ソフトウェア基礎論配布資料 算術式の言語—補遺

五十嵐 淳

京都大学 大学院情報学研究科知能情報学専攻

e-mail: igarashi@kuis.kyoto-u.ac.jp

平成 16 年 10 月 13 日

2.2.6 定理 [評価の停止性, termination of evaluation]: 任意の算術式 a に対し, $a \longrightarrow a_1 \longrightarrow \cdots \longrightarrow a_n \longrightarrow \cdots$ なる無限列は存在しない.

Proof: まず, $w(a) \in \mathbf{Aexp} \to \mathbf{Nat}$ を以下のように定義する.

- 1. w(0) = 1
- 2. w(S(a)) = w(a) + 1
- 3. $w(a_1 + a_2) = 2(w(a_1) + w(a_2)) + 1$
- 4. $w(a_1 * a_2) = w(a_1) \cdot w(a_2) + 1$

このとき , $\forall a,a' \in \mathbf{Aexp}.a \longrightarrow a' \Rightarrow w(a) > w(a')$ である . また $\forall a \in \mathbf{Aexp}.w(a) > 0$ なので , $a \longrightarrow \cdots \longrightarrow a' \longrightarrow \cdots$ が成立したとすると , $w(a) > \cdots > w(a') > \cdots$ なる無限列が存在することになり矛盾 .

2.2.4 定理 [合流性, confluence]: $a_1 \longrightarrow^* a_2 \& a_1 \longrightarrow^* a_3 \Rightarrow \exists a_4.a_2 \longrightarrow^* a_4 \& a_3 \longrightarrow^* a_4$.

Proof: (フォローする必要はありません) まず $a_1 \longrightarrow a_2 \& a_1 \longrightarrow a_3 \Rightarrow \exists a_4.a_2 \longrightarrow^* a_4 \& a_3 \longrightarrow^* a_4$ を a_1 の構造に関する帰納法で証明する.この性質と termination of evaluation と , Neumann の補題より , 合流性が導かれる.