A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

Yosuke Fukuda¹ Akira Yoshimizu²

¹Graduate School of Informatics, Kyoto University, Japan

²INRIA, France

FSCD 2019 June 28th, 2019 The Girard translation $(-)^{\circ}$ allows us to reconstruct intuitionistic logic in terms of linear logic, decomposing \supset to $-\circ$, ![Girard '87]:

$$(p)^\circ \stackrel{\mathrm{def}}{=} p \qquad (p: ext{ atomic})$$
 $(A \supset B)^\circ \stackrel{\mathrm{def}}{=} (!(A)^\circ) \multimap (B)^\circ$

Soundness of the Girard translation If $\Gamma \vdash A$ in intuitionistic logic, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in linear logic, where $!(\Gamma)^{\circ} \stackrel{\text{def}}{=} \{!(A)^{\circ} \mid A \in \Gamma\}$ The Girard translation $(-)^{\circ}$ allows us to reconstruct intuitionistic logic in terms of linear logic, decomposing \supset to $-\circ$, ![Girard '87]:

$$(p)^\circ \stackrel{\mathrm{def}}{=} p \qquad (p: ext{ atomic})$$
 $(A \supset B)^\circ \stackrel{\mathrm{def}}{=} (!(A)^\circ) \multimap (B)^\circ$

Soundness of the Girard translation If $\Gamma \vdash A$ in intuitionistic logic, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in linear logic, where $!(\Gamma)^{\circ} \stackrel{\text{def}}{=} \{!(A)^{\circ} \mid A \in \Gamma\}$

The Girard translation under the Curry–Howard

The Curry–Howard correspondence tells us that: the Girard translation is also "correct" w.r.t. proof-normalizations

Soundness of the Girard translation $(-)^{\circ}$ I If $\Gamma \vdash M : A$ in λ^{\supset} , then $(\Gamma)^{\circ}; \emptyset \vdash (M)^{\circ} : (A)^{\circ}$ in DILL I If $M \rightsquigarrow M'$ in λ^{\supset} , then $(M)^{\circ} \rightsquigarrow (M')^{\circ}$ in DILL

The Girard translation under the Curry-Howard

The Curry–Howard correspondence tells us that: the Girard translation is also "correct" w.r.t. proof-normalizations

Soundness of the Girard translation $(-)^{\circ}$ If $\Gamma \vdash M : A$ in λ^{\supset} , then $(\Gamma)^{\circ}; \emptyset \vdash (M)^{\circ} : (A)^{\circ}$ in DILL If $M \rightsquigarrow M'$ in λ^{\supset} , then $(M)^{\circ} \rightsquigarrow (M')^{\circ}$ in DILL

The Girard translation under the Curry-Howard

The Curry–Howard correspondence tells us that: the Girard translation is also "correct" w.r.t. proof-normalizations

Soundness of the Girard translation $(-)^{\circ}$ | If $\Gamma \vdash M : A$ in λ^{\supset} , then $(\Gamma)^{\circ}; \emptyset \vdash (M)^{\circ} : (A)^{\circ}$ in DILL | If $M \rightsquigarrow M'$ in λ^{\supset} , then $(M)^{\circ} \rightsquigarrow (M')^{\circ}$ in DILL

The Girard translation under the Curry-Howard

The Curry–Howard correspondence tells us that: the Girard translation is also "correct" w.r.t. proof-normalizations

Soundness of the Girard translation $(-)^{\circ}$ 1 If $\Gamma \vdash M : A$ in λ^{\supset} , then $(\Gamma)^{\circ}; \emptyset \vdash (M)^{\circ} : (A)^{\circ}$ in DILL 2 If $M \rightsquigarrow M'$ in λ^{\supset} , then $(M)^{\circ} \rightsquigarrow (M')^{\circ}$ in DILL

Motivation

To give computational interpretations for various intuitionistic modal logics by linear logic (w/ Geometry of Interaction semantics)

<u>This talk</u> A linear-logical reconstruction of the (\Box, \supset) -fragment of intuitionistic S4, and its computational interpretations

Contribution

- 1 Modal linear logic, an integration of modal logic & linear logic
- **2** Typed λ -calculus for the modal linear logic
- **3** Gol semantics for a modal λ -calculus of [Davies&Pfenning '01]

Motivation

To give computational interpretations for various intuitionistic modal logics by linear logic (w/ Geometry of Interaction semantics)

<u>This talk</u> A linear-logical reconstruction of the (\Box, \supset) -fragment of intuitionistic S4, and its computational interpretations

Contribution

- 1 Modal linear logic, an integration of modal logic & linear logic
- 2 Typed λ -calculus for the modal linear logic
- **3** Gol semantics for a modal λ -calculus of [Davies&Pfenning '01]

Motivation

To give computational interpretations for various intuitionistic modal logics by linear logic (w/ Geometry of Interaction semantics)

<u>This talk</u> A linear-logical reconstruction of the (\Box, \supset) -fragment of intuitionistic S4, and its computational interpretations

Contribution

- **1** Modal linear logic, an integration of modal logic & linear logic
- 2 Typed λ -calculus for the modal linear logic
- **3** Gol semantics for a modal λ -calculus of [Davies&Pfenning '01]

1 Naïve attempt at "modal linear logic"

2 (Intuitionistic) modal linear logic

- **3** Typed λ -calculus for modal linear logic
- 4 Geometry of Interaction semantics for modal linear logic

1 Naïve attempt at "modal linear logic"

- 2 (Intuitionistic) modal linear logic
- **3** Typed λ -calculus for modal linear logic
- 4 Geometry of Interaction semantics for modal linear logic

What should "the modal linear logic" be?

Ordinary Girard trans.

S4 Girard trans.

: $\Gamma \vdash A$ in intuitionistic S4 with (\Box, \supset) (Something corresponding to the S4 derivation)

in "modal linear logic" with (some logical operators)

What should "the modal linear logic" be?

Ordinary Girard trans.

S4 Girard trans.

: $\Gamma \vdash A$ in intuitionistic S4 with (\Box, \supset) (Something corresponding to the S4 derivation)

in "modal linear logic" with (some logical operators)

What should "the modal linear logic" be?

Ordinary Girard trans.

$$\begin{array}{ccc} \vdots & & \vdots \\ \Gamma \vdash A & \stackrel{(-)^{\circ}}{\longmapsto} & !(\Gamma)^{\circ} \vdash (A)^{\circ} \\ \hline & \text{in intuitionistic logic} & & \text{in (intuitionistic) linear logic} \\ & \text{with } \supset & & \text{with } (!, \multimap) \end{array}$$

(-)°

S4 Girard trans.

(Something corresponding to the S4 derivation)

in "modal linear logic" with (some logical operators)

A modal linear logic(?)

We review a naïve combination of modal logic and linear logic, IMELL^{\square} , so as to be a target logic of an S4 Girard translation

Syntax

Formula $A, B ::= p \mid A \multimap B \mid !A \mid \Box A$

Inference rules

A modal linear logic(?)

We review a naïve combination of modal logic and linear logic, $\rm IMELL^{\square},$ so as to be a target logic of an S4 Girard translation

Syntax

Formula $A, B ::= p \mid A \multimap B \mid !A \mid \Box A$

Inference rules

We review a naïve combination of modal logic and linear logic, $\rm IMELL^{\square},$ so as to be a target logic of an S4 Girard translation

Syntax

Formula $A, B ::= p \mid A \multimap B \mid !A \mid \Box A$

Inference rules

$$\frac{\overline{A \vdash A} \ Ax}{\overline{\Gamma, A \vdash B}} \xrightarrow{\Gamma \vdash A} \xrightarrow{A, \Gamma' \vdash B} Cut$$

$$\frac{\overline{\Gamma, A \vdash B}}{\overline{\Gamma, \vdash A \multimap B}} \xrightarrow{-\circ R} \xrightarrow{\overline{\Gamma, A \vdash B}} \overline{\Gamma, \Gamma', A \multimap B \vdash C} \xrightarrow{-\circ L}$$

$$\frac{\overline{\Gamma \vdash B}}{\overline{\Gamma, !A \vdash B}} !W \ \frac{\overline{\Gamma, !A, !A \vdash B}}{\overline{\Gamma, !A \vdash B}} !C \ \frac{!\Gamma \vdash A}{!\Gamma \vdash !A} !R \ \frac{\overline{\Gamma, A \vdash B}}{\overline{\Gamma, !A \vdash B}} !L$$

$$\frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A} \Box R \qquad \frac{\overline{\Gamma, A \vdash B}}{\overline{\Gamma, \Box A \vdash B}} \Box L$$
[Note: $!\Gamma \stackrel{\text{def}}{=} \{!A \mid A \in \Gamma\}$ and $\Box\Gamma \stackrel{\text{def}}{=} \{\Box A \mid A \in \Gamma\}$)

 $8/28$

<u>Naïve Girard trans.</u> $(-)^{\circ}$: Intuitionistic S4 \rightarrow IMELL^{\Box} is ...

$$(p)^{\circ} \stackrel{\text{def}}{=} p$$

 $(A \supset B)^{\circ} \stackrel{\text{def}}{=} (!(A)^{\circ}) \multimap (B)^{\circ}$
 $(\Box A)^{\circ} \stackrel{\text{def}}{=} \Box (A)^{\circ}$

<u>Goal</u> If $\Gamma \vdash A$ in Int. S4, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in IMELL^{\Box}.

Fact The above statement of soundness is invalid!

<u>Naïve Girard trans.</u> $(-)^{\circ}$: Intuitionistic S4 \rightarrow IMELL^{\Box} is ...

$$(p)^{\circ} \stackrel{\mathrm{def}}{=} p$$

 $(A \supset B)^{\circ} \stackrel{\mathrm{def}}{=} (!(A)^{\circ}) \multimap (B)^{\circ}$
 $(\Box A)^{\circ} \stackrel{\mathrm{def}}{=} \Box (A)^{\circ}$

<u>Goal</u> If $\Gamma \vdash A$ in Int. S4, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in IMELL^{\Box}.

Fact The above statement of soundness is invalid!

Goal (recall) If $\Gamma \vdash A$ in Int. S4, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in IMELL^{\Box}.

Problematic case in the translation

in Int. S4

Counter-example

 $\frac{(\Box \Gamma)^{\circ} \vdash (A)^{\circ}}{!(\Box \Gamma)^{\circ} \vdash (\Box A)^{\circ}}$

in $IMELL^{\Box}$

Goal (recall) If $\Gamma \vdash A$ in Int. S4, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in IMELL^{\Box}.

Problematic case in the translation

Goal (recall) If $\Gamma \vdash A$ in Int. S4, then $!(\Gamma)^{\circ} \vdash (A)^{\circ}$ in IMELL^{\Box}.

Problematic case in the translation

The problem of the previous inference:

intuitively came from an undesirable interaction between ! and \Box :

<u>Solution</u> To introduce a new modality II to integrate ! and I

The problem of the previous inference:

intuitively came from an undesirable interaction between ! and \Box :

$$\frac{|\Gamma \vdash A}{|\Gamma \vdash |A|} ! \mathbf{R} \qquad \frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A} \Box \mathbf{R}$$
Remark There also exists a counter-example even if we use

$$(\Box A)^{\circ} \stackrel{\text{def}}{=} !\Box (A)^{\circ} \text{ or } (\Box A)^{\circ} \stackrel{\text{def}}{=} \Box ! (A)^{\circ}$$

<u>Solution</u> To introduce a new modality \blacksquare to integrate ! and \Box

The problem of the previous inference:

intuitively came from an undesirable interaction between ! and \Box :

$$\frac{|\Gamma \vdash A}{|\Gamma \vdash |A|} ! \mathbf{R} \qquad \frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A} \Box \mathbf{R}$$
Remark There also exists a counter-example even if we use
$$(\Box A)^{\circ} \stackrel{\text{def}}{=} ! \Box (A)^{\circ} \text{ or } (\Box A)^{\circ} \stackrel{\text{def}}{=} \Box ! (A)^{\circ}$$

Solution To introduce a new modality \blacksquare to integrate ! and \Box

1 Naïve attempt at "modal linear logic"

2 (Intuitionistic) modal linear logic

3 Typed λ -calculus for modal linear logic

4 Geometry of Interaction semantics for modal linear logic

Modal linear logic, called $IMELL^{\square}$, is defined to be an extension of the $(!, -\circ)$ -fragment of intuitionistic linear logic with \square -modality

Syntax

Formula $A, B ::= p \mid A \multimap B \mid !A \mid \blacksquare A$

Intuition of ! and 🛽

- I admits the structural rules of weakening and contraction
- \square is an integration of ! and \square , meaning that:
 - 1 🛽 also admits weakening and contraction
 - **2** \square bahaves like \square in modal logic

Modal linear logic, called $IMELL^{\square}$, is defined to be an extension of the $(!, -\circ)$ -fragment of intuitionistic linear logic with \square -modality

Syntax

Formula
$$A, B ::= p \mid A \multimap B \mid !A \mid \blacksquare A$$

Intuition of ! and 🗉

- I admits the structural rules of weakening and contraction
- ① is an integration of ! and □, meaning that:
 - 1 🗉 also admits weakening and contraction

Inference rules

Basic rules

Rules for weakening/contraction/dereliction

 $\frac{\Gamma \vdash B}{\Gamma, \delta A \vdash B} \, \delta W \quad \frac{\Gamma, \delta A, \delta A \vdash B}{\Gamma, \delta A \vdash B} \, \delta C \qquad \frac{\Gamma, A \vdash B}{\Gamma, \delta A \vdash B} \, \delta L$ where $\delta \in \{!, \square\}$

Rules for promotion

$$\frac{\Box \Gamma, !\Gamma' \vdash A}{\Box \Gamma, !\Gamma' \vdash !A} ! \mathbf{R}$$

(Intuition: \Box is stronger than !, namely, $\Box A \vdash A$ but $A \nvDash \Box A$

Inference rules

Basic rules

$$\frac{\overline{A \vdash A} \operatorname{Ax}}{\Gamma, \Gamma' \vdash B} \operatorname{Cut}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \multimap \operatorname{R} \qquad \frac{\Gamma \vdash A \quad A, \Gamma' \vdash B}{\Gamma, \Gamma' \vdash B} \operatorname{Cut}$$

Rules for weakening/contraction/dereliction

$$\frac{\Gamma \vdash B}{\Gamma, \delta A \vdash B} \, \delta W \quad \frac{\Gamma, \delta A, \delta A \vdash B}{\Gamma, \delta A \vdash B} \, \delta C \qquad \frac{\Gamma, A \vdash B}{\Gamma, \delta A \vdash B} \, \delta L$$
where $\delta \in \{!, \square\}$

Rules for promotion

$$\frac{\Box \Gamma, !\Gamma' \vdash A}{\Box \Gamma, !\Gamma' \vdash !A} ! \mathbf{R}$$

(Intuition: \Box is stronger than !, namely, $\Box A \vdash A$ but $A \nvDash \Box A$)

Inference rules

Basic rules

$$\frac{\overline{A \vdash A} \operatorname{Ax}}{\Gamma, \Gamma' \vdash B} \operatorname{Cut}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \multimap \operatorname{R} \qquad \frac{\Gamma \vdash A \quad A, \Gamma' \vdash B}{\Gamma, \Gamma' \vdash B} \operatorname{Cut}$$

Rules for weakening/contraction/dereliction

$$\frac{\Gamma \vdash B}{\Gamma, \delta A \vdash B} \, \delta W \quad \frac{\Gamma, \delta A, \delta A \vdash B}{\Gamma, \delta A \vdash B} \, \delta C \qquad \frac{\Gamma, A \vdash B}{\Gamma, \delta A \vdash B} \, \delta L$$
where $\delta \in \{!, \square\}$

Rules for promotion

$$\frac{\Box \Gamma, !\Gamma' \vdash A}{\Box \Gamma, !\Gamma' \vdash !A} ! \mathbf{R} \qquad \qquad \frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A} \Box \mathbf{R}$$

(Intuition: \square is stronger than !, namely, $\square A \vdash !A$ but $!A \nvDash \square A$)

Definition (S4 Girard translation)

 $(-)^{\circ}$: Int. S4 formulae \rightarrow IMELL^{II} formulae is defined as follows: $(p)^{\circ} \stackrel{\text{def}}{=} p$ $(A \supset B)^{\circ} \stackrel{\text{def}}{=} !(A)^{\circ} \multimap (B)^{\circ}$ $(\Box A)^{\circ} \stackrel{\text{def}}{=} \amalg (A)^{\circ}$

Theorem (Soundness of $(-)^{\circ}$ w.r.t. provability)

If $\Box \Gamma, \Gamma' \vdash A$ in Int. S4, then $\Box (\Gamma)^{\circ}, !(\Gamma')^{\circ} \vdash A$ in IMELL^{\Box}.

Definition (S4 Girard translation)

 $(-)^{\circ}$: Int. S4 formulae \rightarrow IMELL^{II} formulae is defined as follows: $(p)^{\circ} \stackrel{\text{def}}{=} p$ $(A \supset B)^{\circ} \stackrel{\text{def}}{=} !(A)^{\circ} \multimap (B)^{\circ}$ $(\Box A)^{\circ} \stackrel{\text{def}}{=} \amalg (A)^{\circ}$

Theorem (Soundness of $(-)^{\circ}$ w.r.t. provability)

If $\Box \Gamma, \Gamma' \vdash A$ in Int. S4, then $\Box (\Gamma)^{\circ}, !(\Gamma')^{\circ} \vdash A$ in IMELL^{\Box}.

1 Naïve attempt at "modal linear logic"

2 (Intuitionistic) modal linear logic

3 Typed λ -calculus for modal linear logic

4 Geometry of Interaction semantics for modal linear logic

The typed λ -calculus, called $\lambda^{[]}$, is defined as an integration of 1 the λ -calculus for intuitionistic S4 [Pfenning&Davies '00, '01] 2 the λ -calculus for dual intuitionistic linear logic [Barber '96]

Syntax	Reduction
Type $A, B ::= p \mid A \multimap B \mid !A \mid \square A$ Term $M, N ::= x \mid \lambda x : A.M \mid M N$ $\mid !M \mid \mathbf{let} !x = M \mathbf{in} N$ $\mid \square M \mid \mathbf{let} \square x = M \mathbf{in} N$	$(\lambda x : A.M) N \rightsquigarrow M[N/x]$ let $!x = !N$ in $M \rightsquigarrow M[N/x]$ let $!!x = !!N$ in $M \rightsquigarrow M[N/x]$

Type judgment

 $\Delta; \Gamma; \Sigma \vdash M : A$

where Δ, Γ, Σ are multi-sets of formulae, and

 $\blacksquare \Delta$ implicitly represents a context for types of form $\Box A$;

- **I** Γ implicitly represents a context for types of form $\Box A$;
- \blacksquare Σ represents an ordinary context but is used linearly.

The typed λ -calculus, called λ^{\square} , is defined as an integration of

- **1** the λ -calculus for intuitionistic S4 [Pfenning&Davies '00, '01]
- **2** the λ -calculus for dual intuitionistic linear logic [Barber '96]

Syntax	Reduction
Type $A, B ::= p \mid A \multimap B \mid !A \mid \squareA$	$(\lambda x : A.M) N \rightsquigarrow M[N/x]$
Term $M, N ::= x \mid \lambda x : A.M \mid MN$	let $!x = !N$ in $M \rightarrow M[N/x]$
!M let $!x = M$ in N	let $\square x = \square N$ in $M \rightsquigarrow M[N/x]$
$ \square M $ let $\square x = M$ in N	

Type judgment

 $\Delta; \Gamma; \Sigma \vdash M : A$

- $\blacksquare \Delta$ implicitly represents a context for types of form $\Box A$;
- **I** F implicitly represents a context for types of form $\Box A$;
- \blacksquare Σ represents an ordinary context but is used linearly.

The typed $\lambda\text{-calculus, called }\lambda^{\square}\text{, is defined as an integration of}$

- 1 the λ -calculus for intuitionistic S4 [Pfenning&Davies '00, '01]
- **2** the λ -calculus for dual intuitionistic linear logic [Barber '96]

Syntax	Reduction
Type $A, B ::= p \mid A \multimap B \mid !A \mid \Box A$	$(\lambda x : A.M) N \rightsquigarrow M[N/x]$
Term $M, N ::= x \mid \lambda x : A.M \mid M N$	let $!x = !N$ in $M \rightsquigarrow M[N/x]$
M let $ x = M$ in N	let $\square x = \square N$ in $M \rightsquigarrow M[N/x]$
$ \square M \text{ let } \square x = M \text{ in } N$	L / J

Type judgment

 $\Delta; \Gamma; \Sigma \vdash M : A$

- $\blacksquare \Delta$ implicitly represents a context for types of form $\Box A$;
- **I** F implicitly represents a context for types of form $\Box A$;
- \blacksquare Σ represents an ordinary context but is used linearly.

The typed λ -calculus, called λ^{\square} , is defined as an integration of

- **1** the λ -calculus for intuitionistic S4 [Pfenning&Davies '00, '01]
- **2** the λ -calculus for dual intuitionistic linear logic [Barber '96]

Syntax	Reduction
Type $A, B ::= p \mid A \multimap B \mid !A \mid \Box A$	$(\lambda x : A.M) N \rightsquigarrow M[N/x]$
Term $M, N ::= x \mid \lambda x : A.M \mid MN$	let $!x = !N$ in $M \rightsquigarrow M[N/x]$
M let $ x = M$ in N	let $\square x = \square N$ in $M \rightsquigarrow M[N/x]$
$ \square M $ let $\square x = M$ in N	

<u>Type judgment</u> $\Delta; \Gamma; \Sigma \vdash M : A$

- **1** Δ implicitly represents a context for types of form $\square A$;
- **2** Γ implicitly represents a context for types of form $\Box A$;
- 3 Σ represents an ordinary context but is used linearly.

The typed λ -calculus, called λ^{\square} , is defined as an integration of

- 1 the λ -calculus for intuitionistic S4 [Pfenning&Davies '00, '01]
- **2** the λ -calculus for dual intuitionistic linear logic [Barber '96]

Syntax	Reduction
Type $A, B ::= p \mid A \multimap B \mid !A \mid \squareA$	$(\lambda x : A.M) N \rightsquigarrow M[N/x]$
Term $M, N ::= x \mid \lambda x : A.M \mid MN$	let $!x = !N$ in $M \rightsquigarrow M[N/x]$
M let $ x = M$ in N	let $\square x = \square N$ in $M \rightsquigarrow M[N/x]$
$ \square M $ let $\square x = M$ in N	

Type judgment $\Delta; \Gamma; \Sigma \vdash M : A$

- **1** Δ implicitly represents a context for types of form $\square A$;
- **2** Γ implicitly represents a context for types of form $\Box A$;
- 3 Σ represents an ordinary context but is used linearly.

Several typing rules in λ^{\square}

Rules for \multimap

$$\frac{\Delta; \Gamma; \Sigma, x : A \vdash M : B}{\Delta; \Gamma; \Sigma \vdash \lambda x : A \cdot M : A - B} - I$$

$$\frac{\Delta; \Gamma; \Sigma \vdash M : A - B}{\Delta; \Gamma; \Sigma' \vdash N : A} - E$$

Rules for ! and 🛽

 $\frac{\Delta; \Gamma; \emptyset \vdash M : A}{\Delta; \Gamma; \emptyset \vdash !M : !A} ! I \qquad \frac{\Delta; \emptyset; \emptyset \vdash M : A}{\Delta; \Gamma; \emptyset \vdash !M : !A} ! I$ $\frac{\Delta; \Gamma; \Sigma \vdash M : !A}{\Delta; \Gamma; \Sigma' \vdash N : B} ! I$ $\frac{\Delta; \Gamma; \Sigma, \Sigma' \vdash let ! X = M in N : B}{\Box E}$

(Note: !E is defined similarly to $\square E$)

<u>Fact</u> If $\Box \Delta$, $!\Gamma$, $\Sigma \vdash A$ is derivable in IMELL^{\Box}, then Δ ; Γ ; $\Sigma \vdash M : A$ is also derivable in λ^{\Box} for some M

Several typing rules in λ^{\square}

$\frac{\underline{\mathsf{Rules for}}_{\multimap}}{\underline{\Delta}; \Gamma; \Sigma, x : A \vdash M : B} \xrightarrow{-\circ \mathbf{I}} I$ $\frac{\underline{\Delta}; \Gamma; \Sigma \vdash \lambda x : A \cdot M : A \to B}{\underline{\Delta}; \Gamma; \Sigma \vdash M : A \to B} \xrightarrow{-\circ \mathbf{I}} -\circ \mathbf{E}$

<u>Fact</u> If $\Box \Delta$, $!\Gamma$, $\Sigma \vdash A$ is derivable in $\operatorname{IMELL}^{\Box}$, then Δ ; Γ ; $\Sigma \vdash M : A$ is also derivable in λ^{\Box} for some M

Several typing rules in λ^{\square}

$\frac{\text{Rules for } -\circ}{\Delta; \Gamma; \Sigma, x : A \vdash M : B} -\circ I$

$$\frac{\Delta; \Gamma; \Sigma \vdash M : A \multimap B}{\Delta; \Gamma; \Sigma' \vdash N : A} \multimap E$$

Rules for ! and [] $\Delta; \Gamma; \emptyset \vdash M : A$ $\Delta; \Gamma; \emptyset \vdash !M : !A$!I $\Delta; \Gamma; \emptyset \vdash !M : !A$ $\Delta; \Gamma; \emptyset \vdash !M : !A$ $\Delta; \Gamma; \Sigma \vdash M : !IA$ $\Delta; \Gamma; \Sigma \vdash N : !IA$ $\Delta; \Gamma; \Sigma, \Sigma' \vdash let$ D: E

(Note: !E is defined similarly to !!E)

<u>Fact</u> If $\Box \Delta$, $!\Gamma$, $\Sigma \vdash A$ is derivable in IMELL^{\Box} , then Δ ; Γ ; $\Sigma \vdash M : A$ is also derivable in λ^{\Box} for some M

S4 Girard translation à la λ -calc.

<u>Term</u> $(M)^{\circ}$: λ^{\square} -terms $\rightarrow \lambda^{\square}$ -terms

$$(x)^{\circ} \stackrel{\text{def}}{=} x$$
$$(\lambda x : A.M)^{\circ} \stackrel{\text{def}}{=} \lambda y : !(A)^{\circ}. \mathbf{let} ! x = y \mathbf{in} (M)^{\circ}$$
$$(M N)^{\circ} \stackrel{\text{def}}{=} (M)^{\circ} !(N)^{\circ}$$
$$(\Box M)^{\circ} \stackrel{\text{def}}{=} \Box (M)^{\circ}$$
$$(\mathbf{let} \Box x = M \mathbf{in} N)^{\circ} \stackrel{\text{def}}{=} \mathbf{let} \ \Box x = (M)^{\circ} \mathbf{in} (N)^{\circ}$$

S4 Girard translation à la λ -calc.

<u>**Term**</u> $(M)^{\circ}$: λ^{\Box} -terms $\rightarrow \lambda^{\Box}$ -terms

$$(x)^{\circ} \stackrel{\text{def}}{=} x$$
$$(\lambda x : A.M)^{\circ} \stackrel{\text{def}}{=} \lambda y : !(A)^{\circ}. \text{let } !x = y \text{ in } (M)^{\circ}$$
$$(MN)^{\circ} \stackrel{\text{def}}{=} (M)^{\circ} !(N)^{\circ}$$
$$(\Box M)^{\circ} \stackrel{\text{def}}{=} \boxdot (M)^{\circ}$$
$$(\text{let } \Box x = M \text{ in } N)^{\circ} \stackrel{\text{def}}{=} \text{let } \boxdot x = (M)^{\circ} \text{ in } (N)^{\circ}$$

19/28

Theorem (Soundness of $(-)^{\circ}$)

The formalizations of modal linear logic and the above tells us that: Modal logic can be interpreted in linear logic!

Theorem (Soundness of $(-)^{\circ}$)

The formalizations of modal linear logic and the above tells us that: Modal logic can be interpreted in linear logic! 1 Naïve attempt at "modal linear logic"

2 (Intuitionistic) modal linear logic

3 Typed λ -calculus for modal linear logic

4 Geometry of Interaction semantics for modal linear logic

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- **5** A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- **5** A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- 3 A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- **5** A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- **5** A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- 5 A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- 5 A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- 5 A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

Steps of the construction

- 1 A sequent calculus for classical modal linear logic
- 2 A proof-net formalization for the classical sequent calculus
- **3** A reduction-preserving embedding from λ^{\square} to proof-nets
- 4 An extended dynamic algbera with the notion of path
- 5 A particle-style (a.k.a token-passing-style) Gol semantics

<u>Main theorem</u> λ^{\square} (and hence λ^{\square}) can be interpreted by the Gol

A sequent calc. for modal linear logic, $\mathrm{CMELL}^{\boxplus},$ is defined as: <code>Syntax</code>

Formula $A, B ::= p \mid p^{\perp} \mid A \otimes B \mid A ?? B \mid !A \mid ?A \mid \squareA \mid$ ÔΑ (where $A \rightarrow B$ is defined as $A^{\perp} \mathcal{B} B$) with the equations of dual formula, e.g., $(\Box A)^{\perp} = \Diamond (A^{\perp})$ (A part of) rules

A sequent calc. for modal linear logic, $\mathrm{CMELL}^{\boxplus},$ is defined as: <code>Syntax</code>

Formula $A, B ::= p \mid p^{\perp} \mid A \otimes B \mid A ?? B \mid !A \mid ?A \mid !!A \mid$ ÔΑ (where $A \rightarrow B$ is defined as $A^{\perp} \mathcal{B} B$) with the equations of dual formula, e.g., $(\Box A)^{\perp} = \Diamond (A^{\perp})$ (A part of) rules $\frac{\vdash \Diamond \Delta, ?\Gamma, A}{\vdash \Diamond \Delta, ?\Gamma, !A} !$ $\frac{\vdash \Diamond \Delta, A}{\vdash \Diamond \Delta, \square A} \square$

A sequent calc. for modal linear logic, $\mathrm{CMELL}^{\boxplus},$ is defined as: <code>Syntax</code>

(where $A \rightarrow B$ is defined as $A^{\perp} \mathcal{B} B$) with the equations of dual formula, e.g., $(\Box A)^{\perp} = \Diamond (A^{\perp})$ (A part of) rules $\frac{\vdash \Diamond \Delta, ?\Gamma, A}{\vdash \Diamond \Delta, ?\Gamma \downarrow A} !$ $\frac{\vdash \Diamond \Delta, A}{\vdash \Diamond \Delta, \square A} \square$ **Recall** In IMELL[□], $\frac{\Box \Gamma, !\Gamma' \vdash A}{\Box \Gamma, !\Gamma' \vdash !A} ! \mathbf{R}$ $\frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A} \Box \mathbf{R}$

Embedding from λ^{\Box} to CMELL proof nets

Embedding

Example

Embedding from λ^{\Box} to CMELL proof nets

Embedding

Example

24/28

1 An extended dynamic algebra $\Lambda^{\Box *}$, a single-sorted Σ algebra

- Constants $0, 1, p, q, r, r', s, s', t, t', d, d' : \Sigma$
- Operators $(\cdot): \Sigma \times \Sigma \to \Sigma, \, !: \Sigma \to \Sigma, \, \amalg \, : \Sigma \to \Sigma$
- (with several conditions to define "good" proof-nets)

2 Algebraic characterization of nets (with the notion of *path*)

- 3 A Gol (Machine) interpretation à la context semantics (with the notion of *execution formula*)
 - The computation is characterized by "token-traversing" of path, using a *context*, an intermediate state of an abstract machine

1 An extended dynamic algebra $\Lambda^{\Box *}$, a single-sorted Σ algebra

- Constants $0, 1, p, q, r, r', s, s', t, t', d, d' : \Sigma$
- Operators $(\cdot): \Sigma \times \Sigma \to \Sigma, \, !: \Sigma \to \Sigma, \, \amalg \, : \Sigma \to \Sigma$
- (with several conditions to define "good" proof-nets)

2 Algebraic characterization of nets (with the notion of *path*)

 A Gol (Machine) interpretation à la context semantics (with the notion of *execution formula*)

The computation is characterized by "token-traversing" of path, using a context, an intermediate state of an abstract machine

1 An extended dynamic algebra $\Lambda^{\Box *}$, a single-sorted Σ algebra

- Constants $0, 1, p, q, r, r', s, s', t, t', d, d' : \Sigma$
- Operators $(\cdot): \Sigma \times \Sigma \to \Sigma, \, !: \Sigma \to \Sigma, \, \amalg \, : \Sigma \to \Sigma$
- (with several conditions to define "good" proof-nets)

2 Algebraic characterization of nets (with the notion of *path*)

 A Gol (Machine) interpretation à la context semantics (with the notion of *execution formula*)

The computation is characterized by "token-traversing" of path, using a *context*, an intermediate state of an abstract machine

1 An extended dynamic algebra $\Lambda^{\Box *}$, a single-sorted Σ algebra

- Constants $0, 1, p, q, r, r', s, s', t, t', d, d' : \Sigma$
- Operators $(\cdot): \Sigma \times \Sigma \to \Sigma, \, !: \Sigma \to \Sigma, \, \amalg \, : \Sigma \to \Sigma$
- (with several conditions to define "good" proof-nets)

2 Algebraic characterization of nets (with the notion of *path*)

- A Gol (Machine) interpretation à la context semantics (with the notion of *execution formula*)
 - The computation is characterized by "token-traversing" of path, using a *context*, an intermediate state of an abstract machine

Lemma

Let \mathcal{N} be a closed proof net and \mathcal{N}' be its normal form. Then, $[\![\mathcal{N}]\!] = [\![\mathcal{N}']\!]$, where $[\![-]\!]$ returns the denotation by the Gol

Theorem (Soundness of the Gol interpretation of λ^{\sqcup})

For a closed well-typed term M in λ^{\square} , if $M \rightsquigarrow M'$ in λ^{\square} , then $\llbracket (M)^{\dagger} \rrbracket = \llbracket (M')^{\dagger} \rrbracket$ in the Gol interpretation.

Corollary

For a well-typed closed term M in λ^{\Box} , if $M \rightsquigarrow M'$ in λ^{\Box} , then $[((M)^{\circ})^{\dagger}] = [((M')^{\circ})^{\dagger}]$ in the Gol interpretation.

Lemma

Let \mathcal{N} be a closed proof net and \mathcal{N}' be its normal form. Then, $\llbracket \mathcal{N} \rrbracket = \llbracket \mathcal{N}' \rrbracket$, where $\llbracket - \rrbracket$ returns the denotation by the Gol

Theorem (Soundness of the Gol interpretation of λ^{\square})

For a closed well-typed term M in λ^{\square} , if $M \rightsquigarrow M'$ in λ^{\square} , then $\llbracket (M)^{\dagger} \rrbracket = \llbracket (M')^{\dagger} \rrbracket$ in the Gol interpretation.

Corollary

For a well-typed closed term M in λ^{\Box} , if $M \rightsquigarrow M'$ in λ^{\Box} , then $[((M)^{\circ})^{\dagger}] = [((M')^{\circ})^{\dagger}]$ in the Gol interpretation.

Lemma

Let \mathcal{N} be a closed proof net and \mathcal{N}' be its normal form. Then, $\llbracket \mathcal{N} \rrbracket = \llbracket \mathcal{N}' \rrbracket$, where $\llbracket - \rrbracket$ returns the denotation by the Gol

Theorem (Soundness of the Gol interpretation of λ^{\square})

For a closed well-typed term M in λ^{\square} , if $M \rightsquigarrow M'$ in λ^{\square} , then $\llbracket (M)^{\dagger} \rrbracket = \llbracket (M')^{\dagger} \rrbracket$ in the Gol interpretation.

Corollary

For a well-typed closed term M in λ^{\Box} , if $M \rightsquigarrow M'$ in λ^{\Box} , then $[((M)^{\circ})^{\dagger}] = [((M')^{\circ})^{\dagger}]$ in the Gol interpretation.

Linear analysis of classical modal logic S4 [Schellinx '96]

- Gives a reduction-preserving Girard trans. from classical S4, establishing a *bi-colored linear logic* with (!₀,?₀) and (!₁,?₁)
- Uses a "linear decoration" to obtain the cut-eliminiation theorem of classical S4, through that of bi-colored linear logic
- Subexponential linear logic [Nigam et al. '09, '16] and Adjoint logic [Reed '09][Licata et al. '16, '17][Pruiksma et al. '18, '19]
 - Uniform logical frameworks that can encode various logics, including classical/intuitionistic S4
 - Based on the LNL (Linear-Non-Linear) model in [Benton '94]

Linear analysis of classical modal logic S4 [Schellinx '96]

- Gives a reduction-preserving Girard trans. from classical S4, establishing a *bi-colored linear logic* with (!₀,?₀) and (!₁,?₁)
- Uses a "linear decoration" to obtain the cut-eliminiation theorem of classical S4, through that of bi-colored linear logic
- Subexponential linear logic [Nigam et al. '09, '16] and Adjoint logic [Reed '09][Licata et al. '16, '17][Pruiksma et al. '18, '19]
 - Uniform logical frameworks that can encode various logics, including classical/intuitionistic S4
 - Based on the LNL (Linear-Non-Linear) model in [Benton '94]

Conclusion

Summary

We have presented a linear-logical reconstruction of int. S4

- Modal linear logic IMELL^{II}, λ -calc λ^{II} , and Gol semantics
 - \blacksquare The key is the \boxplus -modality, an integration of ! and \square
 - Our logic can reconstruct λ^{\Box} for IS4 of [Davies&Pfenning '01]
 - (Properties: cut-elimination, subject reduction, SN, etc.)
- (Hilbert-style axiomatization and typed combinatory logic)

Future work

- Semantical study of modal linear logic w.r.t. truth (validity)
- Extension to other int. modal logics following [Kavvos '17], considering a categorical semantics
- Extension to subexponential linear logic or adjoint logic