟨γr,∅⟩ A; and (4) ∅; γ; Γ ⊢ γr disj {r}.
Then, x ⇐ e1 := e2; return ();λx .assert (A)ℓ and x ⇐ e1 :=
e2; return () are contextually equivalent at {A}x :T{A}⟨γr,{r}⟩.

Although the local reasoning would be a useful technique, its
applicability rests on how many regions are judged to be disjoint.
Unfortunately, λH

ref does not have a very strong power for this
judgment—nonempty region sets are disjoint only if they contain
no region variables introduced by region abstraction, which is not
very satisfactory because region abstractions are a key feature to
promote program reuse and so would be often used. We could
address this issue by adding operations on region variables. For
example, consider an extension of λH

ref with an equality operator
r == s on regions, which behaves as follows:

r == r ⇝ true r == s ⇝ false (if r ̸= s)

Using this equality, we can state that region r is different from s
as a contract and then {r} and {s} are judged to be disjoint even
if either or both of them are abstracted regions because closing
substitutions must respect the contract.

8. Related Work
Hoare Type Theory Hoare Type Theory [31, 32] is a theoretical
framework to verify stateful programs with higher-order functions
statically, incorporating the core ideas of Hoare logic (and Separa-
tion logic) into a type system with dependent types. The key idea of
HTT is to introduce Hoare types, where pre- and postconditions are
written in classical multi-sorted first-order logic with predicates to
specify heaps. Computational Hoare types in this work are a vari-
ant of HTT’s Hoare types and allow pre- and postconditions to be
computational so that their dynamic checks are possible. On one
hand, in addition to dynamic checking, the computability of pre-
and postconditions enables programmers to give natural specifica-
tions using program functions defined by them, as the last exam-
ple in Section 2.3, which uses interface functions to mention inter-
nal states of an abstract type. Although Nanevski et al. extended
HTT to deal with internal states of functions [33], the extension
does not allow use of user-defined functions in specifications. An-
other benefit of our work is that we can reuse program compo-
nents in specifications easily. On the other hand, the computabil-
ity restricts the expressive power of specifications—for example,
unlike HTT, it appears to be difficult to work well with existential
quantifier and specify the relationship between stores before and af-
ter computation—though expressive powers of computational and
noncomputational Hoare types are incomparable generally because
the former accepts nonterminating contracts whereas the latter does
not. It is left as future work to give a remedy for the defect of com-
putational Hoare types.

Other work on static verification of stateful programs Other
than HTT, there are researches for static verification of stateful
programs with dependent type systems. Dependent ML [53, 54]
and Applied Type System [52] are programming languages with
support for static verification of stateful programs. Specifications
in these languages are neither state-dependent nor computational.
Vekris et al. [49] study a refinement type system for static verifi-
cation of TypeScript [29] programs, which are functional, object-
oriented, and imperative. Their system supports imperative fea-
tures, such as variable assignment and objects with mutable fields,
from TypeScript and is able to specify not only refinements but
also class invariants. Although specifications in the system can re-
fer to variables and object fields, Vekris et al. deal with only state-
independent specifications by transforming code with variable as-
signment to a static single assignment form [1, 37] and restricting

fields accessible from specifications to immutable ones (immutabil-
ity are annotated in field declarations). Gordon et al. [17] pro-
posed rely-guarantee references, where a reference is augmented
with a guarantee relation, which describes possible actions through
the reference, and a rely relation, which describes possible actions
through aliases, and developed a framework with rely-guarantee
references to verify that assignment to a reference does not invali-
date predicates with respect to aliases of the reference. Applying
their approach to dynamic checking is interesting, but it would
need a run-time mechanism to monitor guarantee and rely rela-
tions. Swamy et al. [45, 46] developed Dijkstra monads, a variant
of Nanevski et al.’s Hoare types, to verify effectful programs au-
tomatically. We expect that their technique can be applied to our
work for automatic verification.

In objected-oriented languages, many techniques—e.g., owner-
ship types [8–10], variants of Separation logic [4, 35, 42], dynamic
frames [22, 23], implicit dynamic frames [41], regional logic [2],
etc.—have been studied to address the frame problem [6], which is
a common theme in verification of programs with pointer aliasing.
We address the frame problem with Hoare types and a region-based
effect system, but the earlier work above would inspire us to refine
our approach and, furthermore, to investigate better approaches.

Contracts for references Flanagan, Freund, and Tomb [16] stud-
ied combination of static and dynamic approaches to checking con-
tracts of (im)mutable objects. Although their goal is similar to ours,
they allow only pure contracts which never depend on even locally
allocated references whereas we accept even state-dependent con-
tracts. That work also proposed reference guards, which have been
a usual approach to dynamic checking for references [11, 20, 44]
(there is also another method [40], though). Perhaps, one might
consider that state-dependent contracts could be embedded into ref-
erence guards, that is, properties with respect to references could be
represented by refining contents of reference types, as type tbl in
Figure 1. Unfortunately, this approach is not satisfactory because
it would not be possible to relate results of two or more stateful
computations (e.g., the contract of add would be disallowed) or to
abstract implementation types of mutable data structures as in the
last example of Section 2.3.

Tob and Pucella [48] integrated programs in two languages—
one has a conventional type system and the other has an affine
type system—by using stateful contracts with assignment. Their
system uses contracts to monitor that conventional programs use
affine values just once and does not use them as specifications of
program components. Disney, Flanagan, and McCarthy [12] pro-
posed a higher-order temporal contract system to monitor temporal
behavior of stateful programs by specifying orders in which func-
tions of modules should be called. Though they dealt with predi-
cate contracts with imperative features, the issue of state-dependent
contracts is not in their interests.

9. Conclusion
We address the issue of state-dependent manifest contracts by in-
troducing a region-based effect system with computational Hoare
types. To formalize our ideas, we define λH

ref , where refinements
are checked with casts and pre- and postconditions of Hoare types
are checked with assertions, and show its type soundness. We also
study “post facto” static verification, in particular, elimination of
assertions for pre- and postconditions and region-based local reaso-
ing. This work is a stepping stone for integrating static and dynamic
verification of state-dependent contracts and we have many direc-
tions of future work. For example, it is interesting to investigate
how we can strengthen our contract language so that relationships
between heaps before and after computation can be expressed. Im-
plementation of our calculus is also left for future work.

12 2016/10/13

References
[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of

variables in programs. In Proc. of ACM POPL, pages 1–11, 1988.
[2] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for

local reasoning about global invariants. In Proc. of ECOOP, pages
387–411, 2008.

[3] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic
contracts. In Proc. of ESOP, pages 18–37, 2011.

[4] J. Bengtson, J. B. Jensen, F. Sieczkowski, and L. Birkedal. Verifying
object-oriented programs with higher-order Separation logic in Coq.
In Proc. of Interactive Theorem Proving, pages 22–38, 2011.

[5] M. Blume and D. A. McAllester. Sound and complete models of
contracts. J. Funct. Program., 16(4-5):375–414, 2006.

[6] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in
procedure specifications. IEEE Trans. Software Eng., 21(10):785–798,
1995.

[7] C. Calcagno, S. Helsen, and P. Thiemann. Syntactic type soundness
results for the region calculus. Information and Computation, 173(2):
199–221, 2002.

[8] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad. Ownership types: A
survey. In Aliasing in Object-Oriented Programming. Types, Analysis
and Verification, pages 15–58. 2013. .

[9] D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias
protection. In Proc. of ACM OOPSLA, pages 48–64, 1998.

[10] W. Dietl and P. Müller. Object ownership in program verification.
In Aliasing in Object-Oriented Programming. Types, Analysis and
Verification, pages 289–318. 2013. .

[11] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete moni-
tors for behavioral contracts. In Proc. of ESOP, pages 214–233, 2012.

[12] T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order
contracts. In Proc. of ACM ICFP, pages 176–188, 2011.

[13] D. Dreyer, K. Crary, and R. Harper. A type system for higher-order
modules. In Proc. of ACM POPL, pages 236–249, 2003.

[14] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In Proc. of ACM ICFP, pages 48–59, 2002.

[15] C. Flanagan. Hybrid type checking. In Proc. of ACM POPL, pages
245–256, 2006.

[16] C. Flanagan, S. N. Freund, and A. Tomb. Hybrid types, invariants, and
refinements for imperative objects. In ACM FOOL/WOOD, 2006.

[17] C. S. Gordon, M. D. Ernst, and D. Grossman. Rely-guarantee refer-
ences for refinement types over aliased mutable data. In Proc. of ACM
PLDI, pages 73–84, 2013.

[18] M. Greenberg. Manifest Contracts. PhD thesis, University of Penn-
sylvania, 2013.

[19] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In Proc. of ACM POPL, pages 353–364, 2010.

[20] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
In Trends in Functional Prog. (TFP), pages 1–18, 2007.

[21] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[22] I. T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In Proc. of Formal Methods, pages
268–283, 2006.

[23] I. T. Kassios. The dynamic frames theory. Formal Asp. Comput., 23
(3):267–288, 2011.

[24] K. Knowles and C. Flanagan. Compositional reasoning and decidable
checking for dependent contract types. In Proc. of ACM PLPV, pages
27–38, 2009.

[25] K. Knowles and C. Flanagan. Hybrid type checking. ACM TOPLAS,
32(2:6), 2010.

[26] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
Proc. of ACM POPL, pages 47–57, 1988.

[27] R. McNaughton and H. Yamada. Regular expressions and state graphs
for automata. IEEE Trans. Electron. Comput., 9:39–47, 1960.

[28] B. Meyer. Object-Oriented Software Construction, 1st Edition.
Prentice-Hall, 1988. ISBN 0-13-629031-0.

[29] Microsoft Corporation. TypeScript language specification. URL
https://github.com/Microsoft/TypeScript/blob/master/
doc/spec.md. Accessed on 2016-06-06.

[30] E. Moggi. Computational lambda-calculus and monads. In Proc. of
LICS, pages 14–23, 1989.

[31] A. Nanevski and G. Morrisett. Dependent type theory of stateful
higher-order functions. Technical Report TR-24-05, Harvard Univer-
sity, 2005.

[32] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and sep-
aration in Hoare Type Theory. In Proc. of ACM ICFP, pages 62–73,
2006.

[33] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract
predicates and mutable ADTs in Hoare type theory. In Proc. of ESOP,
pages 189–204, 2007.

[34] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Proc. of CSL, pages 1–19, 2001.

[35] M. J. Parkinson and G. M. Bierman. Separation logic for object-
oriented programming. In Aliasing in Object-Oriented Programming.
Types, Analysis and Verification, pages 366–406. 2013. .

[36] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. of LICS, pages 55–74, 2002.

[37] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers
and redundant computations. In Proc. of ACM POPL, pages 12–27,
1988.

[38] T. Sekiyama, Y. Nishida, and A. Igarashi. Manifest contracts for
datatypes. In Proc. of ACM POPL, pages 195–207, 2015.

[39] T. Sekiyama, A. Igarashi, and M. Greenberg. Polymorphic manifest
contracts, revised and resolved, 2016. Submitted for publication.

[40] J. G. Siek, M. M. Vitousek, M. Cimini, S. Tobin-Hochstadt, and
R. Garcia. Monotonic references for efficient gradual typing. In Proc.
of ESOP, pages 432–456, 2015.

[41] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Com-
bining dynamic frames and Separation logic. In Proc. of ECOOP,
pages 148–172, 2009.

[42] J. Smans, B. Jacobs, and F. Piessens. VeriFast for Java: A tutorial.
In Aliasing in Object-Oriented Programming. Types, Analysis and
Verification, pages 407–442. 2013. .

[43] M. H. Sørensen and U. Pawel. Lectures on the Curry-Howard Isomor-
phism, Volume 149 (Studies in Logic and the Foundations of Mathe-
matics). Elsevier, New York, NY, USA, 2006. ISBN 0444520775.

[44] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chap-
erones and impersonators: Run-time support for reasonable interposi-
tion. In Proc. of ACM SPLASH/OOPSLA, pages 943–962, 2012.

[45] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits.
Verifying higher-order programs with the dijkstra monad. In Proc. of
ACM PLDI, pages 387–398, 2013.

[46] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P. Strub, M. Kohlweiss, J. K.
Zinzindohoue, and S. Z. Béguelin. Dependent types and multi-
monadic effects in F∗. In Proc. of ACM POPL, pages 256–270, 2016.

[47] M. Tofte and J.-P. Talpin. Implementation of the type call-by-value
λ-calculus using a stack of regions. In Proc. of ACM POPL, pages
188–201, 1994.

[48] J. A. Tov and R. Pucella. Stateful contracts for affine types. In Proc.
of ESOP, pages 550–569, 2010.

[49] P. Vekris, B. Cosman, and R. Jhala. Refinement types for typescript.
In Proc. of ACM PLDI, pages 310–325, 2016.

[50] P. Wadler. The essence of functional programming. In Proc. of ACM
POPL, pages 1–14, 1992.

[51] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

[52] H. Xi. Applied type system: Extended abstract. In TYPES, pages 394–
408, 2003.

13 2016/10/13

[53] H. Xi. Dependent ML An approach to practical programming with
dependent types. J. Funct. Program., 17(2):215–286, 2007.

[54] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proc. of ACM POPL, pages 214–227, 1999.

14 2016/10/13

