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Manifest contracts track precise program properties by refining types with predicates—e.g., {x :Int | x > 0}
denotes the positive integers. Contracts and polymorphism make a natural combination: programmers can
give strong contracts to abstract types, precisely stating pre- and post-conditions while hiding implemen-
tation details—for example, an abstract type of stacks might specify that the pop operation has input type
{x :α Stack | not (empty x)}.

This article studies a polymorphic calculus with manifest contracts and establishes fundamental prop-
erties including type soundness and relational parametricity. Indeed, this is not the first work on polymor-
phic manifest contracts but existing calculi are not very satisfactory. Gronski et al. developed the SAGE
language, which introduces polymorphism through the Type:Type discipline, but they do not study para-
metricity. Some authors of this paper have produced two separate works: Belo, Greenberg, Igarashi, and
Pierce (ESOP 2011) and Greenberg (PhD thesis) studied polymorphic manifest contracts and parametricity,
but their calculi have metatheoretical problems in the type conversion relations—indeed, they depend on
a few conjectures, which turn out to be false. Our calculus is the first polymorphic manifest calculus with
parametricity, depending on no conjectures—it resolves the issues in prior calculi with delayed substitution
on casts.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory;
D.2.4 [Software engineering]: Software/Program Verification—Programming by contract; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages

CCS Concepts: •Theory of computation→ Lambda calculus; Pre- and post-conditions; Assertions;
Operational semantics; •Software and its engineering→ Functional languages; Polymorphism;
Semantics; Syntax;

General Terms: Languages, Design, Theory

Additional Key Words and Phrases: contracts, refinement types, preconditions, postconditions, dynamic
checking, runtime verification, parametric polymorphism, abstract datatypes, syntactic proof, logical re-
lations, corrections

1. INTRODUCTION
1.1. Motivation
Software contracts allow programmers to state precise properties as concrete predi-
cates written in the same language as the rest of the program; for example, contracts
can indicate that a function takes a nonempty list to a positive integer, where both
“nonempty” and “positive” are expressed as code. These predicates can be checked dy-
namically as the program executes or, more ambitiously, verified statically with the
assistance of a theorem prover. Findler and Felleisen [2002] introduced “higher-order
contracts” for functional languages, defining the first runtime verification semantics
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A:2 Sekiyama et al.

for a functional language; these contracts can take one of two forms: predicate con-
tracts given by a Boolean function and function contracts c1 7→ c2, which designate
contracts for a function’s input and output by c1 and c2, respectively. Greenberg, Pierce,
and Weirich [2010] contrast two different approaches to contracts according to how
contracts and types interact with each other: in the latent approach, contracts and
types live in different worlds (indeed, there may be no types at all, as in Racket’s con-
tract system [Flatt and PLT 2010, Chapter 8]); in the manifest approach, contracts
are types—the type system itself makes contracts ‘manifest’—and dynamic contract
checking is expressed by type coercions, which are more commonly called casts; static
contract checking can be reduced to subtype checking.

Manifest contracts are a sensible choice for combining contracts and other type-
based abstraction mechanisms, like abstract datatypes (ADTs). Abstract datatypes al-
ready use the type system to mediate access to abstractions; manifest contracts allow
types to exercise a still finer grained control. To motivate the combination of contracts
and ADTs, consider the interface of an ADT modeling the natural numbers, written in
an ML-like language:

module type NAT =
sig

type t
val zero : t
val succ : t -> t
val isZ : t -> bool
val pred : t -> t

end

It is an abstract datatype because the actual representation of t is hidden: users of NAT
interact with it through the constructors and operations provided. The zero construc-
tor represents 0; the succ constructor takes a natural and produces its successor. The
predicate isZ determines whether a given natural is zero. The pred operation takes a
natural number and returns its predecessor.

This interface, however, is not fine-grained enough to prevent misuse of partial oper-
ations. For example, pred can be applied to zero, whereas the mathematical natural-
number predecessor operation is not defined for zero.

Using contracts, we can explicitly specify the constraint that an argument to pred is
not zero:

module type NAT =
sig

type t
val zero : t
val succ : t -> t
val isZ : t -> bool
val pred : {x:t | not (isZ x)} -> t

end

The type {x:t | not (isZ x)} is a refinement type and denotes the set of values x such
that not (isZ x) evaluates to true. Contracts on the ADT’s interface do not allow pred
to be applied to zero.

1.2. Polymorphic manifest contract calculus
A key device for studying type-based abstraction in functional programming is para-
metric polymorphism—for example, it is well known that polymorphism can encode
ADTs [Mitchell and Plotkin 1985]. Gronski et al. studied manifest contracts in the
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presence of polymorphism by developing the SAGE language [Gronski et al. 2006],
which supports manifest contracts and polymorphism, in addition to the type Dy-
namic [Abadi et al. 1989; Henglein 1992] and even the so-called “Type:Type” disci-
pline [Cardelli 1986]. However, consequences of combining these features, in particu-
lar, interactions between manifest contracts and type abstraction (provided by para-
metric polymorphism), are not studied in depth in Gronski et al. [2006].

To study type abstraction for manifest contracts rigorously, Belo et al. [2011] de-
veloped a polymorphic manifest contract calculus FH, an extension of System F with
manifest contracts, and investigated its properties, including type soundness and (syn-
tactic) parametricity. For FH to scale up to polymorphism, they made two technical
contributions beyond earlier manifest calculi such as λH [Flanagan 2006], a simply
typed manifest contract calculus. First, FH gives the semantics of casts in the presence
of so-called “general refinements,” where the underlying type T in a refinement type
{x :T | e} can be an arbitrary type (not only base types like Bool and Int but also func-
tion, forall, and even refinement types), whereas earlier manifest calculi restrict re-
finements to base types. Support for general refinements is critical for polymorphism,
because it means that we can refine an abstract datatype implemented by any type,
not just base types. SAGE also allows arbitrary types to be refined but the semantics
of casts relies on the type Dynamic, which is problematic for parametricity [Matthews
and Ahmed 2008]. Second, Belo et al. have proposed a new, two-step, syntactic ap-
proach to formalizing manifest calculi. The first step is to establish fundamental prop-
erties such as type soundness for a calculus without subsumption (and subtyping),
while earlier calculi [Knowles and Flanagan 2010; Greenberg et al. 2010] rest on sub-
typing and a denotational semantics of types in their construction. Technically, they
replaced subtyping with a syntactic type conversion relation, which is required to show
subject reduction in the presence of dependent function types. The lack of subsumption
allows for an entirely syntactic metatheory but it also means omitting static contract
checking. The second step is to give a static analysis to remove casts that never fail in
order to compensate for the lack of static contract checking. In fact, Belo et al. prove
post facto subtyping, examining a property called the Upcast Lemma, which says an
upcast—a cast from one type to a supertype—is logically related (thus equivalent in a
certain sense) to an identity function. The Upcast Lemma recovers a notion of static
checking of contracts.

Unfortunately, however, the proofs of type soundness and parametricity of FH turn
out to be flawed and, worse, the properties themselves are later found to be false. In
fact, the type conversion makes an inconsistent contract system; if a cast-free closed
expression is well typed, then its type can be refined arbitrarily—e.g., integer 0 can be
given type {x :Int | x = 42}! These anomalies are first recognized as a false lemma about
the type conversion relation. Greenberg [2013] fixed the false lemma by changing the
conversion relation. Another key property of conversion, called cotermination and left
as a conjecture in both Belo et al. [2011] and Greenberg [2013], also turns out to be
wrong.1 Inconsistency and the failure of type soundness and parametricity follow from
counterexamples to these properties. As we will discuss in detail, the root cause of
the problem can be attributed to the fact that substitution can badly affect how casts
behave.
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Table I. The status of properties of polymorphic manifest calculi.

Belo et al. [2011] (FH) Greenberg [2013] This article (Fσ
H)

Lemma on conversion relation 7 X X
Cotermination 7 (conjecture) 7 (conjecture) X

Progress 7 7 X
Preservation ?∗ ?∗ X
Parametricity 7 7 X

Upcast Lemma ?∗ ?∗ ?

X· · · proved ?∗· · · proved with flawed premises 7· · · flawed ?· · · unknown

1.3. Contributions
In this article, we introduce a new polymorphic manifest contract calculus FσH that
resolves the technical flaws in FH. We call our calculus FσH because it takes the FH
from Belo et al. [2011] and Greenberg [2013] and introduces a new substitution se-
mantics using delayed substitutions, which we write σ. Delayed substitutions are close
to explicit substitutions [Abadi et al. 1991] but only substitutions on casts are explicit
(and delayed) in FσH. Although, in some work [Grossman et al. 2000; Ahmed et al.
2011], delayed substitutions, also called explicit bindings, have been used to represent
syntactic “barriers” for type abstractions, we rather use them to determine how casts
reduce statically. Thanks to delayed substitution, the semantics of FσH can choose cast
reduction rules independently of substitution; this property is crucial when we prove
cotermination. We can finally show that type soundness and parametricity all hold
in FσH—without leaving any conjectures. Consistency of the contract system of FσH is
derived immediately from type soundness.

Table I summarizes the status of properties of polymorphic manifest calculi; the
columns and rows represent properties and work on polymorphic manifest contracts,
respectively. We wrote X for properties that are proved, ?∗ for properties with proofs
that are based on false premises, 7 for properties that are flawed, and ? for properties
we are unsure of. We have not investigated the Upcast Lemma in FσH because the
first step of Belo et al.’s approach—namely, establishing fundamental properties for a
manifest calculus without subsumption (hence static contract checking)—has turned
out to be trickier than we initially thought and is worth independent treatment. While
the proof of the Upcast Lemmas in Belo et al. [2011] and Greenberg [2013] would be
themselves sensible,2 they rest on unsound foundations. In this paper, we replace the
foundations but stop short of replacing the Upcast Lemma. We believe (but have not
proved) that we can prove it here, since the definition of parametricity is unchanged.

1.4. Outline of the article
This article is organized as follows. We start Section 2 with a brief history of manifest
contract calculi (both monomorphic and polymorphic) and an (extended) example to
motivate polymorphic manifest contracts and discuss their technical issues and our
solutions. We define FσH in Section 3 and prove type soundness in Section 4, fixing
Belo et al. [2011] with common-subexpression reduction from Greenberg [2013] and
our novel use of delayed substitutions. We prove parametricity in Section 5; along with
the proofs of cotermination and type soundness in the prior section, this constitutes
the first conjecture-free metatheory for the combination of System F and manifest

1In the end of Section 4 of Belo et al. [2011], the authors write “our proof of type soundness in Section 3
relies on much simpler properties of parallel reduction, which we have proved.” as if the type soundness
proof did not depend on cotermination, but this claim also turns out to be false.
2We discovered a small error in the proof itself of the Upcast Lemma in Greenberg’s dissertation, but we
have found a fix for Fσ

H.
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contracts, resolving issues in prior versions of FH. Section 6 compares FσH with two
variants of polymorphic manifest contracts [Belo et al. 2011; Greenberg 2013] and
presents counterexamples to broken properties in these earlier calculi. Finally, we dis-
cuss broader related work in Section 7, concluding in Section 8. The body of this paper
states only key lemmas and theorems; the fairly detailed proofs are given in Appendix
together with auxiliary lemmas and even more detailed proofs are in the online ap-
pendix.

2. OVERVIEW
This section first reviews manifest contract calculi [Flanagan 2006; Greenberg et al.
2010; Knowles and Flanagan 2010]—proposed as foundations of hybrid type checking,
a synthesis of static and dynamic specification checking—and earlier polymorphic ex-
tensions [Belo et al. 2011; Greenberg 2013] with their technical challenges; then we
describe problems in the earlier polymorphic calculi and our solutions.

2.1. Manifest contract calculus for hybrid type checking
Flanagan [2006] proposed hybrid type checking, a framework to combine static and
dynamic verification techniques for modularly checking implementations against
contract-based precise interface specifications, and formalized λH as a theoretical foun-
dation to study hybrid type checking. Later work revised and refined those early
ideas [Knowles and Flanagan 2010; Greenberg et al. 2010], naming the core dy-
namic checking framework a ‘manifest contract calculus’ (or simply, manifest calcu-
lus) [Greenberg et al. 2010].

Hybrid type checking reduces program verification to subtype checking problems,
proving subtyping statically as much as possible and deferring checking to run time if
a problem instance is not solved statically. We describe how these ideas are formalized
in λH below; briefly, characteristic features of manifest contract calculi (in particular,
early ones such as slightly different versions of λH) could be summarized as:

— Type-based specifications: refinement types (and dependent function types) to repre-
sent specifications;

— Static checking: subtyping to model static verification; and
— Dynamic checking: casts to model dynamic verification.

Type-based specifications. In λH, specifications are expressed in terms of types, more
concretely, refinement types and dependent function types. A refinement type {x :B | e}
intuitively denotes the set of values v of base type B (e.g., Int, Bool, and so on) such that
[v/x ]e reduces to true. In that type, e, also called a contract or a refinement, can be an
arbitrary Boolean expression, so refinement types can represent any subset of the base-
type constants as long as a constraint to specify the subset can be written as a program
expression. For example, prime numbers can be represented as {x :Int | prime x}, using
a primality test function prime, written in the same language as the program itself. A
dependent function type x :T1→ T2 denotes functions taking arguments v of domain
type T1 and returning values of codomain type [v/x ]T2. Dependent functions cleanly
express the relation between inputs and outputs of a function. For example, x :Int→
{y :Int | y > x} denotes functions that are strictly increasing, i.e., return an integer
larger than the argument.

Manifest calculi need not have arbitrary Boolean expressions and dependent func-
tion types. For example, Ou et al. [2004] restrict predicates to be pure expressions
and the blame calculus by Wadler and Findler [2009] supports only non-dependent
function types. As we will discuss below, having arbitrary predicates and dependent
functions significantly complicates metatheory. We will call a manifest calculus with
both of these optional features a full manifest calculus.
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Static checking. With these expressive types, program verification amounts to type
checking, in particular, checking subtyping between refinement types. For example,
to see if a prime number (of type {x :Int | prime x}) can be safely passed to a function
expecting positive numbers (of type {x :Int | x > 0}) is to see if the former type is a
subtype of the latter. Informally, a refinement type {x :B | e1} is a subtype of {x :B | e2}
when e2 holds for any value of B satisfying e1. Formally, supposing that we use σ
to denote substitutions and write Γ, x :{x :B | true} ` σ to mean that σ is a closing
substitution respecting (Γ, x :{x :B | true}), Flanagan [2006] gives a subtyping rule for
refinement types like:3

∀σ. (Γ, x :{x :B | true} ` σ ∧ σ(e1) −→∗ true) impliesσ(e2) −→∗ true
Γ ` {x :B | e1} <: {x :B | e2}

This formalization allows language designers to choose their favorite static checking
methods because it states what static checking verifies, rather than how a specific
static checking method works.

Dynamic checking. Unlike previous work on refinement types [Freeman and Pfen-
ning 1991; Xi and Pfenning 1999; Mandelbaum et al. 2003; Ou et al. 2004], however,
manifest contracts’ predicate language is very expressive—in fact, too expressive to be
decidable. Flanagan’s approach to undecidable subtyping is to defer subtyping checks
until runtime, inserting casts where subtyping cannot be decided, rather than reject-
ing a program. More concretely, if static checking cannot decide whether the type T1

of a given expression e is a subtype of T2, then the compiler inserts a cast—written
〈T1 ⇒ T2〉l—from T1 (the source type) to T2 (the target type) and yields 〈T1 ⇒ T2〉l e.
At runtime, the cast’s evaluation checks whether (the value of) e (of type T1) can be-
have like a value of type T2. The superscript l is called a blame label, an abstract
source location used to differentiate between different casts and identify the source of
failures.

We briefly explain how casts work in simple cases. At refinement types, casts either
return the value they are applied to, or abort program execution by raising “blame” (a
kind of uncatchable exception), indicating which supposed subtyping turned out to be
false. For example, consider a cast from positive integers {x :Int | x > 0} to odd integers
{x :Int | odd x}. If we apply cast 〈{x :Int | x > 0} ⇒ {x :Int | odd x}〉l to 5, we expect to get
5 back, since 5 is an odd integer (that is, odd 5 evaluates to true). So,

〈{x :Int | x > 0} ⇒ {x :Int | odd x}〉l 5 −→∗ 5.

Then, 5 can be typed at {x :Int | odd x}. On the other hand, suppose we apply the same
cast to 2. This cast fails, since 2 is even. When the cast fails, it will raise blame with
its label:

〈{x :Int | x > 0} ⇒ {x :Int | odd x}〉l 2 −→∗ ⇑l .
Casts between dependent function types are also made possible in λH by adapting
higher-order contracts by Findler and Felleisen [2002], running domain checks con-
travariantly and codomain checks covariantly (with an asymmetric substitution; see
Section 3).

Type soundness of λH. Proving syntactic type soundness of a full calculus (such as
λH) via progress and preservation is tricky. We identify two main issues here.

The first issue is how to allow values to be typed at refinements they satisfy. For
example, the type system should be able to give integer 2 type {x :Int | true}, {x :Int |

3Readers familiar with the systems will recognize that we have folded the implication judgment into the
relevant subtyping rule.
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even x}, or {x :Int | prime x}. Subtyping is one way to assign 2 more than one type, by
way of “selfified” types [Ou et al. 2004]. The selfified type for a constant is the most
specific type—e.g., the selfified type of an integer n is {x :Int | x = n}. For example, if
〈{x :Int | true} ⇒ {x :Int | x > 0}〉l n −→∗ n, then n can be given type {x :Int | x > 0} by
using the subtyping rule above, because inhabitants of the selfified type of n are only
n and the dynamic check has ensured that n > 0 holds.

The second issue is standard in a calculus with dependent function types: if e1 evalu-
ates to e2, the type system must allow terms of type [e1/x ]T to be typed at [e2/x ]T , too,
and vice versa to show preservation. Let us consider the case for a function application
v1 e2 −→ v1 e

′
2. Since v1 is at a function position, its type takes the form x :T1→T2. The

codomain type of a function is dependent on an argument to the function, so types of
v1 e2 and v1 e

′
2 would be [e2/x ]T2 and [e ′2/x ]T2, respectively. Since preservation says that

evaluation preserves types of well typed terms, v1 e ′2 has to be typed also at [e2/x ]T2.
A typical solution found in dependent type theory [de Bruijin 1980; Barendregt 1992;

Harper et al. 1993] is to introduce a type equivalence relation, which is congruence
closed under (β or sometimes βη) reduction. Ou et al. [2004] address this issue with
subtyping; they show that, for any pure expressions e1 and e2, if e1 −→ e2, then [e2/x ]T
is a subtype of [e1/x ]T . It is not clear, however, how [e1/x ]T and [e2/x ]T should be re-
lated in a full manifest calculus mainly due to the above-mentioned subtyping rule
for refinement types and the fact that computation is effectful (recall that blame is an
uncatchable exception). Unfortunately, earlier work is not fully satisfactory in this re-
gard. In fact, neither Flanagan [2006] nor Knowles and Flanagan [2010] discusses
this issue and Greenberg et al. [2010] sidesteps it by showing only semantic type
soundness using a logical predicate technique, which is motivated by an issue with
monotonicity—see Section 2.3. (Knowles and Flanagan [2010] and Greenberg et al.
[2010] prove, though, a closely related property that, if e1 −→ e2, then [e1/x ]T and
[e2/x ]T are semantic subtypes of each other.)

In short, there is no fully satisfactory proof of syntactic type soundness of a full
manifest calculus. Semantic type soundness is fine, but is hard to extend as features
are added to the calculus. Thus, a more syntactic proof is desirable. Belo et al. [2011]
tried proving type soundness in a more syntactic manner when they extend a manifest
calculus to parametric polymorphism.

2.2. Motivating example of parametrically polymorphic manifest contracts
Parametric polymorphism is a cornerstone of reusability in functional programming.
For example, polymorphism can encode existentials, which are crucial for defining ab-
stract datatypes and expressing modularity. In our context, manifest contracts are also
used to specify precise interfaces of modules by refining existentials.

To better understand benefits of combining polymorphism with manifest contracts,
we take a close look at NAT, an abstract datatype of natural numbers, given in Sec-
tion 1. By using existenital types, natural numbers are represented as:

NAT : ∃α.(zero : α)× (succ : (α→α))× (isZ : (α→Bool))× (pred : α→α)

where we name components of (nested) pairs—these are dependent sum types (x :
T1) × T2, where x can appear in T2 and refers to the value of the first component.4
The constructors zero and succ are standard; the operator isZ determines whether a
natural is zero; the operator pred yields the predecessor. We omit the implementation,
a standard Church encoding, where α = ∀β.β→(β→β)→β.

As we saw in Section 1, the standard representation of the naturals is inadequate
with respect to the mathematical natural numbers, in particular with respect to pred.

4Dependent sums usually do not name their last component, but we do here for convenience.
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In math, pred zero is undefined, but the implementation will return zero. The NAT’s
interface hides our encoding of the naturals behind an existential type, but to ensure
adequacy, we want to ensure that pred is only ever applied to terms of type {x :α |
not (isZ x )}. With contracts, this is easy enough: the interface NATI is given as

∃α.(zero : α)× (succ : (α→α))× (isZ : (α→Bool))× (pred : {x :α | not (isZ x )}→α).

To see why this more specific type for pred is useful, consider the following expres-
sion.

unpack NAT : NATI as α,n in n.isZ (n.pred (n.zero)) : Bool

We have “unpacked” the ADT to make its type available as α and used the dot notation
to clarify constructors and operators specified. We then ask if the predecessor of 0 is
0, running n.isZ (n.pred (n.zero)). The inner application is not well typed! We have that
zero : α, but the domain type of pred is {x :α | not (isZ x )}. To make the application well
typed, we must insert a cast:

unpack NAT : NATI as α,n in
n.isZ (n.pred (〈α⇒ {x :α | not (n.isZ x )}〉l n.zero)) : Bool

Naturally, this cast will ultimately raise ⇑l , because not (n.isZn.zero) −→∗ false. This
way, abstract datatypes can impose constraints on their use—in this example, the use
of pred.

Manifest contracts also can impose constraints on the implementation of the abstract
type so that users of the abstract datatype can expect the implementation to return
values satisfying the constraints. For example, consider a more accurate interface of
pred: pred x will always be less than x . That is, when we extend the NAT’s interface with
a binary “less than” operator lt, the result pred x has the refined type {y :α | lt y x}. We
can specify this fact with the interface:5

∃α. ...× (lt : α→α→Bool)× (pred : x :{x :α | not (isZ x )}→{y :α | lt y x})

The pred function’s contract requires that pred’s argument is nonzero and that pred
returns a result less than the argument.

How can we write an implementation to meet this interface? By putting casts in the
implementation. We can impose the contract on pred when we “pack up” the implemen-
tation NAT. Writing nat for the type of the Church encoding ∀β.β→ (β→ β)→ β, we
define the exported pred in terms of the standard, unrefined implementation, pred′:

pred = 〈nat→nat⇒ x :{x :nat | not (isZ x )}→{y :nat | lt y x}〉l pred′

Note, however, that the cast on pred′ will never actually check its domain contract
at runtime: if we unfold the domain contract contravariantly, we see that 〈{x :nat |
not (isZ x )} ⇒ nat〉l is a no-op, because we are casting out of a refinement. Instead,
clients of NAT can only call pred with terms that are typed at {x :nat | not (isZ x )}, i.e.,
by checking that values are nonzero with a cast into pred’s input type. The codomain
contract on pred, however, could fail if pred′ mis-implemented predecessor.

We can sum up the situation for contracts in abstract datatype interfaces as follows:
the positive parts of the interface type are checked by the datatype’s contract and
can raise blame—these parts are the responsibility of the ADT’s implementation; the
negative parts of the interface type are not checked by the datatype’s contract—these
parts are the responsibility of the ADT’s clients. Distributing obligations in this way

5Precisely speaking, we need to apply a cast 〈{x :α | not (isZ x)} ⇒ α〉l to x in the codomain contract of pred
to make the contract well typed. We omit the cast because it will always succeed, returning x .
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recalls Findler and Felleisen’s seminal idea of client and server blame [Findler and
Felleisen 2002].

Readers interested in other examples in polymorphic manifest contracts are referred
to Greenberg’s thesis [Greenberg 2013]. The thesis gives another, longer and more
detailed example in polymorphic manifest contracts and shows that contracts with
polymorphism can enforce sophisticated typing disciplines easily.

2.3. Key ideas in polymorphic manifest contract calculus FH

The full manifest calculus FH [Belo et al. 2011] combined the type abstraction of para-
metric polymorphism with manifest contracts. This section describes key ideas in that
work, namely refinement types with arbitrary underlying types and subsumption-free
formalization, and the next presents technical flaws in the metatheory of FH.

Polymorphism and general refinements. Adding polymorphism to manifest contracts
is not as simple as it might appear. The crux of the matter is this: we need to be able
to write {x :α | e} for refinements to interact with abstract datatypes in a useful way.
A question here is: What types can be instantiated for the type variable α? Earlier
manifest calculi restrict refinements to base types, forbidding refinements of function
types like {f :(Int→ Int) | f 0 = 0}. However, this restriction is severe and limits the
expressiveness of types excessively. For example, let us remember the NAT example.
Since the implementation type is ∀β.β→ (β→ β)→ β, the predecessor function pred
over naturals has to be implemented as a function of type

{x :∀β.β→(β→β)→β | not (isZ x )}→(∀β.β→(β→β)→β),

in which, to restrict arguments to be nonzero, the domain type refines the Church
natural number type ∀β.β → (β → β) → β by substituting it for the abstract type.
Systems without general refinements would reject this type as ill-formed, because the
underlying type is not a base type.

Thus, FH supports general refinements, which allow type variables α to be instanti-
ated with any type, that is, not only base types like Bool and Int but also function, forall,
and even refinement types. Introducing general refinements calls for a new semantics
for casts: how do casts evaluate? In our system, a cast 〈T1 ⇒ T2〉l evaluates in several
steps (we describe it in detail in Section 3). Roughly speaking, the semantics forgets
refinements in T1 and then starts checking refinements in T2 from the inside out.
The cast semantics of FH skips some refinement checks that appear to be unnecessary.
For example, reflexive casts of the form 〈T ⇒ T 〉l just disappear—this is motivated by
parametricity: 〈α⇒ α〉l should behave the same whatever the type variable α is bound
to and the only reasonable behavior seems that the cast disappears like the identity
function.

We believe that FσH is the first sound polymorphic manifest calculus with general
refinement types. As we mentioned in the introduction, SAGE also allows any type to
be refined; however, in SAGE, the source type in a cast is always Dynamic. While this
makes the cast semantics much simpler, parametricity in the presence of Dynamic
would not be straightforward (for a summary of the difficulty, see related work in Sec-
tion 7). Belo et al. [2011] also has general refinements but it has some metatheoretical
problems; Sekiyama et al. [2015] have not dealt with polymorphism.

Subsumption-free formulation. Although subtyping plays a cruicial role in manifest
calculi, it comes with some metatheoretic baggage, as described by Knowles and Flana-
gan [2010] and Greenberg et al. [2010]. The issue is that rules of the type system in
Flanagan [2006] are not monotonic—in particular, the subtyping rule for refinement
types quantifies over all well formed closing substitutions, which in turn refer to well
typedness—and so it is not clear that the type system is even well defined. Knowles
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and Flanagan [2010] and Greenberg et al. [2010] avoided the issue by giving deno-
tational semantics (namely, logical predicates) of types and changing the problematic
subtyping rule so that it refers to the denotations instead of well typedness. One (philo-
sophical) problem is that soundness of the type system with respect to the denotational
semantics has to be shown before soundness with respect to the operational semantics.
Another, perhaps more serious problem is that the denotational approach is gener-
ally harder to scale than standard syntactic methods (i.e., progress and preservation),
when we consider other features such as polymorphism. We discuss it in more detail
in Section 7.2.

FH addresses this issue by dropping subsumption (and hence subtyping) from the
type system. Since subtyping is removed, it is easy to see that the type system is well
defined. However, removing subtyping raises the two issues for type soundness again
and, additionally, another issue about how to deal with static verification, which is
based on subtyping in the original hybrid checking framework.

For the type soundness issues, Belo et al. introduce a special typing rule to give val-
ues any refinement they satisfy and a type conversion relation, which is based on (call-
by-value) parallel reduction.6 With the type conversion relation, [e1/x ]T and [e2/x ]T
are convertible if e1 −→ e2 and a typing rule that allows terms to be retyped at con-
vertible types is substituted for the subsumption rule. Using such a type system, they
claim to have “proved” type soundness in an entirely syntactic manner—via progress
and preservation—and also parametricity based on syntactic logical relations.

Although the resulting system can be formalized without resting on denotational
semantics, the lack of subsumption means that all refinements in a well typed program
will be checked at runtime. As we have already mentioned in Section 1, Belo et al.
recover static verification by introducing subtyping post facto and examining sufficient
conditions to eliminate casts.

2.4. Flaws in FH—and how we solve them
Unfortunately, as mentioned in Section 1, a few properties required to show type
soundness and parametricity turn out to be false. We will discuss the flawed properties
with their counterexamples in detail in Section 6 but, in essence, the source of anomaly
is that substitutions, which affect how casts behave, badly interact with the type con-
version. As we discussed above, for preservation, two types [e1/x ]T and [e2/x ]T should
be convertible if e1 −→ e2. Naively allowing this, however, will cause two refinement
types {x :T | e1} and {x :T | e2} to be convertible (via {x :T | ⇑l}) for any Boolean terms
e1 and e2. So, FH’s (static) contract system is inconsistent in the sense that a well typed
cast-free term can be given any refinement—e.g., 0 can be given {x :Int | x = 42}—and,
worse, the inconsistency implies the lack of type soundness in FH—that is, an expres-
sion of a refinement type {x :T | e} may result in a value not satisfying the predicate
e.

The following shows a convertibility derivation to relate {x :T | e} and {x :T | ⇑l} for
any e (here, given (closed) expression e, we write Inte for {z :Int | e} and && stands for

6Belo et al. [2011] do not really show a formal definition of type conversion; it appears in Greenberg [2013].
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Boolean conjunction).

{x :T | e}

reflexive cast
42 > 0&& e −→∗ e

{x :T | ⇑l}

(〈Intfalse ⇒ Int5=0〉l 42) > 0&& e −→∗ ⇑l

{x :T | (〈Int5=0 ⇒ Int5=0〉l 42) > 0 && e} {x :T | (〈Intfalse ⇒ Int5=0〉l 42) > 0 && e}

[5 = 0/y ]

{x :T | (〈Inty ⇒ Int5=0〉l 42) > 0 && e}
[false/y ]

{x :T | (〈Inty ⇒ Int5=0〉l 42) > 0 && e}

5 = 0 −→ false

The crux of this example is that substitution of 5 = 0 for y yields a reflexive cast,
while that of false for y yields a failing cast. Actually, the two intermediate types are
ill-formed, because 42 cannot be given type Int5=0 or Intfalse—the source types of the
casts. Nevertheless, we cannot exclude such nonsense terms before defining our typing
relation, so we must examine properties of a type conversion relation in the untyped
setting until we prove type soundness.

FσH corrects this anomaly; in FσH,

{x :T | (〈Int5=0 ⇒ Int5=0〉l 42) > 0 && e} ı {x :T | (〈Intfalse ⇒ Int5=0〉l 42) > 0 && e},
avoiding {x :T | e} ≡ {x :T | ⇑l}, whereas

[5 = 0/y ] [false/y ]
{x :T | (〈Inty ⇒ Int5=0〉l 42) > 0 && e} ≡ {x :T | (〈Inty ⇒ Int5=0〉l 42) > 0 && e}

does hold. At first, these (in)equations seem contradictory because the first type
{x :T | (〈Int5=0 ⇒ Int5=0〉l 42) > 0 && e} and the third [5 = 0/y ]{x :T | (〈Inty ⇒
Int5=0〉l 42) > 0 && e} are usually syntactically equal and so are the second and fourth.
In fact, FσH distinguishes both pairs syntactically and obtains desirable type conver-
sion, as illustrated below.

{x :T | e} {x :T | ⇑l}
~ ~

{x :T | (〈Int5=0 ⇒ Int5=0〉l 42) > 0 && e} {x :T | (〈Intfalse ⇒ Int5=0〉l 42) > 0 && e}
∦ ∦

[5 = 0/y ] [false/y ]
{x :T | (〈Inty ⇒ Int5=0〉l 42) > 0 && e} ≡ {x :T | (〈Inty ⇒ Int5=0〉l 42) > 0 && e}

More specifically, casts [5 = 0/y ]〈Inty ⇒ Int5=0〉l and [false/y ]〈Inty ⇒ Int5=0〉l are dis-
tinguished from 〈Int5=0 ⇒ Int5=0〉l and 〈Intfalse ⇒ Int5=0〉l , respectively. This is achieved
by changing the syntax and semantics of casts so that substitution does not affect how
casts behave.

To distinguish [5 = 0/y ]〈Inty ⇒ Int5=0〉l and 〈Int5=0 ⇒ Int5=0〉l , FσH uses delayed sub-
stitutions σ, which are also used to ensure that substitution does not interfere with
how casts evaluate. First, cast expressions are augmented with delayed substitutions
and take the form 〈T1 ⇒ T2〉lσ. (We often omit σ when it is empty.) Second, a substi-
tution applied to a cast is not forwarded to its target and source types immediately
but is instead stored as delayed substitutions—this is the reason why σ is called “de-
layed.” For example, when term 5 = 0 is substituted for y in 〈Inty ⇒ Int5=0〉l , the
result is 〈Inty ⇒ Int5=0〉l{y 7→5=0} where {y 7→ 5 = 0} maps y to 5 = 0. Delayed sub-
stitutions attached to casts are ignored when deciding what steps to take to check
values. Thus, 〈Inty ⇒ Int5=0〉l{y 7→5=0} does not disappear, even when [5 = 0/y ]Inty
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Types and contexts
Ty 3 T ::= B | α | x :T1→T2 | ∀α.T | {x :T | e}

Γ ::= ∅ | Γ, x :T | Γ, α
Substitutions

σ ∈ (TmVar
fin
⇀ Tm)× (TyVar

fin
⇀ Ty)

Terms, values, and results
Tm 3 e ::= x | k | op (e1, ... , en) | λx :T . e | Λα. e | e1 e2 | e T |

〈T1 ⇒ T2〉lσ | ⇑l | 〈{x :T | e1}, e2, v〉l

v ::= k | λx :T . e | Λα. e | 〈T1 ⇒ T2〉lσ
r ::= v | ⇑l

Evaluation contexts
E ::= [ ] e2 | v1 [ ] | [ ]T | 〈{x :T | e}, [ ] , v〉l | op(v1, ... , vi−1, [ ] , ei+1, ... , en)

Fig. 1. Syntax for Fσ
H

and Int5=0 are syntactically equal; instead, a check to see if 5 = 0 evaluates to
true will run and the cast will raise blame eventually. Thanks to delayed substitu-
tion, we can distinguish [5 = 0/y ]〈Inty ⇒ Int5=0〉l and 〈Int5=0 ⇒ Int5=0〉l because
[5 = 0/y ]〈Inty ⇒ Int5=0〉l = 〈Inty ⇒ Int5=0〉l{y 7→5=0} is not syntactically equivalent to
〈Int5=0 ⇒ Int5=0〉l .

Delayed substitution makes the contract system of FσH consistent—e.g., if 0 is given
{x :Int | e} in the system, then [0/x ]e always returns true. The consistency, formalized as
a lemma called value inversion in Section 4, makes it possible to establish fundamental
properties, including type soundness, of FσH.

3. DEFINING Fσ
H

3.1. Syntax
FσH’s syntax extends System F with features from manifest contracts (Figure 1). For
unrefined types we have: base types B , which must include Bool; type variables α; de-
pendent function types x :T1→T2 where x is bound in T2; and universal types ∀α.T ,
where α is bound in T . Aside from dependency in function types, these are just the
types of the standard polymorphic lambda calculus. For each B , we fix a set KB of the
constants in that type. We require that the typing rules for constants and the typing
and evaluation rules for operations respect this set, along with some formal require-
ments (Section 3.3). We also require that KBool = {true, false}. We also have predicate
contracts, or refinement types, written {x :T | e}. Conceptually, {x :T | e} denotes values
v of type T for which [v/x ]e reduces to true. As mentioned before, refinement types in
FσH are more general than existing manifest calculi (except for SAGE [Gronski et al.
2006]) in that any type (even a refinement type) can be refined, not just base types (as
in [Flanagan 2006; Greenberg et al. 2010; Gronski and Flanagan 2007; Knowles and
Flanagan 2010; Ou et al. 2004]).

In the syntax of terms, the first line is standard for a call-by-value polymorphic
language: variables, constants, several monomorphic first-order operations op (i.e., de-
structors of one or more base-type arguments), term and type abstractions, and term
and type applications. Note that there is no value restriction on type abstractions—
as in System F, we do not evaluate under type abstractions, so there is no issue with
ordering of effects. Although we have used existential types and dependent sums in
examples, FσH does not have them as primitives, because they can be encoded by using
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type abstractions as usual.

∃α.T = ∀α′.(∀α.T→α′)→α′

pack 〈T1, e〉 as ∃α.T2 = Λα′. λf :(∀α.T2→α′). f T1 e
unpack e1 : ∃α.T1 as α, x in e2 : T2 = e1 T2 (Λα. λx :T1. e2)

(x : T1)× T2 = ∀α.(x :T1→T2→α)→α
(e1, e2)(x :T1)×T2

= Λα. λf :(x :T1→T2→α). f e1 e2.

The terms in the second line offer the standard constructs of a manifest contract cal-
culus [Flanagan 2006; Greenberg et al. 2010; Knowles and Flanagan 2010], with a few
alterations, discussed below.

As we have already discussed in the last section, casts in FσH are of the form
〈T1 ⇒ T2〉lσ, where the delayed substitution σ is formally a pair of substitutions from
term and type variables to terms and types, respectively. When a cast detects a prob-
lem, it raises blame, a label-indexed uncatchable exception written ⇑l . The label l al-
lows us to trace blame back to a specific cast. (While labels here are drawn from an
arbitrary set, in practice l will refer to a source-code location.) Finally, we use active
checks 〈{x :T | e1}, e2, v〉l to support a small-step semantics for checking casts into re-
finement types. In an active check, {x :T | e1} is the refinement being checked, e2 is
the current state of checking, and v is the value being checked. The type in the first
position of an active check is not necessary for the operational semantics, which can
implement active checks as ordinary conditionals, but we keep it around as a technical
aid to our syntactic proof of preservation. The value in the third position can be any
value, not just a constant according to generalization of refinement types. If checking
the refinement type succeeds, the check will return v ; if checking fails, the check will
blame its label, raising ⇑l . Active checks and blame are not intended to occur in source
programs—they are runtime devices. (In a real programming language based on this
calculus, casts will probably not appear explicitly either, but will be inserted by an
elaboration phase. The details of this process are beyond the present scope. Readers
are referred to, e.g., Flanagan [2006].)

The values in FσH are constants, term and type abstractions, and casts. We also define
results, which are either values or blame. Type soundness, stated in Theorem 4.18, will
show that evaluation produces a result, but not necessarily a value. We note that, un-
like some contract calculi—e.g., blame calculus [Wadler and Findler 2009]—function
cast applications 〈x :T11 → T12 ⇒ x :T21 → T22〉l v are not seen as values, which sim-
plifies our inversion lemmas. Instead, casts between function types will η-expand and
wrap with the casts on the domain and the codomain their argument. This makes the
notion of “function proxy” explicit: the cast semantics adds many new closures.

To define the semantics, we use evaluation contexts [Felleisen and Hieb 1992]
(ranged over by E ). The syntax of evaluation contexts shown in Figure 1 means that
the semantics evaluates subterms from left to right in the call-by-value style.

As usual, we introduce some conventional notations. We write FV(e) (resp. FV(T ))
to denote free term variables in the term e (resp. the type T ), which is defined as usual,
except for casts:

FV(〈T1 ⇒ T2〉lσ) = ((FV(T1) ∪ FV(T2)) \ dom(σ)) ∪ FV(σ)

where dom(σ) is the domain set of σ and FV(σ) is the set of free term variables in
terms and types that appear in the range of σ. Similarly, we use FTV(e), FTV(T ),
and FTV(σ) for free type variables, and AFV(e), AFV(T ), and AFV(σ) for all free
variables, namely, both free term and type variables. We say that terms and types are
closed when they have no free term and type variables.
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Applying substitutions is almost standard, but for the case for casts. To preserve
standard properties of substitution, such as, “applying a substitution to a closed term
yields the same term,” we keep unused “garbage” bindings out of delayed substitutions,
maintaining the invariant that dom(σ) ⊆ AFV(T1) ∪ AFV(T2) holds for every cast
〈T1 ⇒ T2〉lσ. Before defining how substitutions work, we introduce a few auxiliary
notations. For a set S of variables, σ|S denotes the restriction of σ to S . Formally,

σ|S = ({x 7→ σ(x ) | x ∈ dom(σ) ∩ S}, {α 7→ σ(α) | α ∈ dom(σ) ∩ S}).

We denote by σ1 ] σ2 a delayed substitution obtained by concatenating substitutions
with disjoint domains elementwise.

3.1 Definition [Substitution]: Substitution in FσH is the standard capture-avoiding
substitution function with a single change, in the cast case:

σ(〈T1 ⇒ T2〉lσ1
) = 〈T1 ⇒ T2〉lσ2

where σ2 = σ(σ1) ] (σ|(AFV(T1)∪AFV(T2))\dom(σ1)). Here, σ(σ1) denotes the (pairwise)
composition of σ and σ1; formally,

σ(σ1) = ({x 7→ σ(σ1(x )) | x ∈ dom(σ1)}, {α 7→ σ(σ1(α)) | α ∈ dom(σ1)}).

Notice that, in the definition of σ2, the restriction on σ is required to remove garbage
bindings. We show that many properties of substitution in lambda calculi hold for our
substitution in Appendix A.

Finally, we introduce several syntactic shorthands. We write T1→T2 for x :T1→T2

when x does not appear free in T2 and 〈T1 ⇒ T2〉l for 〈T1 ⇒ T2〉lσ if the domain
of σ is empty. A let expression let x : T = e1 in e2 denotes an application term of
the form (λx :T . e2) e1. We may omit the type if it is clear from the context. If σ =
({x 7→ e}, ∅), then we write [e/x ]e ′, [e/x ]T ′, and [e/x ]σ′ for σ(e ′), σ(T ′), and σ(σ′),
respectively. Similarly, we write [T/α]e ′, [T/α]T ′, and [T/α]σ′ for σ(e ′), σ(T ′), and
σ(σ′), respectively, if σ = (∅, {α 7→ T}).

3.2. Operational semantics
The call-by-value operational semantics is given as a small-step relation (Figure 2),
split into two sub-relations: one for reductions ( ) and one for subterm reductions
and blame lifting (−→). Rules for these relations are the same as FH [Greenberg 2013]
except for cast reduction rules. We define these relations as over closed terms.

The latter relation is standard. The E REDUCE rule lifts  reductions into −→;
the E COMPAT rule reduces subterms put in evaluation contexts; and the E BLAME
rule lifts blame, treating it as an uncatchable exception. The reduction relation  is
more interesting. There are four different kinds of reductions: the standard lambda
calculus reductions, structural cast reductions, cast staging reductions, and checking
reductions.

The E BETA and E TBETA rules should need no explanation—these are the stan-
dard call-by-value polymorphic lambda calculus reductions. The E OP rule uses a de-
notation function [[−]] to give meaning to the first-order operations. We require that [[−]]
be “correct” to show type soundness (Section 3.3).

The E REFL, E FUN, and E FORALL rules reduce casts structurally. E REFL elim-
inates a cast from a type to itself; intuitively, such a cast should always succeed any-
way. (We discuss this rule more in Section 5.1.1.) When a cast between function types
is applied to a value v , the E FUN rule produces a new lambda, wrapping v with
a contravariant cast on the domain and a covariant cast on the codomain. The ex-
tra substitution in the left-hand side of the codomain cast may seem suspicious, but
in fact the rule must be this way for type preservation to hold (see Greenberg et al.
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Reduction rules e1  e2

op (v1, ... , vn)  [[op]] (v1, ... , vn) E OP

(λx :T1. e12) v2  [v2/x ]e12 E BETA

(Λα. e)T  [T/α]e E TBETA

〈T ⇒ T 〉lσ v  v E REFL

〈x :T11→T12 ⇒ x :T21→T22〉lσ v  E FUN
λx :σ(T21). let y : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in 〈[y/x ]T12 ⇒ T22〉lσ2
(v y)

when x :T11→T12 6= x :T21→T22 and x 6∈ dom(σ) and
y is fresh and, for i ∈ {1, 2}, σi = σ|AFV(T1i )∪AFV(T2i )

〈∀α.T1 ⇒ ∀α.T2〉lσ v  Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) E FORALL
when ∀α.T1 6= ∀α.T2 and α 6∈ dom(σ)

〈{x :T1 | e} ⇒ T2〉lσ v  〈T1 ⇒ T2〉lσ′ v E FORGET
when T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e2}

(σ′ = σ|AFV(T1)∪AFV(T2))

〈T1 ⇒ {x :T2 | e}〉lσ v  E PRECHECK
〈T2 ⇒ {x :T2 | e}〉lσ1

(〈T1 ⇒ T2〉lσ2
v)

when T1 6= T2 and T1 6= {x :T ′ | e ′}
(σ1 = σ|AFV({x :T2|e2}) and σ2 = σ|AFV(T1)∪AFV(T2))

〈T ⇒ {x :T | e}〉lσ v  〈σ({x :T | e}), σ([v/x ]e), v〉l E CHECK

〈{x :T | e}, true, v〉l  v E OK
〈{x :T | e}, false, v〉l  ⇑l E FAIL

Evaluation rules e1 −→ e2

e1  e2

e1 −→ e2
E REDUCE

e1 −→ e2

E [e1] −→ E [e2]
E COMPAT

E [⇑l ] −→ ⇑l
E BLAME

Fig. 2. Operational semantics for Fσ
H

[2010] for an explanation). Just like substitution (Definition 3.1), E FUN and other
cast rules restrict the domain of each delayed substitution in the right-hand side of re-
duction to free variables in the source and the target types of the corresponding cast.
Note that E FUN uses a let expression—syntactic sugar for immediate application of
a lambda—for the domain check. This is a nicer evaluation semantics than one in the
previous calculi where the domain check can be duplicated by substitution. Avoiding
this duplication is more efficient and simplifies some of our proofs of parametricity—in
particular, we do not need to show that our logical relation is closed under term sub-
stitution, i.e., two open, logically related terms are related after replacing variables in
them with logically related terms. The E FORALL rule is similar to E FUN, generating
a type abstraction with the necessary covariant cast. A seemingly trivial substitution
[α/α] is necessary for showing preservation: the value v in this rule is expected to have
∀α.T1 and then v α is given type [α/α]T1, which is not the same as T1 in general, even
though T1 and [α/α]T1 are semantically equivalent, since substitution is delayed at

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January 2015.



A:16 Sekiyama et al.

casts! So, after the reduction, the source type of the cast has to be [α/α]T1. Side condi-
tions on E FORALL and E FUN ensure that these rules apply only when E REFL does
not.

The E FORGET, E PRECHECK, and E CHECK rules are cast-staging reductions,
breaking a complex cast down to a series of simpler casts and checks. All of these
rules require that the left- and right-hand sides of the cast be different—if they are
the same, then E REFL applies. The E FORGET rule strips a layer of refinement off
the left-hand side; in addition to requiring that the left- and right-hand sides are dif-
ferent, the preconditions require that the right-hand side is not a refinement of the
left-hand side. The E PRECHECK rule breaks a cast into two parts: one that checks
exactly one level of refinement and another that checks the remaining parts. We only
apply this rule when the two sides of the cast are different and when the left-hand
side is not a refinement. The E CHECK rule applies when the right-hand side refines
the left-hand side; it takes the cast value and checks that it satisfies the right-hand
side. (We do not have to check the left-hand side, since that is the source type we are
casting from.) If the check succeeds, then the active check evaluates to the checked
value (E OK); otherwise, it raises the uncatchable exception ⇑l (E FAIL).

Before explaining how these rules interact in general, we offer a few examples. First,
here is a reduction using E CHECK, E COMPAT, E OP, and E OK:

〈Int⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l
−→ 〈{x :Int | x ≥ 0}, true, 5〉l
−→ 5

A failed check will work in the same way until the last reduction, which will use E FAIL
rather than E OK:

〈Int⇒ {x :Int | x ≥ 0}〉l (−1) −→ 〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l
−→ 〈{x :Int | x ≥ 0}, false,−1〉l
−→ ⇑l

Notice that the blame label comes from the cast that failed. Here is a similar reduction
that needs some staging, using E FORGET followed by the first reduction we gave:

〈{x :Int | x = 5} ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈Int⇒ {x :Int | x ≥ 0}〉l 5
−→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l
−→∗ 5

There are two cases where we need to use E PRECHECK. First, when nested refine-
ments are involved:

〈Int⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l 5
−→ 〈{y :Int | y ≥ 0} ⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l (〈Int⇒ {y :Int | y ≥ 0}〉l 5)
−→∗ 〈{y :Int | y ≥ 0} ⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l 5
−→ 〈{x :{y :Int | y ≥ 0} | x = 5}, 5 = 5, 5〉l
−→∗ 5

Second, when a function or universal type is cast into a refinement of a different func-
tion or universal type:

〈Bool→{x :Bool | x} ⇒ {f :Bool→Bool | f true = f false}〉l v
−→ 〈Bool→Bool⇒ {f :Bool→Bool | f true = f false}〉l

(〈Bool→{x :Bool | x} ⇒ Bool→Bool〉l v)

E REFL is necessary for simple cases, like 〈Int⇒ Int〉l 5 −→ 5. Hopefully, such a useless
cast would never be written, but it could arise as a result of E FUN or E FORALL. (We
also need E REFL in our proof of parametricity; see Section 5.1.1.)
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We offer two higher-level ways to understand the interactions of these complicated
cast rules. First, we can see the reduction rules as an unfolding of a recursive func-
tion, choosing the first clause in case of ambiguity. That is, the operational semantics
unfolds a cast 〈T1 ⇒ T2〉lσ v like Clσ(T1,T2, v):

Clσ(T ,T , v) = v
Clσ({x :T1 | e},T2, v) = Clσ(T1,T2, v)
Clσ(T1, {x :T2 | e}, v) = let x = Clσ(T1,T2, v) in 〈σ({x :T2 | e}), σ(e), x 〉l

(where x 6∈ dom(σ))
Clσ(∀α.T1,∀α.T2, v) = Λα. Clσ([α/α]T1,T2, v α) (where α 6∈ dom(σ))

Clσ(x :T11→T12, x :T21→T22, v) =
λx :σ(T21). let y = Clσ(T21,T11, x ) in Clσ([y/x ]T12,T22, v y)(where x , y 6∈ dom(σ))

Alternatively, the rules firing during the evaluation of a cast in the small-step seman-
tics obeys the following regular schema:

REFL | (FORGET∗ (REFL | (PRECHECK∗ (REFL | FUN | FORALL)? CHECK∗)))

Let us consider the cast 〈T1 ⇒ T2〉l v , where we omit the delayed substitution for
brevity. To simplify the following discussion, we define unref(T ) as T without any
outer refinements (though refinements on, e.g., the domain of a function would be un-
affected); we write unrefn(T ) when we remove only the n outermost refinements:

unref(T ) =

{
unref(T ′) if T = {x :T ′ | e}
T otherwise

First, if T1 = T2, we can apply E REFL and be done with it. If that does not work,
we will reduce by E FORGET until the left-hand side does not have any refinements—
possibly zero steps, when the source type T1 is already unrefined. As E FORGET ap-
plies, either: (a) we strip away all of the refinements; (b) we are casting from T to
unrefn(T ), and after n steps E REFL eventually applies and the entire cast disappears;
or (c) at some point we can apply E CHECK, and the cast disappears. Assuming E REFL
and E CHECK do not apply, we eventually reduce to 〈unref(T1) ⇒ T2〉l v . Next, we ap-
ply E PRECHECK until the cast is completely decomposed into one-step casts of the
form 〈T ′ ⇒ {x :T ′ | e ′}〉l . If T2 has no refinements, we will just apply one of the struc-
tural rules, like E REFL, E FUN, or E FORALL. If it does have refinements, though,
then we will get:

〈unref1(T2)⇒ T2〉l(〈unref2(T2)⇒ unref1(T2)〉l
(... (〈unref(T1)⇒ unrefn(T2)〉l v) ...))

where n is one less than the number of refinements on T2. At this point, there remain
some number of refinement checks, which can be dispatched by the E CHECK rule (and
other rules, of course, during the predicate checks themselves).

The E REFL rule merits some more discussion. At first, it appears that we can dis-
pense with this rule because a cast 〈T ⇒ T 〉lσ seems like it cannot do anything: any
value it applies must have already had type σ(T ), so what could go wrong during
any of the ensuing checks? One might worry that adding such a cast will cause a dif-
ferent label to be blamed. What we would have to prove is contextual equivalence of
〈T ⇒ T 〉lσ and an identity function (in the absence of E REFL), for example, by fol-
lowing Belo et al. [2011]7. We have not been able to prove parametricity for a system

7The upcast lemma in Belo et al. [2011] is for a system with E REFL, where a reflexive cast is trivially
equivalent to the identity function.
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Context well formedness ` Γ

` ∅
WF EMPTY

` Γ Γ ` T

` Γ, x :T
WF EXTENDVAR

` Γ

` Γ, α
WF EXTENDTVAR

Type well formedness Γ ` T

` Γ

Γ ` B
WF BASE

` Γ α ∈ Γ

Γ ` α
WF TVAR

Γ, α ` T

Γ ` ∀α.T
WF FORALL

Γ ` T1 Γ, x :T1 ` T2

Γ ` x :T1→T2
WF FUN

Γ ` T Γ, x :T ` e : Bool

Γ ` {x :T | e}
WF REFINE

Term typing Γ ` e : T

` Γ x :T ∈ Γ

Γ ` x : T
T VAR

` Γ

Γ ` k : ty(k)
T CONST

∅ ` T ` Γ

Γ ` ⇑l : T
T BLAME∗

Γ ` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : x :T1→T2
T ABS

Γ ` e1 : (x :T1→T2) Γ ` e2 : T1

Γ ` e1 e2 : [e2/x ]T2
T APP

` Γ ty(op) = x1 : T1 → ... → xn : Tn→T
∀i ∈ {1, . . . , n},Γ ` ei : [e1/x1, ..., ei−1/xi−1]Ti

Γ ` op (e1, ... , en) : [e1/x1, ..., en/xn ]T
T OP

Γ, α ` e : T

Γ ` Λα. e : ∀α.T
T TABS

Γ ` e1 : ∀α.T Γ ` T2

Γ ` e1 T2 : [T2/α]T
T TAPP

Γ ` σ(T1) Γ ` σ(T2) T1 ‖ T2 AFV(σ) ⊆ dom(Γ)

Γ ` 〈T1 ⇒ T2〉lσ : σ(T1)→σ(T2)
T CAST

` Γ ∅ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool [v/x ]e1 −→∗ e2
Γ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}

T CHECK∗

` Γ ∅ ` e : T ∅ ` T ′ T ≡ T ′

Γ ` e : T ′
T CONV∗

` Γ ∅ ` v : {x :T | e}
Γ ` v : T

T FORGET∗

` Γ ∅ ` v : T ∅ ` {x :T | e} [v/x ]e −→∗ true
Γ ` v : {x :T | e}

T EXACT∗

Fig. 3. Typing rules for Fσ
H. The rules marked ∗ are for “runtime” terms.

without E REFL because our logical relation does not require terms to be well typed;
see Section 5.1.1.

3.3. Static typing
The type system comprises three mutually recursive judgments (Figure 3): context
well formedness (` Γ), type well formedness (Γ ` T ), and term typing (Γ ` e : T ).
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The typing rules are the same as FH [Greenberg 2013] except for T CAST, the typ-
ing rule for casts. The rules for contexts and types are unsurprising. The rules for
terms are mostly standard. First, the T CONST and T OP rules use the ty function to
assign well-formed, closed (possibly dependent) monomorphic first-order types to con-
stants and operations, respectively. We require (a) that constants belong to Kunref(ty(k))

and satisfy the predicate (if any) of ty(k), and (b) that [[op]] be a function that returns
a value satisfying the predicate of the codomain type of ty(op) when each argument
value satisfies the predicate of the corresponding domain type of ty(op). The T APP
rule is dependent, to account for dependent function types. The T CAST rule allows
casts between compatibly structured well formed types, demanding that both source
and target types after applying delayed substitution be well-formed. Compatibility of
type structures is defined in Figure 4; intuitively, compatible types are identical when
predicates in them are ignored. In particular, it is critical that type variables are com-
patible with only (refinements of) themselves because we have no idea what type will
be substituted for α. If we allow type variable α to be compatible with another type, say,
B , then the check with the cast from α to B would not work when α is replaced with
a function type or a quantified type. Moreover, this definition helps us avoid nonter-
mination due to non-parametric operations (e.g., Girard’s J operator); it is imperative
that a term like

let δ = Λα. λx :α. 〈α⇒ ∀β.β→β〉l x α x in δ (∀β.β→β) δ

is not well typed. Note that, in T CAST, we assign casts a non-dependent function type
and that we do not require well typedness/formedness of terms/types that appear in the
range of a delayed substitution in a direct way—though well typed programs will start
with and preserve well typed substitutions. Finally, it is critical that compatibility is
substitutive, i.e., that if T1 ‖ T2, then ([e/x ]T1) ‖ T2 (Lemma A.28).

Some of the typing rules—T CHECK, T BLAME, T EXACT, T FORGET, and
T CONV—are “runtime only.” These rules are not needed to typecheck source pro-
grams, but we need them to guarantee preservation. T CHECK, T EXACT, and T CONV
are excluded from source programs because we do not want the typing of source pro-
grams to rely on the evaluation relation; such an interaction is acceptable in this set-
ting, but disrupts the phase distinction and is ultimately incompatible with nontermi-
nation and effects. We exclude T BLAME because programs should not start with fail-
ures. Finally, we exclude T FORGET because we imagine that source programs have all
type changes explicitly managed by casts. The conclusions of these rules use a context
Γ, but all terms and types in premises have to be well typed and well formed under
the empty context. Even though runtime terms and their typing rules should only ever
occur in the empty context, the T APP rule substitutes terms into types—so a runtime
term could end up under a binder. We therefore allow the runtime typing rules to ap-
ply in any well formed context, so long as the terms they typecheck are closed. The
T BLAME rule allows us to assign blame any well formed, closed type—doing so is nec-
essary for preservation. The T CHECK rule types an active check, 〈{x :T | e1}, e2, v〉l .
Such a term arises when a term like 〈T ⇒ {x :T | e1}〉l v reduces by E CHECK. The
premises of the rule are all intuitive except for [v/x ]e1 −→∗ e2, which ensures that e2 is
an intermediate state during checking [v/x ]e1. The T EXACT rule allows us to retype
a closed value of type T at {x :T | e} if [v/x ]e −→∗ true. This typing rule guarantees
type preservation for E OK: 〈{x :T | e1}, true, v〉l −→ v . If the active check was well
typed, then we know that [v/x ]e1 −→∗ true, so T EXACT applies. T EXACT is a neatly
extensional, syntactic, and subtyping-free replacement for the technique using selfified
types and subtyping [Ou et al. 2004].

Finally, the T CONV rule is motivated by the requirement that terms of [e1/x ]T
and [e2/x ]T should be able to be typed at both types if e1 −→ e2—it is necessary to
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Type compatibility T1 ‖ T2

α ‖ α
SIM VAR

B ‖ B
SIM BASE

T1 ‖ T2

{x :T1 | e} ‖ T2
SIM REFINEL

T1 ‖ T2

T1 ‖ {x :T2 | e}
SIM REFINER

T11 ‖ T21 T12 ‖ T22

x :T11→T12 ‖ x :T21→T22
SIM FUN

T1 ‖ T2

∀α.T1 ‖ ∀α.T2
SIM FORALL

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ⊂ TmVar ∧
∀x ∈ dom(σ1). σ1(x ) −→∗ σ2(x )

α ≡ α
C VAR

B ≡ B
C BASE

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C REFINE

T1 ≡ T ′1 T2 ≡ T ′2
x :T1→T2 ≡ x :T ′1→T ′2

C FUN
T ≡ T ′

∀α.T ≡ ∀α.T ′
C FORALL

T2 ≡ T1

T1 ≡ T2
C SYM

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C TRANS

Fig. 4. Type compatibility and conversion for Fσ
H

prove preservation; see also the discussion in Section 2.3. These types are convertible
in FσH and T CONV allows terms to be retyped at convertible types. To determine which
types are convertible, we define a conversion relation ≡, which we also call common-
subexpression reduction, or CSR [Greenberg 2013], using rules in Figure 4. Roughly
speaking, T1 and T2 are convertible when there is a common type T and subexpres-
sions e1 and e2 of T1 and T2 such that T1 = [e1/x ]T and T2 = [e2/x ]T and e1 −→∗ e2; the
fact that the substituted terms are related by reduction is the reason why ≡ is called
CSR. The rules shown in Figure 4 are the same in Greenberg [2013]. The only inter-
esting rule is C REFINE, which says that refinement types {x :T1 | e1} and {x :T2 | e2}
are convertible when T1 and T2 are convertible and there are some substitutions σ1,
σ2 and a common subexpression e such that e1 = σ1(e) and e2 = σ2(e) and each term
which appears in the range of σ1 reduces to one of σ2. We remark that this conversion
relation is different from that given in the prior work by Belo et al. [2011],8 where
their conversion relation is defined in terms of parallel reduction. As discussed in Sec-
tion 2.4, however, it turns out that their conversion relation is flawed. Another remark
is that Belo et al. [2011] also (falsely) claimed that symmetry of convertible relation
was not necessary for type soundness or parametricity, but symmetry is in fact used
in the proof of preservation (Theorem A.41, when a term typed by T APP steps by
E REDUCE/E REFL).

8Actually, the paper omits a formal definition, which appears in Greenberg [2013].
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4. PROPERTIES OF Fσ
H

We show that well-typed programs do not get stuck—a well typed term evaluates to
a result, i.e., a value or a blame (if evaluation terminates at all)9—via progress and
preservation [Wright and Felleisen 1994].

As Greenberg [2013] and Sekiyama et al. [2015] have pointed out, the “value inver-
sion” lemma (Lemma 4.6), which says values typed at refinement types must satisfy
their refinements, is a critical component of any sound manifest contract system with
constants and operations, especially for proving progress, because operations require
their arguments to satisfy refinements of their domain types (see Section 3.3). The type
soundness proof in Belo et al. [2011] is missing this lemma—and can never have it, due
to the flawed conversion relation. Greenberg [2013] leaves a property which the value
inversion depends on as a conjecture—which turns out to be false. This value inver-
sion lemma is not merely a technical device to prove progress. Together with progress
and preservation, it means that if a term typed at a refinement type evaluates to a
value, then it satisfies the predicate of the type, giving a slightly stronger guarantee
about well typed programs. From this insight, we can find that a manifest contract
system satisfying the value inversion lemma is consistent in the sense of Section 2.4
because, for example, {x :T | false} has no well typed cast-free terminating expressions
for any type T . Conversely, a manifest calculus with an inconsistent contract system
would not have type soundness for the lack of the value inversion lemma (at least if it
provides constants and operations).

Perhaps surprisingly, the value inversion lemma is not trivial due to T CONV: we
must show that predicates of convertible refinement types are semantically equiva-
lent. The proof of this property rests on cotermination (Lemma 4.4), which says that
common-subexpression reduction does not change the behavior of terms. Finally, using
these properties, we show progress (Theorem 4.15) and preservation (Theorem 4.17),
which imply type soundness (Theorem 4.18). In this section, we only give statements
of the main lemmas and theorems; proofs are in Appendix A.

4.1. Cotermination
First, we show cotermination, the foundation for both type soundness and parametric-
ity. We start with cotermination in the simplest situation, namely, where substitutions
map only one term variable, and then we show general cases. The key observation
in proving cotermination is that the relation {([e1/x ]e, [e2/x ]e) | e1 −→ e2} is a weak
bisimulation (Lemmas 4.1 and 4.2).

4.1 Lemma [Weak bisimulation, left side (Lemma A.11)]: Suppose that e1 −→ e2.
If [e1/x ]e −→ e ′, then [e2/x ]e −→∗ [e2/x ]e ′′ for some e ′′ such that e ′ = [e1/x ]e ′′.

4.2 Lemma [Weak bisimulation, right side (Lemma A.14)]: Suppose that e1 −→
e2. If [e2/x ]e −→ e ′, then [e1/x ]e −→∗ [e1/x ]e ′′ for some e ′′ such that e ′ = [e2/x ]e ′′.

4.3 Lemma [Cotermination, one variable (Lemma A.15)]: Suppose that e1 −→∗
e2.

(1) If [e1/x ]e −→∗ true, then [e2/x ]e −→∗ true.
(2) If [e2/x ]e −→∗ true, then [e1/x ]e −→∗ true.

4.4 Lemma [Cotermination]: (Lemma A.16) Suppose that σ1 −→∗ σ2.

(1) If σ1(e) −→∗ true, then σ2(e) −→∗ true.
(2) If σ2(e) −→∗ true, then σ1(e) −→∗ true.

9In fact, Fσ
H is terminating, as we will discover in Section 5.
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PROOF. By induction on the size of dom(σ1) with Lemma 4.3.

4.2. Type soundness
Using cotermination, we show value inversion and then type soundness in a standard
syntactic way, starting with various substitution lemmas.

4.5 Lemma [Cotermination of refinement types (Lemma A.17)]: If {x :T1 | e1} ≡
{x :T2 | e2} then T1 ≡ T2 and [v/x ]e1 −→∗ true iff [v/x ]e2 −→∗ true, for any closed value
v .

4.6 Lemma [Value inversion (Lemma A.18)]: If ∅ ` v : T and unrefn(T ) = {x :Tn |
en} then [v/x ]en −→∗ true.
We use unref here to ensure that the value satisfies all of the predicates in its (possibly
nested) refinement type.

4.7 Lemma [Term substitutivity of conversion (Lemma A.24)]:
If T1 ≡ T2 and e1 −→∗ e2 then [e1/x ]T1 ≡ [e2/x ]T2.

4.8 Lemma [Type substitutivity of conversion (Lemma A.25)]:
If T1 ≡ T2 then [T/α]T1 ≡ [T/α]T2.

4.9 Lemma [Term weakening (Lemma A.31)]: If x is fresh and Γ ` T ′ then

(1) Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and
(3) ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

4.10 Lemma [Type weakening (Lemma A.32)]: If α is fresh then

(1) Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and
(3) ` Γ,Γ′ implies` Γ, α,Γ′.

4.11 Lemma [Term substitution (Lemma A.33)]: If Γ ` e ′ : T ′, then

(1) if Γ, x :T ′,Γ′ ` e : T then Γ, [e ′/x ]Γ′ ` [e ′/x ]e : [e ′/x ]T ,
(2) if Γ, x :T ′,Γ′ ` T then Γ, [e ′/x ]Γ′ ` [e ′/x ]T , and
(3) if ` Γ, x :T ′,Γ′ then ` Γ, [e ′/x ]Γ′.

4.12 Lemma [Type substitution (Lemma A.34)]: If Γ ` T ′ then

(1) if Γ, α,Γ′ ` e : T , then Γ, [T ′/α]Γ′ ` [T ′/α]e : [T ′/α]T ,
(2) if Γ, α,Γ′ ` T , then Γ, [T ′/α]Γ′ ` [T ′/α]T , and
(3) if ` Γ, α,Γ′, then ` Γ, [T ′/α]Γ′.

As is standard for type systems with conversion rules, we must prove inversion lem-
mas to reason about typing derivations in a syntax-directed way. We offer the state-
ment of inversion for functions here; the rest are in Section A.3.

4.13 Lemma [Lambda inversion (Lemma A.35)]: If Γ ` λx :T1. e12 : T , then there
exists some T2 such that

(1) Γ ` T1,
(2) Γ, x :T1 ` e12 : T2, and
(3) x :T1→T2 ≡ unref(T ).

Inversion lemmas in hand, we prove a canonical forms lemma to support a proof of
progress. The canonical forms proof is “modulo” the unref function: the shape of the
values of type {x :T | e} are determined by the inner type T .
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4.14 Lemma [Canonical forms (Lemma A.38)]: If ∅ ` v : T , then:

(1) If unref(T ) = B then v is k ∈ KB for some k .
(2) If unref(T ) = x :T1→T2 then

(a) v is λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1, and e12, or
(b) v is 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2 for some T ′1,T

′
2, σ, and l .

(3) If unref(T ) = ∀α.T ′ then v is Λα. e for some e.

4.15 Theorem [Progress (Theorem A.39)]: If ∅ ` e : T , then either

(1) e −→ e ′, or
(2) e is a result r , i.e., a value or blame.

The following regularity property formalizes an important property of the type sys-
tem: all contexts and types involved are well formed. This is critical for the proof of
preservation: when a term raises blame, we must show that the blame has the well
formed, closed type of the term. With regularity, we can immediately know that the
original type is well formed.

4.16 Lemma [Regularity (Lemma A.40)]: (1) If Γ ` e : T , then ` Γ and Γ ` T ; and
(2) if Γ ` T then ` Γ.

4.17 Theorem [Preservation (Theorem A.41)]: If ∅ ` e : T and e −→ e ′, then ∅ `
e ′ : T .

4.18 Theorem [Type Soundness]: If ∅ ` e : T and e −→∗ e ′ and e ′ does not reduce,
then e ′ is a result. Moreover, if e ′ = v and T = {x :T ′′ | e ′′}, then [v/x ]e ′′ −→∗ true.

PROOF. The first half is shown by Theorems 4.15 and 4.17, and the second is by
∅ ` v : T and Lemma 4.6.

5. PARAMETRICITY
We prove relational parametricity for three reasons: (1) it yields powerful reason-
ing techniques such as free theorems [Reynolds 1983; Wadler 1989] and the upcast
lemma [Belo et al. 2011]; (2) it indicates that contracts do not interfere with type ab-
straction, i.e., that FσH supports polymorphism in the same way that System F does;
(3) we want to correct Belo et al. [2011] and Greenberg [2013]. The proof is mostly
standard—we define a (syntactic) logical relation on terms and types, where each type
is interpreted as a relation on terms and the relation at type variables is given as
a parameter—except that our logical relation includes not only well-typed terms and
well-formed types but also ill-typed terms and ill-formed types.

5.1. Logical relation
We begin by defining two relations: a result relation r1 ∼ r2 : T ; θ; δ relating closed
results, defined as the least fixpoint on the type index T ; and a term relation e1 '
e2 : T ; θ; δ relating closed expressions, which must evaluate to results in the first rela-
tion. (These results and expressions are not necessarily well typed. See the discussion
below.) The definitions are shown in Figure 5.10 Both relations have three indices: a
(possibly open) type T , a substitution θ for type variables, and a substitution δ for term
variables. Type substitutions θ, which give the interpretation of free type variables in
T , map type variables α to triples (R,T1,T2) comprising a binary relation R on closed
results and two closed types T1 and T2, to be used as the concrete substitution of α on
the left- and right-hand terms. (The results in R and the two types T1 and T2 do not

10To save space, we write ⇑l ∼ ⇑l : T ; θ; δ separately instead of manually adding such a clause for each
type.
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Closed results and terms r1 ∼ r2 : T ; θ; δ e1 ' e2 : T ; θ; δ

k ∼ k : B ; θ; δ ⇐⇒ k ∈ KB

v1 ∼ v2 : α; θ; δ ⇐⇒ ∃RT1T2, α 7→ R,T1,T2 ∈ θ ∧ v1 R v2
v1 ∼ v2 : (x :T1→T2); θ; δ ⇐⇒ ∀v ′1v ′2, v ′1 ∼ v ′2 : T1; θ; δ =⇒ v1 v

′
1 ' v2 v

′
2 : T2; θ; δ[(v ′1, v

′
2)/x ]

v1 ∼ v2 : ∀α.T ; θ; δ ⇐⇒ ∀RT1T2, v1 T1 ' v2 T2 : T ; θ[α 7→ R,T1,T2]; δ

v1 ∼ v2 : {x :T | e}; θ; δ ⇐⇒ v1 ∼ v2 : T ; θ; δ ∧
[v1/x ]θ1(δ1(e)) −→∗ true ∧ [v2/x ]θ2(δ2(e)) −→∗ true

⇑l ∼ ⇑l : T ; θ; δ

e1 ' e2 : T ; θ; δ ⇐⇒ ∃r1r2, e1 −→∗ r1 ∧ e2 −→∗ r2 ∧ r1 ∼ r2 : T ; θ; δ

Types T1 ' T2 : ∗; θ; δ

B ' B : ∗; θ; δ
α ' α : ∗; θ; δ

x :T11→T12 ' x :T21→T22 : ∗; θ; δ ⇐⇒ T11 ' T21 : ∗; θ; δ ∧
∀v1v2, v1 ∼ v2 : T11; θ; δ =⇒

T12 ' T22 : ∗; θ; δ[(v1, v2)/x ]

∀α.T1 ' ∀α.T2 : ∗; θ; δ ⇐⇒ ∀RT ′1T ′2, T1 ' T2 : ∗; θ[α 7→ R,T ′1,T
′
2]; δ

{x :T1 | e1} ' {x :T2 | e2} : ∗; θ; δ ⇐⇒ T1 ' T2 : ∗; θ; δ ∧
∀v1v2, v1 ∼ v2 : T1; θ; δ =⇒

[v1/x ]θ1(δ1(e1)) ' [v2/x ]θ2(δ2(e2)) : Bool; θ; δ

Open terms and types Γ ` θ; δ Γ ` e1 ' e2 : T Γ ` T1 ' T2 : ∗

Γ ` θ; δ ⇐⇒ ∀x :T ∈ Γ, θ1(δ1(x )) ' θ2(δ2(x )) : T ; θ; δ ∧
∀α ∈ Γ,∃RT1T2, α 7→ R,T1,T2 ∈ θ

Γ ` e1 ' e2 : T ⇐⇒ ∀θδ, Γ ` θ; δ =⇒ θ1(δ1(e1)) ' θ2(δ2(e2)) : T ; θ; δ

Γ ` T1 ' T2 : ∗ ⇐⇒ ∀θδ, Γ ` θ; δ =⇒ T1 ' T2 : ∗; θ; δ
Fig. 5. The logical relation for parametricity

have to be well typed/formed.) Term substitutions δ map variables to pairs of closed
(not necessarily well typed) values. We write projections δi (i = 1, 2) to denote projec-
tions from this pair. We similarly write θi (i = 1, 2) for a substitution that maps a type
variable α to Ti where θ(α) = (R,T1,T2). We also use the following notations:

θ[α 7→ R,T1,T2] = θ ∪ {α 7→ R,T1,T2} if α 6∈ dom(θ)
δ[(v1, v2)/x ] = δ ∪ {x 7→ v1, v2} if x 6∈ dom(δ)

With these definitions out of the way, the result relation is mostly straightforward.
First, ⇑l is related to itself at every type. A base type B gives the identity relation on
KB , the set of constants of type B . A type variable α simply uses the relation assumed
in the substitution θ. Related functions map related arguments to related results. Type
abstractions are related when their bodies are parametric in the interpretation of the
type variable. Finally, two values are related at a refinement type when they are re-
lated at the underlying type and both satisfy the predicate; here, the predicate e gets
closed by applying the substitutions. We require that both values satisfy their refine-
ments, rather than having the first satisfy the predicate iff the second does, because we
want to know that values related at refinement types actually inhabit those types, i.e.,
actually satisfy the predicates of the refinement. The ∼ relation on results is extended
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to the ' relation on closed terms in a straightforward manner: terms are related if and
only if they both evaluate to related results. Divergent terms are not related to each
other—though we will discover that divergent well typed terms do not exist in FσH. We
extend the relation to open terms, written Γ ` e1 ' e2 : T , relating open terms that
are related when closed by any “Γ-respecting” pair of substitutions θ and δ (written
Γ ` θ; δ, also defined in Figure 5).

To show that (well-typed) casts yield related results when applied to related inputs,
we also need a relation on types T1 ' T2 : ∗; θ; δ; we define this relation in Figure 5. We
can use the logical relation on results to handle the arguments of function types and
refinement types. Note that the T1 and T2 in this relation are not necessarily closed;
terms in refinement types, which should be related at Bool, are closed by applying sub-
stitutions θ and δ. In the function and refinement type cases, the relation on a smaller
type is universally quantified over logically related values. There are two choices of the
type at which they should be related (for example, the second line of the function type
case could change T11 to T21). It does not really matter which side we choose, since
they are related types. We are “left-leaning.” Finally, we lift the type relation to open
types, writing Γ ` T1 ' T2 : ∗ when two types are equivalent for any Γ-respecting
substitutions.

It is worth discussing two points peculiar to this formulation: terms in the logical
relation are not necessarily well typed, and the type indices are open.

We allow any relation on terms to be used in θ; terms related at T need not be well
typed at T . The standard formulation of a logical relation is well typed throughout,
requiring that the relation R in every triple be well typed, only relating values of type
T1 to values of type T2 (e.g., Pitts [2000]). We have two motivations for allowing ill
typed terms in our relation. First, functions of type x :T1→T2 must map related values
(v1 ∼ v2 : T1) to related results... but at which type? While [v1/x ]T2 and [v2/x ]T2 are
related in the type relation, terms that are well typed at one type will not necessarily
be well typed at the other, whether definitions are left- or right-leaning. Second, this
parametricity relation is designed so that a certain kind of casts have no effect, as Belo
et al. [2011] attempt. Ultimately, we would like to define a subtype relation T1 <: T2,
and show what we call upcast lemma that, if T1 <: T2, then 〈T1 ⇒ T2〉l ∼ λx :T1. x :
T1 → T2. That is, we want a cast 〈T1 ⇒ T2〉l , of type T1 → T2, to be related to the
identity λx :T1. x , of type T1→T1. There is one small hitch: λx :T1. x has type T1→T1,
not T1→ T2! We therefore do not demand that two expressions related at T be well
typed at T , and we allow any relation to be chosen as R.

The type indices of the term relation are not necessarily closed. Instead, just as
the interpretation of free type variables in the logical relation’s type index are kept
in a substitution θ, we keep δ as a substitution for the free term variables that can
appear in type indices. Keeping this substitution separate avoids a problem in defining
the logical relation at function types. Consider a function type x :T1→T2: the logical
relation says that values v1 and v2 are related at this type when they take related
values to related results, i.e., if v ′1 ∼ v ′2 : T1; θ; δ, then we should be able to find v1 v

′
1 '

v2 v
′
2 at some type. The question here is which type index we should use. If we keep

type indices closed (with respect to term variables), we cannot use T2 on its own—we
have to choose a binding for x ! Knowles and Flanagan [Knowles and Flanagan 2010]
deal with this problem by introducing the “wedge product” operator, which merges two
types—one with v ′1 substituted for x and the other with v ′2 for x—into one. Instead
of substituting eagerly, we put both bindings in δ and apply them when needed—the
refinement type case of the result relation. We think this formulation is more uniform
with regard to free term/type variables, since eager substitution is a non-starter for
type variables, anyway.
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5.1.1. Cast reflexivity. As we developed the original proof [Belo et al. 2011], we found
that the E REFL rule 〈T ⇒ T 〉l v  v is not just a convenient way to skip decomposing
a trivial cast into smaller trivial casts (when T is a polymorphic or dependent function
type); E REFL is, in fact, crucial to obtaining parametricity in this syntactic setting.
On the one hand, the evaluation of well-typed programs never encounters casts with
uninstantiated type variables—a key property of our evaluation relation. On the other
hand, by parametricity, we expect every value of type ∀α.α→ α to behave the same
as the polymorphic identity function (modulo blame). One of the values of this type is
Λα. 〈α⇒ α〉l . Without E REFL, however, applying this type abstraction to a compound
type, say Bool→ Bool, and a function f of type Bool→ Bool would return, by E FUN,
a wrapped version of f that is syntactically different from the f we passed in—that
is, the function broke parametricity! We expect the returned value should behave the
same as the input, though—the results are just syntactically different. With E REFL,
〈T ⇒ T 〉l returns the input immediately, regardless of T—just as the identity function.
So, this rule is a technical necessity, ensuring that casts containing type variables
behave parametrically.

5.2. Parametricity
Now we can set about proving parametricity. The proof of parametricity (Theorem 5.5)
of FσH is trickier than that of the standard polymorphic lambda calculus, due to (1)
dependent functions, (2) type convertibility, and (3) casts. Before stating parametricity,
we discuss these issues; see Appendix A for the proofs of it and lemmas.

In FσH, it is not as easy as in System F to show that a well-typed term application
is logically related to itself due to dependent function types. To see why, consider the
application v1 v2 such that v1 and v2 are typed at x :T1→T2 and T1, respectively. Para-
metricity states that, if v1 and v2 are logically related to themselves with θ and δ,
respectively, then so is v1 v2 at [v2/x ]T2. The definition of the logical relation, however,
states only that v1 v2 are logically related to T2, not [v2/x ]T2, with θ and δ[(v2, v2)/x ].
Fortunately, as expected, these are equivalent: v1 v2 are logically related to itself at
[v2/x ]T2 with θ and δ iff v1 v2 are logically related to itself at T2 with θ and δ[(v2, v2)/x ].
Term compositionality stated below generalizes this.

5.1 Lemma [Term compositionality (Lemma A.42)]: If θ1(δ1(e)) −→∗ v1 and
θ2(δ2(e)) −→∗ v2 then r1 ∼ r2 : T ; θ; δ[(v1, v2)/x ] iff r1 ∼ r2 : [e/x ]T ; θ; δ.

For a similar reason, we show type compositionality, which is used in other proofs
(e.g., Pitts [2000]). In what follows, we write RT ,θ,δ for {(r1, r2) | r1 ∼ r2 : T ; θ; δ}.
5.2 Lemma [Type compositionality (Lemma A.45)]:
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : [T ′/α]T ; θ; δ.

For the typing rule T CONV with type convertibility, we have to show that terms are
logically related to themselves at convertible types.

5.3 Lemma [Convertibility (Lemma A.46)]: If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff
r1 ∼ r2 : T2; θ; δ.

Showing that casts are logically related to themselves is the most cumbersome case
in the proof of parametricity. We prove it by induction on a cast complexity metric, cc,
defined in Figure 6. The complexity of a cast is the number of steps it and its subparts
can take. This definition is carefully dependent on our definition of type compatibil-
ity and our cast reduction rules. Doing induction on this metric greatly simplifies the
proof: we show that stepping casts at related types yields either related non-casts, or
lower complexity casts between related types. Note that we omit the σ, since the evalu-
ation of casts does not depend on delayed substitutions. It may be easier for the reader
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Complexity of casts

cc(〈T ⇒ T 〉l) = 1
cc(〈x :T11→T12 ⇒ x :T21→T22〉l) = cc(〈[y/x ]T12 ⇒ T22〉l) + cc(〈T21 ⇒ T11〉l) + 1

(y is fresh)
cc(〈∀α.T1 ⇒ ∀α.T2〉l) = cc(〈T1 ⇒ T2〉l) + 1
cc(〈{x :T1 | e} ⇒ T2〉l) = cc(〈T1 ⇒ T2〉l) + 1

(if T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e ′})
cc(〈T1 ⇒ {x :T1 | e}〉l) = 1
cc(〈T1 ⇒ {x :T2 | e}〉l) = cc(〈T1 ⇒ T2〉l) + 2

(if T1 6= T2 and T1 is not a refinement type)

Fig. 6. Complexity of casts

to think of cc(〈T1 ⇒ T2〉l) as a three argument function—taking two types and a blame
label—rather than a single argument function taking a cast. The cc is well defined
though the case for casts between dependent function types chooses an arbitrary fresh
variable, because, for any variable y and z , cc(〈[y/x ]T1 ⇒ T2〉l) = cc(〈[z/x ]T1 ⇒ T2〉l)
if y and z do not occur free in T1 and T2.

5.4 Lemma [Cast reflexivity (Lemma A.47)]: If ` Γ and T1 ‖ T2 and Γ ` σ(T1) '
σ(T1) : ∗ and Γ ` σ(T2) ' σ(T2) : ∗ and AFV(σ) ⊆ dom(Γ), then Γ ` 〈T1 ⇒ T2〉lσ '
〈T1 ⇒ T2〉lσ : σ( :T1→T2).

Finally, we can prove relational parametricity—every well-typed term (under Γ) is
related to itself for any Γ-respecting substitutions.

5.5 Theorem [Parametricity (Theorem A.48)]: (1) If Γ ` e : T then Γ ` e ' e : T ;
and (2) if Γ ` T then Γ ` T ' T : ∗.

We have that logically related programs are by definition behaviorally equivalent: if
∅ ` e1 ' e2 : B , then e1 and e2 coterminate at equal results. Ideally, logically related
terms are also contextually equivalent and vice versa. In fact, to show correctness of
static contract checking with respect to the semantics, we need this coincidence in
addition to the Upcast Lemma because the Upcast Lemma says that an upcast and
an identity function are logically related but not that they are contextually equivalent.
Going further than Belo et al. [2011] and Greenberg [2013] and proving that the logical
relation and contextual equivalence coincide is left as future work.

6. THREE VERSIONS OF FH

We compare FσH with two prior formulations of FH without delayed substitution: Belo
et al. [2011] and Greenberg’s thesis [Greenberg 2013]. Both of these define variants
of FH, claiming type soundness, parametricity, and upcast elimination. All of these
results depend on two properties of the FH type conversion relation: substitutivity
(Lemma 4.7) and cotermination (Lemma 4.4).

6.1. FH 1.0: Belo et al. [2011]
Belo et al. [2011] got rid of subtyping and explicitly used the symmetric, transitive clo-
sure of parallel reduction V as the conversion relation (parallel reduction is reflexive
by definition); we show selected rules of V in Figure 7; the full definition is given in
Greenberg [2013]. The use of parallel reduction is inspired by Greenberg et al. [2010],
in which type soundness of λH is proved by using cotermination and another prop-
erty called substitutivity (if e1 V e2 and e ′1 V e ′2 then [e ′1/x ]e1 V [e ′2/x ]e2) of parallel
reduction. These properties were needed also for proving type soundness of FH. Unfor-
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Parallel term reduction e1 V e2

vi V v ′i
op (v1, ... , vn)V [[op]] (v ′1, ... , v

′
n)

EP ROP
v V v ′

〈T ⇒ T 〉l v V v ′
EP RREFL

T1 6= T2 T1 6= {x :T | e} T1 V T ′1 T2 V T ′2 e V e ′ v V v ′

〈T1 ⇒ {x :T2 | e}〉l v V 〈T ′2 ⇒ {x :T ′2 | e ′}〉l (〈T ′1 ⇒ T ′2〉l v ′)
EP RPRECHECK

T V T ′ e V e ′ v V v ′

〈T ⇒ {x :T | e}〉l v V 〈{x :T ′ | e ′}, [v ′/x ]e ′, v ′〉l EP RCHECK

x :T11→T12 6= x :T21→T22

T11 V T ′11 T12 V T ′12 T21 V T ′21 T22 V T ′22 v V v ′

〈x :T11→T12 ⇒ x :T21→T22〉l v V
λx :T ′21. (〈[〈T ′21 ⇒ T ′11〉l x/x ]T ′12 ⇒ T ′22〉l (v ′ (〈T ′21 ⇒ T ′11〉l x )))

EP RFUN

e V e
EP REFL

Parallel type reduction T1 V T2

σ1 −→∗ σ2 T1 V T2

{x :T1 | σ1(e)}V {x :T2 | σ2(e)}
EP TREFINE

Fig. 7. Selected rules of parallel reduction (for open terms).

tunately, it turns out that parallel reduction in FH is not substitutive—the proof was
wrong—and cotermination, which was left as a conjecture ([Belo et al. 2011], p. 15),
does not hold, either. Figure 8 offers three counterexamples: two to substitutivity, and
one to cotermination.

Why does not substitutivity hold in FH, when it did (so easily) in λH? The trouble
is that (1) the FH cast rules depend upon certain (syntactic) equalities between types
and that (2) parallel reduction is defined over open terms. As a result, substitution
can change which reduction rules apply—both counterexamples to substitutivity in
Figure 8 exploit these flaws.

Cotermination breaks also because substitutions can affect which reduction rule ap-
plies to a cast, which in turn can force us to perform checks under one substitution that
are not performed under another, related substitution (counterexample 3 in Figure 8).

6.2. FH 2.0: Greenberg’s thesis
In his thesis, Greenberg tried to correct this problem using a fix due to Sekiyama: he
takes common-subexpression reduction (CSR) as the conversion relation [Greenberg
2013]. We repeat FσH’s identical definition of CSR (Figure 4) again here, in Figure 9.
As we can see from the definition, CSR is designed to be substitutive (and is substitu-
tive). However, cotermination still fails: we can construct ill-typed terms that do not
satisfy cotermination in Greenberg’s operational semantics—they look like the term in
counterexample 3 (Figure 8). The essential issue is that we can fire E REFL under one
substitution and force a check under another. If the term is ill typed, then we have no
way of knowing whether the argument of the cast satisfies its input type—so the check
can fail where E REFL succeeded. Well typed terms do not have this problem, but we
need our conversion relation to prove progress and preservation—we cannot use ar-
guments about typing in our proof of cotermination. In short, Greenberg’s Conjecture

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January 2015.



Polymorphic Manifest Contracts A:29

Counterexample 1: substitutivity
Let T be a type with a free variable x .

e1 = 〈T ⇒ {y :[5/x ]T | true}〉l 0
e2 = 〈[5/x ]T ⇒ {y :[5/x ]T | true}〉l (〈T ⇒ [5/x ]T 〉l 0)

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by EP REFL) and e1 V e2 (by EP RPRECHECK) but
[5/x ]e1 = 〈[5/x ]T ⇒ {y :[5/x ]T | true}〉l 0V 〈{y :[5/x ]T | true}, true, 0〉l by EP RCHECK,
not [5/x ]e2. Note that the definition of substitution [e ′/x ]e is a standard one, in which
substitution goes down into casts.

Counterexample 2: substitutivity
Let T2 be a type with a free variable x .

e1 = 〈T1→T2 ⇒ T1→ [5/x ]T2〉l v
e2 = λy :T1. 〈T2 ⇒ [5/x ]T2〉l (v (〈T1 ⇒ T1〉l y))

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by EP REFL) and e1 V e2 (by EP RFUN). We have
[5/x ]e1 = 〈T1→ [5/x ]T2 ⇒ T1→ [5/x ]T2〉l v V [5/x ]v by EP RREFL, not [5/x ]e2.

Counterexample 3: cotermination

e = 〈{x :Bool | false} ⇒ {x :Bool | y}〉l true
e1 = 0 = 5
e2 = false

Observe that e1 −→ e2 (and so e1 V e2, by EP ROP) and cotermination says that
[e1/y ]e terminates at a value iff so does [e2/x ]e. Here, by E CHECK,
[e1/y ]e −→ 〈{x :Bool | e1}, e1, true〉l −→∗ ⇑l but by E REFL, [e2/x ]e −→ true.

Fig. 8. Counterexamples to substitutivity and cotermination of parallel reduction in FH

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ⊂ TmVar ∧
∀x ∈ dom(σ1). σ1(x ) −→∗ σ2(x )

α ≡ α
C VAR

B ≡ B
C BASE

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C REFINE

T1 ≡ T ′1 T2 ≡ T ′2
x :T1→T2 ≡ x :T ′1→T ′2

C FUN
T ≡ T ′

∀α.T ≡ ∀α.T ′
C FORALL

T2 ≡ T1

T1 ≡ T2
C SYM

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C TRANS

Fig. 9. Type conversion via common-subexpression reduction
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3.2.1 on page 88 is false; it seems that the evaluation relation is defined in such a way
that substitutions can affect which cast reduction rules are chosen.

6.3. Fσ
H

Our calculus, FσH, can statically determine which cast reduction rule is chosen thanks
to our definition of substitution (Definition 3.1). In Lemma 4.4, we show that terms
related by CSR coterminate at true using FσH’s substitution semantics; this is enough
to prove type soundness and parametricity.

6.4. Discussion
FH tried to use entirely syntactic techniques to achieve type soundness, avoiding the
semantic techniques necessary for λH. But we failed: we need to prove cotermination
to get type soundness; our proof amounts to showing that type conversion is a weak
bisimulation. Our metatheory is, on the one hand, simpler than that of Greenberg et al.
[2010], which needs cotermination and semantic type soundness. On the other hand,
we must use a nonstandard substitution operation, which is a hassle.

Introducing explicit tagging [Wadler and Findler 2009] is an attractive alternative
approach. In an explicitly tagged manifest contract system, the only values inhabiting
refinement types are tagged as such, e.g., v{x :T |e}; the operational semantics then man-
ages tags on values, tagging in E OK and untagging in E FORGET. Explicit tagging
has several advantages: it clarifies the staging of the operational semantics; it elim-
inates the need for a T FORGET rule; it gives value inversion directly (Lemma 4.6).
Such a semantics would need to get stuck when casts are applied to inappropriately
tagged arguments, since typing cannot be used in the proof of cotermination. Explicit
tagging has not yet been tried in a setting with dependent types; it is not entirely clear
how to handle substitution and type conversion.

Another option would be to perform type checking in stages: removing refinements
from an FσH term should always yield a well typed System F term. By only considering
System F-typeable terms, we might be able to rule out the counterexample to cotermi-
nation. It is not clear whether this would reduce the total proof burden, though.

Finally: what kind of calculus would not have cotermination at true for well typed
terms? In a nondeterministic language, CSR may make one choice with σ1 and another
with σ2. Fortunately, FH is deterministic. In a deterministic language, cotermination at
true may not hold for CSR if the evaluation relation misuses equalities between terms,
e.g., if some rules predicate reduction on subterm equalities which other rules ignore.
FσH is careful to fix the types in its casts early, delaying substitutions so that they do
not affect reduction—the intuition underlying our proof of cotermination.

7. RELATED WORK
We discuss work related to FσH in two parts. First, we contrast our work with the un-
typed contract systems that enforce parametric polymorphism dynamically, rather
than statically as FσH does. We then discuss how FσH differs from existing manifest
contract calculi, with both static verification and dynamic checking, in greater detail.

7.1. Dynamically checked polymorphism
The FσH type system enforces parametricity with type abstractions and type variables,
while refinements are dynamically checked. Another line of work omits refinements,
seeking instead to dynamically enforce parametricity—typically with some form of
sealing (à la Morris [1973] and, later, Pierce and Sumii [2000]).

Guha et al. [2007] define latent contracts with polymorphic signatures, maintain-
ing abstraction with sealed “coffers”; they do not prove parametricity. Matthews and
Ahmed [2008] claim parametricity for a polymorphic multi-language system with a
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similar policy, though some of the proofs are not correct per Neis et al. [2009], who
use dynamic type generation to restore parametricity in the presence of intensional
type analysis. FσH’s contracts are subordinate to the type system, so the parametricity
result does not require dynamic type generation. Ahmed et al. [2009] and Ahmed et al.
[2011] define polymorphic calculi for gradual typing [Siek and Taha 2006]; the former
uses global runtime seals, while the latter uses local syntactic “barriers” instead. The
type bindings in that work inspired the delayed substitution in this one. Neither cal-
culus proves parametricity and, worse, Ahmed et al. [2011] have a flaw—the proof of
so-called “Jack-of-All-Trades,” a key property to show blame theorem [Tobin-Hochstadt
and Felleisen 2006; Wadler and Findler 2009], is wrong.11 Takikawa et al. [2012] study
gradual typing with row polymorphism for object-oriented languages with first-class
classes, but without studying parametricity. Moore et al. [2014] develop SHILL, a se-
cure shell scripting language, to control the authority of a shell script (and programs
invoked by it) in a declarative, fine-grained way. Security policies in their work are de-
scribed and ensured by using contracts. Although the SHILL language supports latent
contracts with bounded polymorphism, Moore et al. do not study parametricity.

It is probably possible to combine FσH with the barrier calculus of Ahmed et al., yield-
ing a polymorphic blame calculus [Wadler and Findler 2009]. How to prove parametric-
ity and a blame theorem for such a calculus remains an open question, though.

7.2. Combining static and dynamic checking
This section compares FσH and other work on combination of static and dynamic check-
ing. We start with other manifest calculi and then discuss other related work. A less
technical overview of manifest calculi is in Section 2.

Simply typed manifest contract calculi. The simply typed contract calculus λH is the
original foundation of hybrid type checking [Flanagan 2006]. As discussed in Section 2,
however, the metatheory of the original λH leaves it unclear whether the type system
is well defined due to issues with subtyping and monotonicity; subtyping plays an
important role in the proof of type soundness. The manifest calculus of Gronski and
Flanagan [2007] has the same problem.

Knowles and Flanagan [2010] and Greenberg, Pierce, and Weirich [2010] have re-
vised the original λH to resolve the flaw by giving the denotations of types as another
source of “well-typed” values; we write Knowles and Flanagan’s λH KF and Greenberg
et al.’s λH GPW. Both KF and GPW define syntactic term models of types to use as a
source of values in subtyping, though the specifics differ. After adding subtyping and
denotational semantics, the type systems of both KF and GPW are well defined. More-
over, as a key property of their calculi, they proved semantic soundness theorems (we
write [[T ]] for the denotations of type T ):

Γ ` e : T and Γ ` σ implies σ(e) ∈ [[σ(T )]]

in particular

∅ ` e : T implies e ∈ [[T ]].

This theorem is sufficient for establishing the type soundness of GPW whereas in-
sufficient for KF—due to different definitions of [[−]]—and so Knowles and Flanagan
prove “syntactic” type soundness on top of their semantic foundation. Although these
calculi have been proven to be sound, the situation in KF and GPW is somewhat unsat-
isfying: having to use semantic techniques throughout makes adding some features—
polymorphism, state and other effects, concurrency—difficult. For example, a semantic

11See https://plt.eecs.northwestern.edu/blame-for-all/blame-for-all.pdf
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proof of type soundness for FσH would be very close to a proof of parametricity—must
we prove parametricity while proving type soundness? To avoid such a sad situation,
Belo et al. propose a syntactic construction of manifest calculi but there are technical
flaws in their calculus (Sections 2.3 and 6.1).

The metatheory of FσH is entirely syntactic and correct. Similarly to FH, it solves the
problem by avoiding subtyping—which is what forced the circularity and denotational
semantics in the first place—and introducing T EXACT, T CONV, and convertibility ≡
instead. The T EXACT rule:

` Γ ∅ ` v : T ∅ ` {x :T | e} [v/x ]e −→∗ true
Γ ` v : {x :T | e}

T EXACT

needs some care to avoid vicious circularity: it is crucial to stipulate v and {x :T | e} be
closed. If we “bit the bullet” and allowed nonempty contexts there, then we would need
to apply a closing substitution to [v/x ]e before checking if it reduces to true... leading
to the same issues with closing substitutions earlier work has suffered from. As for
T CONV and convertibility, convertibility is much simpler than GPW and Belo et al.
[2011]. It does not, unfortunately, completely simplify the proof: we must prove that
our conversion relation is a weak bisimulation to establish cotermination (Lemma 4.4)
before proving type soundness.

The SAGE language. Gronski et al. [2006] develop the SAGE language, which sup-
ports subsumption for subtyping, casts, general refinements, polymorphism, recur-
sive functions, recursive types, the Dynamic type, the Type:Type discipline. SAGE
avoids the circularity of Flanagan’s λH, changing formalization of subtyping: in SAGE,
{x :T | e1} is a subtype of {x :T | e2} if a theorem prover can prove the implication
from e1 to e2. Since the theorem prover is independent of SAGE, the type system is well
defined. Naturally, the metatheory of SAGE rests on the theorem prover. SAGE states
axioms strong enough to show type soundness—for example, it requires the prover to
be able to show [e1/x ]e evaluates to true iff [e2/x ]e does when e1 −→ e2, which works
similarly to cotermination in FσH. Although Gronski et al. have shown type sound-
ness of SAGE, they do not deal with parametricity, while we show it in FσH. In fact, it
is difficult to show parametricity in calculi with recursive functions [Pitts 2000], re-
cursive types [Ahmed 2006], the Dynamic type [Matthews and Ahmed 2008], and/or
Type:Type. In addition, axiomatization of theorem provers could bring us to an unsat-
isfactory situation. For example, the axiom system of Gronski et al. is inconsistent,
though fixed by Knowles [2014].

A manifest calculus with algebraic datatypes. Sekiyama et al. [2015] introduce a
manifest calculus with algebraic datatypes and show conjecture-free type soundness
of their calculus, although their calculus does not support polymorphism. The metathe-
ory of it rests on CSR, while they do not adopt delayed substitutions. Instead, in order
to ensure that how cast reduces is determined statically (this is crucial for showing
cotermination), they drop cast reduction rules that see syntactic equality of the source
and target types in a cast, like E REFL of FσH—any cast in their calculus works as fol-
lows: it will first drop all refinements in the source type, apply a structural cast, and
then check all refinements in the target type. Although their calculus does not need
delayed substitutions, it is not clear that parametricity holds in manifest calculi with
such cast semantics because of E REFL’s important role in showing parametricity in
FσH.

Dependent types with dynamic typing. Ou et al. [2004] study integration of certi-
fied and uncertified program fragments—all refinements in certified parts are checked
statically whereas all those in uncertified parts are checked at runtime. They model
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static checking as subtyping checking and dynamic checking as compilation to predi-
cate checking with if-expressions. Their calculus deal with the issues of preservation
by supporting a special typing rule to assign “selfified” types to terms and subsump-
tion for subtyping. Unlike manifest calculi, they restrict refinements (and so also argu-
ments to dependent functions) to be syntactically pure in order to make static checking
decidable. They also axiomatize requirements on theorem provers, like Gronski et al.
[2006].

Static analysis and verification using path information. Much work on static pro-
gram analysis and verification (e.g., Hoare [1969]; Paulin-Mohring [1993]; Xi et al.
[2003]; Cheney and Hinze [2003]; Nanevski et al. [2006]; Rondon et al. [2008];
Kawaguchi et al. [2009]; Knowles and Flanagan [2009]; Bierman et al. [2010]; Tobin-
Hochstadt and Felleisen [2010]; Chugh et al. [2012]; Nguyen et al. [2014]) employs
path information of conditional expressions—for example, when if-expressions are
verified, the conditional expressions are supposed to hold in then-expressions whereas
they are not to hold in else-expressions. Kent et al. [2016] is particularly related, aug-
menting a path-sensitive type system with refinements; they extract a smaller logical
language for predicates, while our refinements use arbitrary code. In any case, path
information can be thought as “dynamic” because it is a result of an analysis of what
values are examined at runtime. Although FσH does not keep track of path informa-
tion directly, we can simulate by encoding an if-expression (if e1 then e2 else e3) in source
programs as:

if e1 then (let x = 〈Bool⇒ {y :Bool | e1}〉l true in e2)
else (let x = 〈Bool⇒ {y :Bool | not e1}〉l true in e3)

where x and y are fresh. Under this encoding, e2 and e3 are typed under a binding that
x is given type {y :Bool | e1} and {y :Bool | not e1}, respectively. This corresponds to a
path-sensitive typing rule for if-expressions, found, e.g., in Rondon et al. [2008]:

Γ ` e1 : Bool Γ, e1 ` e2 : T Γ, not e1 ` e3 : T

Γ ` if e1 then e2 else e3 : T

(A Boolean expression e in a context intuitively means “e reduces to true.”) Such path
information would be useful if we consider static verification for manifest contracts.

There is a large body of literature on static checking of refinement types; liquid
types is the most relevant recent work [Rondon et al. 2008; Jhala 2014]. Liquid types
are entirely static, rejecting programs that cannot be verified; moreover, they draw the
predicates in their refinements from a user-specified set, rather than arbitrary code.

8. CONCLUSION
FσH combines parametric polymorphism and manifest contracts. When we say “para-
metrically” polymorphic, we mean in particular that the relation R used to relate terms
at type variables in the logical relation is a parameter of the logical relation, which
admits any instantiation of R.12 We offer the first conjecture-free, completely correct
polymorphic manifest calculus with general refinements, where refinements can apply
to any type, not just base types.

We hope to extend FσH with barriers for dynamically checked polymorphism [Ahmed
et al. 2011], and with state. (Though we acknowledge that state is a difficult open
problem; see Greenberg [2015a].) Casts between functions and quantified types ex-
plicitly introduce function proxies; can our polymorphic semantics be made space ef-

12Earlier versions [Belo et al. 2011] only admit relations that respect parallel reduction, but that restriction
has been relaxed.
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ficient [Herman et al. 2010; Greenberg 2015b]? We also hope that FσH’s operational
semantics and (relatively) simple type system will help developers implement con-
tracts. Finally, we are curious to see what we can do with a contract language with the
reasoning principles derivable from relational parametricity.

We elide subtyping and a proof of the Upcast Lemma, which states that a cast from a
subtype to a supertype is logically related to an identity function—we believe those in
Belo et al. [2011] and Greenberg et al. [2010] can be adapted, since the parametricity
relation has not materially changed in FσH. The first two authors are also working on
a complete account of another polymorphic manifest contract calculus with recursion,
a parametricity relation that has a clear relationship to contextual equivalence, and
proofs of subtyping [Sekiyama and Igarashi 2012].
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A. PROOFS
We give the proofs of (syntactic) type soundness (Theorem 4.18) and parametricity
(Theorem A.48) of FσH, without conjectures. We start with proving standard properties
about free variables and substitution (Section A.1) because they are nonstandard and
slightly tricky. Section A.2 shows cotermination, a key property to ensure that our type
conversion relates only types equivalent “semantically” (in particular, Lemma A.17
deals with the case for refinement types). Using cotermination, we show type sound-
ness via progress (Theorem A.39) and preservation (Theorem A.41) in Section A.3.
Finally, Section A.4 shows parametricity (Theorem A.48), which also depends on coter-
mination.

A.1. Properties of substitution
A.1 Lemma [Free Term Variables After Substitution]: Let σ be a substitution.

(1) For any term e, FV(σ(e)) = (FV(e) \ dom(σ)) ∪ FV(σ|AFV(e)).
(2) For any type T , FV(σ(T )) = (FV(T ) \ dom(σ)) ∪ FV(σ|AFV(T)).

PROOF. By structural induction on e and T . We mention only the case of casts in the
first case. We are given e = 〈T1 ⇒ T2〉lσ1

. Let σ2 = σ(σ1) ] σ|(AFV(T1)∪AFV(T2))\dom(σ1).
By definition, σ(e) = 〈T1 ⇒ T2〉lσ2

and

FV(σ(e))

= ((FV(T1) ∪ FV(T2)) \ dom(σ2)) ∪ FV(σ2)

= ((FV(T1) ∪ FV(T2)) \ (dom(σ1) ∪ dom(σ|(AFV(T1)∪AFV(T2))\dom(σ1)))) ∪ FV(σ2)

= ((FV(T1) ∪ FV(T2)) \ (dom(σ1) ∪ dom(σ))) ∪ FV(σ2).

We have FV(e) = ((FV(T1) ∪ FV(T2)) \ dom(σ1)) ∪ FV(σ1), and so

FV(e) \ dom(σ) = ((FV(T1) ∪ FV(T2)) \ (dom(σ1) ∪ dom(σ))) ∪ (FV(σ1) \ dom(σ)).

Thus, it suffices to show that

FV(σ2) = (FV(σ1) \ dom(σ)) ∪ FV(σ|AFV(e)).

Here, we have FV(σ2) = FV(σ(σ1)) ∪ FV(σ|(AFV(T1)∪AFV(T2))\dom(σ1)). By the IHs,

FV(σ(σ1)) =
⋃

x ∈ dom(σ1)

FV(σ(σ1(x ))) ∪
⋃

α∈ dom(σ1)

FV(σ(σ1(α)))

=
⋃

x ∈ dom(σ1)

((FV(σ1(x )) \ dom(σ)) ∪ FV(σ|AFV(σ1(x)))) ∪⋃
α∈ dom(σ1)

((FV(σ1(α)) \ dom(σ)) ∪ FV(σ|AFV(σ1(α))))

= (FV(σ1) \ dom(σ)) ∪ FV(σ|AFV(σ1)).
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Thus,

FV(σ2) = (FV(σ1) \ dom(σ)) ∪ FV(σ|AFV(σ1)) ∪ FV(σ|(AFV(T1)∪AFV(T2))\dom(σ1)),

and so it suffices to show that

FV(σ|AFV(e)) = FV(σ|AFV(σ1)) ∪ FV(σ|(AFV(T1)∪AFV(T2))\dom(σ1)).

Since AFV(e) = ((AFV(T1) ∪ AFV(T2)) \ dom(σ1)) ∪ AFV(σ1), we finish.

A.2 Lemma [Free Type Variables After Substitution]: Let σ be a substitution.

(1) For any term e, FTV(σ(e)) = (FTV(e) \ dom(σ)) ∪ FTV(σ|AFV(e)).
(2) For any type T , FTV(σ(T )) = (FTV(T ) \ dom(σ)) ∪ FTV(σ|AFV(T)).

PROOF. Similar to Lemma A.1; by structural induction on e and T .

A.3 Lemma: Let σ be a substitution.

(1) If AFV(e) ∩ dom(σ) = ∅, then σ(e) = e.
(2) If AFV(T ) ∩ dom(σ) = ∅, then σ(T ) = T .

PROOF. By structural induction on e and T . We mention only the case of casts. We
are given e = 〈T1 ⇒ T2〉lσ′ . By definition:

FV(e) = ((FV(T1) ∪ FV(T2)) \ dom(σ′)) ∪ FV(σ′)

FTV(e) = ((FTV(T1) ∪ FTV(T2)) \ dom(σ′)) ∪ FTV(σ′)

Since (FV(e) ∪ FTV(e)) ∩ dom(σ) = ∅, we have:

dom(σ) ∩ ((FV(T1) ∪ FV(T2)) \ dom(σ′)) = ∅
dom(σ) ∩ ((FTV(T1) ∪ FTV(T2)) \ dom(σ′)) = ∅

Thus, σ(〈T1 ⇒ T2〉lσ′) = 〈T1 ⇒ T2〉lσ(σ′). Since (FV(e) ∪ FTV(e)) ∩ dom(σ) = ∅,
we have (FV(σ′) ∪ FTV(σ′)) ∩ dom(σ) = ∅, and thus σ(σ′) = σ′ by the IHs. Thus,
σ(〈T1 ⇒ T2〉lσ′) = 〈T1 ⇒ T2〉lσ′ .

A.4 Lemma: Let σ1 and σ2 be substitutions. Suppose that dom(σ1) ∩ dom(σ2) = ∅ and
AFV(σ2) ∩ dom(σ1) = ∅.
(1) For any term e, σ2(σ1(e)) = (σ2(σ1))(σ2(e)).
(2) For any type T , σ2(σ1(T )) = (σ2(σ1))(σ2(T )).

PROOF. By structural induction on e and T . We mention only the case of casts. We
are given e = 〈T1 ⇒ T2〉lσ. Let S1 = FV(T1) ∪ FV(T2), S2 = FTV(T1) ∪ FTV(T2),
and S = AFV(T1) ∪ AFV(T2). By definition, σ1(e) = 〈T1 ⇒ T2〉lσ′

1
where σ′1 = σ1(σ) ]

σ1|S\dom(σ). Thus, σ2(σ1(e)) = 〈T1 ⇒ T2〉lσ′′
1

where

σ′′1 = σ2(σ′1) ] σ2|S\dom(σ′
1)

= σ2(σ1(σ)) ] σ2(σ1)|S\dom(σ) ] σ2|S\dom(σ′
1)
.

Also, we have σ2(e) = 〈T1 ⇒ T2〉lσ′
2

where σ′2 = σ2(σ) ] σ2|S\dom(σ), and σ2(σ1)(σ2(e)) =

〈T1 ⇒ T2〉lσ′′
2

where

σ′′2 = (σ2(σ1))(σ′2) ] σ2(σ1)|S\dom(σ′
2)

= (σ2(σ1))(σ2(σ)) ] (σ2(σ1))(σ2)|S\dom(σ) ] σ2(σ1)|S\dom(σ′
2)
.

We show that σ′′1 = σ′′2 as follows.
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(1) We have σ2(σ1(σ)) = (σ2(σ1))(σ2(σ)) because, for any x ∈ dom(σ),
σ2(σ1(σ))(x ) = σ2(σ1(σ(x )))

= (σ2(σ1))(σ2(σ(x ))) (by the IH)
= (σ2(σ1))(σ2(σ))(x ),

and for any α ∈ dom(σ), σ2(σ1(σ))(α) = (σ2(σ1))(σ2(σ))(α), which can be proven
similarly to term variables by the IH.

(2) We show that σ2(σ1)|S\dom(σ) = σ2(σ1)|S\dom(σ′
2)

, that is, we show that

dom(σ1) ∩ (S \ dom(σ)) = dom(σ1) ∩ (S \ dom(σ′2)).

Here, we have
dom(σ′2) = dom(σ) ∪ (dom(σ2) ∩ (S \ dom(σ)))

= (dom(σ) ∪ dom(σ2)) ∩ (dom(σ) ∪ (S \ dom(σ)))

= (dom(σ) ∪ dom(σ2)) ∩ (dom(σ) ∪ S )

= dom(σ) ∪ (dom(σ2) ∩ S ).

Thus,
dom(σ1) ∩ (S \ dom(σ′2)) = dom(σ1) ∩ (S \ (dom(σ) ∪ (dom(σ2) ∩ S )))

= dom(σ1) ∩ (S \ (dom(σ) ∪ dom(σ2)))

= (dom(σ1) ∩ S ) \ (dom(σ) ∪ dom(σ2))

= (dom(σ1) ∩ S ) \ dom(σ)

(since dom(σ1) ∩ dom(σ2) = ∅)
= dom(σ1) ∩ (S \ dom(σ)).

(3) We show that σ2|S\dom(σ′
1)

= (σ2(σ1))(σ2)|S\dom(σ). Since AFV(σ2) ∩ dom(σ1) = ∅,
we have (σ2(σ1))(σ2) = σ2 by Lemma A.3. Thus, it suffices to show that

dom(σ2) ∩ (S \ dom(σ′1)) = dom(σ2) ∩ (S \ dom(σ)),

which can be shown similarly to the above.

A.2. Cotermination
The key observation in proving cotermination is that the relation {([e1/x ]e, [e2/x ]e) |
e1 −→ e2} is a weak bisimulation. Lemmas A.11 and A.14 show it for cases that left-
and right-hand terms first evaluate, respectively; the cases of term and type applica-
tions (without reducible subterms) are shown in Lemmas A.7 and A.9, respectively.
We show cotermination in the case that substitutions map only one term variable
(Lemma A.15), and then show general cases (Lemma A.16).

Throughout the proof, we implicitly make use of the determinism of the semantics.

A.5 Lemma [Determinism]: If e −→ e1 and e −→ e2 then e1 = e2.

PROOF. By case analysis for and induction on e −→ e1.

A.6 Lemma: Suppose that e1 and e2 are closed terms and that e ′1, [e1/x ]e ′2 and [e2/x ]e ′2
are values. If [e1/x ](e ′1 e

′
2) −→ e, then [e2/x ](e ′1 e

′
2) −→ [e2/x ]e ′ for some e ′ such that

e = [e1/x ]e ′.

PROOF. By case analysis on e ′1. Here e ′1 takes the form of either lambda abstraction
or cast since the application term [e1/x ](e ′1 e

′
2) takes a step. We give just two emblem-

atic cases: E FUN and E PRECHECK.
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e ′1 = 〈y :T11→T12 ⇒ y :T21→T22〉lσ where y :T11→T12 6= y :T21→T22: Without loss of
generality, we can suppose that y and variables of dom(σ) are fresh. Let z be a fresh
variable and i , j ∈ {1, 2}. Moreover, let σi be

[ei/x ]σ ] ([ei/x ]|(AFV(y:T11→T12)∪AFV(y:T21→T22))\dom(σ))

and σij be σi |AFV(T1j )∪AFV(T2j ). Then, [ei/x ]e ′1 = 〈y :T11→T12 ⇒ y :T21→T22〉lσi
and,

by E REDUCE/E FUN, [ei/x ](e ′1 e
′
2) −→ e ′′i where

e ′′i = λy :σi(T21). let z : σi(T11) = 〈T21 ⇒ T11〉lσi1
y in 〈[z/y ]T12 ⇒ T22〉lσi2

([ei/x ]e ′2 z ).

Here, let σ′j = σ|AFV(T1j )∪AFV(T2j ) and e ′ be

λy :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ′
1
y in 〈[z/y ]T12 ⇒ T22〉lσ′

2
(e ′2 z )

for some fresh variable z .
We show [ei/x ]e ′ = e ′′i . By Lemma A.4, [ei/x ]σ(T21) = ([ei/x ]σ)([ei/x ]T21) = σi(T21)
and, similarly, [ei/x ]σ(T11) = σi(T11). Also, letting Sj = AFV(T1j ) ∪ AFV(T2j ),

[ei/x ]σ′j ] ([ei/x ]|Sj\dom(σ′
j )

)

= [ei/x ]σ′j ] ([ei/x ]|Sj\dom(σ)) (because Sj \ dom(σ′j ) = Sj \ dom(σ))
= ([ei/x ]σ|Sj

) ] ([ei/x ]|Sj\dom(σ))
= (σi |dom(σ)∩Sj

) ] ([ei/x ]|Sj\dom(σ))
= (σij |dom(σ)) ] ([ei/x ]|Sj\dom(σ))
= σij .

The last equation is derived from the fact that

x ∈ dom(σij ) ⇐⇒ x ∈ Sj ∩ dom(σi)
⇐⇒ x ∈ Sj ∩ ((AFV(y :T11→T12) ∪ AFV(y :T21→T22)) \ dom(σ))
⇐⇒ x ∈ (Sj ∩ (AFV(y :T11→T12) ∪ AFV(y :T21→T22))) \ dom(σ)
⇐⇒ x ∈ Sj \ dom(σ).

e ′1 = 〈T1 ⇒ {y :T2 | e}〉lσ: Here T1 6= {y :T2 | e} and T1 6= T2 and T1 6= {z :T ′ | e ′} for
any z , T ′ and e ′. Let i ∈ {1, 2} and

σi = [ei/x ]σ ] ([ei/x ]|(AFV(T1)∪AFV({y:T2|e}))\dom(σ))

σi1 = σi |AFV({y:T2|e})

σi2 = σi |AFV(T1)∪AFV(T2).

Then, by E REDUCE/E PRECHECK, [ei/x ](e ′1 e
′
2) −→ e ′′i where

e ′′i = 〈T2 ⇒ {y :T2 | e}〉lσi1
(〈T1 ⇒ T2〉lσi2

[ei/x ]e ′2).

Letting

σ′1 = σ|AFV({y:T2|e})

σ′2 = σ|AFV(T1)∪AFV(T2)

e ′ = 〈T2 ⇒ {y :T2 | e}〉lσ′
1

(〈T1 ⇒ T2〉lσ′
2
e ′2),

it suffices to show that [ei/x ]e ′ = e ′′i . We can show that
[ei/x ]σ′1 ] ([ei/x ]|AFV({y:T2|e})\dom(σ′

1)
) = σi1 and and [ei/x ]σ′2 ]

([ei/x ]|(AFV(T1)∪AFV(T2))\dom(σ′
2)

) = σi2 similarly to the above, and so we finish.

A.7 Lemma: Suppose that e1 −→ e2 and that [e1/x ]e ′1, [e1/x ]e ′2 and [e2/x ]e ′2 are values.
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(1) If [e1/x ](e ′1 e
′
2) −→ e, then [e2/x ](e ′1 e

′
2) −→ [e2/x ]e ′ for some e ′ such that e =

[e1/x ]e ′.
(2) If [e2/x ](e ′1 e

′
2) −→ e, then [e1/x ](e ′1 e

′
2) −→ [e1/x ]e ′ for some e ′ such that e =

[e2/x ]e ′.

PROOF. Since [e1/x ]e ′1 is a value, and e1 is not a value from e1 −→ e2, we have e ′1
is not a variable, and thus e ′1 is a value from the assumption that so is [e1/x ]e ′1. Since
evaluation relation is defined over closed terms, we finish by Lemma A.6.

A.8 Lemma: Suppose that e1 and e2 are closed terms and that e is a value. If
[e1/x ](e T ) −→ e ′, then [e2/x ](e T ) −→ [e2/x ]e ′′ for some e ′′ such that e ′ = [e1/x ]e ′′.

PROOF. Since the type application term [e1/x ](e T ) takes a step, e takes the form of
type abstraction. Let e = Λα. e ′. Without loss of generality, we can suppose that α is
fresh. Let i ∈ {1, 2}. By E REDUCE/E TBETA, [ei/x ](e T ) −→ [[ei/x ]T/α][ei/x ]e ′. Since
ei is closed, we have [[ei/x ]T/α][ei/x ]e ′ = [ei/x ][T/α]e ′ by Lemma A.4, and thus we
finish.

A.9 Lemma: Suppose that e1 −→ e2 and that [e1/x ]e is a value.

(1) If [e1/x ](e T ) −→ e ′, then [e2/x ](e T ) −→ [e2/x ]e ′′ for some e ′′ such that e ′ =
[e1/x ]e ′′.

(2) If [e2/x ](e T ) −→ e ′, then [e1/x ](e T ) −→ [e1/x ]e ′′ for some e ′′ such that e ′ =
[e2/x ]e ′′.

PROOF. By Lemma A.8 because it is found that e is a value and that e1 and e2 are
closed terms (evaluation relation is defined over closed terms).

A.10 Lemma: If e1 −→∗ e2, then E [e1] −→∗ E [e2].

PROOF. By induction on the number of evaluation steps of e1 with E COMPAT.

A.11 Lemma [Weak bisimulation, left side]: (Lemma 4.1) Suppose that e1 −→ e2.
If [e1/x ]e −→ e ′, then [e2/x ]e −→∗ [e2/x ]e ′′ for some e ′′ such that e ′ = [e1/x ]e ′′.

PROOF. By structural induction on e. Here e1 is not a value, since e1 −→ e2.

e = x : Since [e1/x ]e = e1 and [e2/x ]e = e2, we finish by Lemma A.3 when letting
e ′′ = e2 because e2 is closed (recall that the evaluation relation is a relation over
closed terms).
e = v , y where x 6= y or ⇑l : Contradiction from [e1/x ]e −→ e ′.
e = op (e ′1, .. , e

′
n): If all terms [e1/x ]e ′i are values, then they are constants since

[e1/x ] op (e ′1, ... , e
′
n) takes a step. Since e1 is not a value, e ′i = ki for some ki . Thus,

[e1/x ]e = [e2/x ]e = op (k1, ... , kn) and so we finish.
Otherwise, we suppose that some [e1/x ]e ′i is not a value and all terms to the left
of [e1/x ]e ′i are values. From that, we can show that all terms to the left of [e2/x ]e ′i
are values since e1 is not a value. If [e1/x ]e ′i gets stuck, then contradiction because
[e1/x ]e takes a step. If [e1/x ]e ′i −→ e ′′, then, by the IH, [e2/x ]e ′i −→∗ [e2/x ]e ′′i for
some e ′′i such that e ′′ = [e1/x ]e ′′i . Thus, we finish by Lemma A.10. Otherwise, if
[e1/x ]e ′i = ⇑l , then [e2/x ]e ′i = ⇑l because e ′i = ⇑l by e1 6= ⇑l , which follows from
e1 −→ e2. Thus, we finish by E BLAME.
e = e ′1 e

′
2: We can show the case where either [e1/x ]e ′1 or [e1/x ]e ′2 is not a value simi-

larly to the above. Otherwise, if they are values, we can find that so are [e2/x ]e ′1 and
[e2/x ]e ′2, and thus we finish by Lemma A.7 (1).
e = e ′1 T2: Similar to the case of function application, with Lemma A.9 (1).
e = 〈{y :T | e ′1}, e ′2, v〉l : Similar to the above.
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A.12 Lemma: If e1 −→ e2, and [e2/x ]e is a value, then there exists some e ′ such that

— [e1/x ]e −→∗ [e1/x ]e ′,
— [e1/x ]e ′ is a value, and
— [e2/x ]e = [e2/x ]e ′.

PROOF. By case analysis on e.

A.13 Lemma: If e1 −→ e2, and [e2/x ]e = ⇑l , then [e1/x ]e −→∗ ⇑l .

PROOF. By case analysis on e.

A.14 Lemma [Weak bisimulation, right side]: (Lemma 4.2)
Suppose that e1 −→ e2. If [e2/x ]e −→ e ′, then [e1/x ]e −→∗ [e1/x ]e ′′ for some e ′′ such

that e ′ = [e2/x ]e ′′.

PROOF. By structural induction on e.

e = x : Since [e1/x ]e = e1 and [e2/x ]e = e2, we finish by Lemma A.3 when letting
e ′′ = e ′.
e = v , y where x 6= y or ⇑l : Contradiction from [e2/x ]e −→ e ′.
e = op (e ′1, .. , e

′
n): If all terms [e2/x ]e ′i are values, then they are constants since

[e2/x ] op (e ′1, ... , e
′
n) takes a step. By Lemma A.12, [e1/x ] op (e ′1, ... , e

′
n) −→∗

[e1/x ] op (e ′′1 , ... , e
′′
2 ) for some e ′′1 , ..., e

′′
n such that [e2/x ] op (e ′1, ... , e

′
n) =

[e2/x ] op (e ′′1 , ... , e
′′
n ). Since e1 is not a value from e1 −→ e2, e ′′i = ki for some

ki . Thus, we finish.
Otherwise, we suppose that some [e2/x ]e ′i is not a value and all terms to the left
of [e2/x ]e ′i are values. By Lemma A.12, each term [e1/x ]e ′j to the left of [e1/x ]e ′i
evaluates to a value [e1/x ]e ′′j for some e ′′j such that [e2/x ]e ′j = [e2/x ]e ′′j . If [e2/x ]e ′i
gets stuck, then contradiction because [e2/x ]e takes a step. If [e2/x ]e ′i = ⇑l , then
[e1/x ]e ′i −→∗ ⇑l by Lemma A.13. Thus, we finish by E BLAME. Otherwise, if
[e2/x ]e ′i −→ e ′′, then we finish by the IH and E COMPAT.
e = e ′1 e

′
2: We can show the case where either [e2/x ]e ′1 or [e2/x ]e ′2 is not a value simi-

larly to the above. Otherwise, if they are values, we can find, by Lemma A.12, that
[e1/x ]e ′1 and [e1/x ]e ′2 evaluates to values [e1/x ]e ′′1 and [e1/x ]e ′′2 for some e ′′1 and e ′′2
such that [e2/x ]e ′1 = [e2/x ]e ′′1 and [e2/x ]e ′2 = [e2/x ]e ′′2 , respectively. Then, we finish by
Lemma A.7 (2).
e = e ′1 T2: Similar to the case of function application, with Lemma A.9 (2).
e = 〈{y :T | e ′1}, e ′2, v〉l : Similari to the above.

A.15 Lemma [Cotermination, one variable]: (Lemma 4.3)

(1) Suppose that e1 −→ e2.
(a) If [e1/x ]e −→∗ true, then [e2/x ]e −→∗ true.
(b) If [e2/x ]e −→∗ true, then [e1/x ]e −→∗ true.

(2) Suppose that e1 −→∗ e2.
(a) If [e1/x ]e −→∗ true, then [e2/x ]e −→∗ true.
(b) If [e2/x ]e −→∗ true, then [e1/x ]e −→∗ true.

PROOF.
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(1) By induction on the number of evaluation steps of [e1/x ]e and [e2/x ]e with Lem-
mas A.11 and A.14 for the induction steps, respectively.
If [e1/x ]e = true, then either e = x and e1 = true, or e = true. The former contradicts
the assumption that e1 −→ e2. Thus, e = true and so [e2/x ]e = true.
If [e2/x ]e = true, then, by Lemma A.12, there exists e ′ such that [e1/x ]e −→∗ [e1/x ]e ′

and [e1/x ]e ′ is a value and [e2/x ]e = [e2/x ]e ′. Similarly to the discussion above, we
have e ′ = true and so finish.

(2) By induction on the number of evaluation steps of e1 with the first case.

A.16 Lemma [Cotermination]: (Lemma 4.4) Suppose that σ1 −→∗ σ2.

(1) If σ1(e) −→∗ true, then σ2(e) −→∗ true.
(2) If σ2(e) −→∗ true, then σ1(e) −→∗ true.

PROOF. By induction on the size of dom(σ1) with Lemma A.15.

A.3. Type soundness
We show type soundness in a syntactic manner, using progress (Theorem A.39)
and preservation (Theorem A.41). Cotermination is used to show value inversion
(Lemma A.18), which implies consistency of the contract system of FσH and is used
to show progress in the case for T OP. After proving properties of convertibility (Lem-
mas A.19–A.26) and compatibility (Lemmas A.27–A.30), we show progress and preser-
vation, using standard lemmas: weakening lemmas (Lemmas A.31 and A.32), substi-
tution lemmas (Lemmas A.33 and A.34), inversion lemmas (Lemmas A.35–A.37), and
canonical forms lemma (Lemma A.38).

A.17 Lemma [Cotermination of refinement types (Lemma 4.5)]: If {x :T1 | e1} ≡
{x :T2 | e2} then T1 ≡ T2 and [v/x ]e1 −→∗ true iff [v/x ]e2 −→∗ true, for any closed value
v .

PROOF. By induction on the equivalence. There are three cases.
(C REFINE): We have T1 ≡ T2 by assumption. We know that e1 = σ1(e) and e2 =
σ2(e) for σ1 −→∗ σ2. It is trivially true that v −→∗ v , so [v/x ]σ1 −→∗ [v/x ]σ2. By
cotermination (Lemma A.16), we know that [v/x ]σ1(e) −→∗ true iff [v/x ]σ2(e) −→∗ true.
(C SYM): By the IH.
(C TRANS): By the IHs and transitivity of ≡ and cotermination.

A.18 Lemma [Value inversion (Lemma 4.6)]: If ∅ ` v : T and unrefn(T ) = {x :Tn |
en} then [v/x ]en −→∗ true.

PROOF. By induction on the height of the typing derivation; we list all the cases
that could type values.
(T CONST): By assumption of valid typing of constants.
(T ABS): Contradictory—the type is wrong.
(T TABS): Contradictory—the type is wrong.
(T CAST): Contradictory—the type is wrong.
(T CONV): By applying Lemma A.17 on the stack of refinements on T .
(T FORGET): By the IH on ∅ ` v : {x :T | e}, adjusting each of the n down by one to
cover the stack of refinements on T .
(T EXACT): By assumption for the outermost refinement; by the IH on ∅ ` v : T for the
rest.

A.19 Lemma [Reflexivity of conversion]:
T ≡ T for all T .
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PROOF. By induction on T .

A.20 Lemma [Like-type arrow conversion]: If x :T11→T12 ≡ T then T = x :T21→
T22.

PROOF. By induction on the conversion relation. Only C FUN applies, and C SYM
and C TRANS are resolved by the IH.

A.21 Lemma [Conversion arrow inversion]: If x :T11 → T12 ≡ x :T21 → T22 then
T11 ≡ T21 and T12 ≡ T22.

PROOF. By induction on the conversion derivation, using Lemma A.20.

A.22 Lemma [Like-type forall conversion]: If ∀α.T1 ≡ T then T = ∀α.T2.

PROOF. By induction on the conversion relation. Only C FORALL applies, and
C SYM and C TRANS are resolved by the IH.

A.23 Lemma [Conversion forall inversion]: If ∀α.T1 ≡ ∀α.T2 then T1 ≡ T2.

PROOF. By induction on the conversion derivation, using Lemma A.22.

A.24 Lemma [Term substitutivity of conversion (Lemma 4.7)]:
If T1 ≡ T2 and e1 −→∗ e2 then [e1/x ]T1 ≡ [e2/x ]T2.

PROOF. By induction on T1 ≡ T2.
(C VAR): By C VAR.
(C BASE): By C BASE.
(C REFINE): T1 = {y :T ′1 | σ1(e)} and T2 = {y :T ′2 | σ2(e)} such that T ′1 ≡ T ′2 and
σ1 −→∗ σ2. By the IH on T ′1 ≡ T ′2, we know that [e1/x ]T ′1 ≡ [e2/x ]T ′2. Since e1 −→∗ e2,
we know that σ1 ] [e1/x ] −→∗ σ2 ] [e2/x ], and we are done by C REFINE.
(C FUN): By the IHs and C FUN.
(C FORALL): By the IH and C FORALL.
(C TRANS): By the IHs and C TRANS.
(C SYM): By the IHs and C SYM.

A.25 Lemma [Type substitutivity of conversion (Lemma 4.8)]:
If T1 ≡ T2 then [T/α]T1 ≡ [T/α]T2.

PROOF. By induction on T1 ≡ T2.
(C VAR): If T1 = T2 = α, then by reflexivity (Lemma A.19). Otherwise, by C VAR.
(C BASE): By C BASE.
(C REFINE): T1 = {y :T ′1 | σ1(e)} and T2 = {y :T ′2 | σ2(e)} such that T ′1 ≡ T ′2 and
σ1 −→∗ σ2. By the IH on T ′1 ≡ T ′2, we know that [T/α]T ′1 ≡ [T/α]T ′2. Since [T/α]σ1 = σ1
and [T/α]σ2 = σ2, so we are done by C REFINE.
(C FUN): By the IHs and C FUN.
(C FORALL): By the IH and C FORALL, possibly varying the bound variable name.
(C SYM): By the IH and C SYM.
(C TRANS): By the IHs and C TRANS.

A.26 Lemma [Conversion of unrefined types]: If T1 ≡ T2 then unref(T1) ≡
unref(T2).

PROOF. By induction on the derivation of T1 ≡ T2.

A.27 Lemma [Compatibility is symmetric]: T1 ‖ T2 iff T2 ‖ T1.

PROOF. By induction on T1 ‖ T2.
(SIM VAR): By SIM VAR.
(SIM BASE): By SIM BASE.
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(SIM REFINEL): By SIM REFINER and the IH.
(SIM REFINER): By SIM REFINEL and the IH.
(SIM FUN): By SIM FUN and the IHs.
(SIM FORALL): By the IH and SIM FORALL.

A.28 Lemma [Substitution preserves compatibility]:
If T1 ‖ T2, then [e/x ]T1 ‖ T2.

PROOF. By induction on the compatibility relation.
(SIM VAR): By SIM VAR.
(SIM BASE): By SIM BASE.
(SIM REFINEL): By SIM REFINEL and the IH.
(SIM REFINER): By SIM REFINER and the IH.
(SIM FUN): By SIM FUN and the IHs.
(SIM FORALL): By SIM FORALL and the IH.

A.29 Lemma [Type substitution preserves compatibility]: If T1 ‖ T2 then
[T ′/α]T1 ‖ [T ′/α]T2.

PROOF. By induction on the compatibility relation.
(SIM VAR): By SIM VAR or reflexivity of the compatibility (proved easily).
(SIM BASE): By SIM BASE.
(SIM REFINEL): By SIM REFINEL and the IH.
(SIM REFINER): By SIM REFINER and the IH.
(SIM FUN): By SIM FUN and the IHs.
(SIM FORALL): By SIM FORALL and the IH.

A.30 Lemma [Identity type substitution on one side preserves compatibility]:
If T1 ‖ T2 then [α/α]T1 ‖ T2.

PROOF. Similar to Lemma A.29.

A.31 Lemma [Term weakening (Lemma 4.9)]: If x is fresh and Γ ` T ′ then

(1) Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and
(3) ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

PROOF. By induction on e, T , and Γ′. The only interesting case is for terms where
a runtime rule applies:
(T CONV,T EXACT,T FORGET): The argument is the same for all terms, so: since
` Γ, x :T ′,Γ′, we can reapply T CONV, T EXACT, or T FORGET, respectively. In the
rest of this proof, we will not bother considering these rules.

A.32 Lemma [Type weakening (Lemma 4.10)]: If α is fresh then

(1) Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and
(3) ` Γ,Γ′ implies` Γ, α,Γ′.

PROOF. By induction on e, T , and Γ′. The proof is similar to term weakening,
Lemma A.31.

A.33 Lemma [Term substitution (Lemma 4.11)]: If Γ ` e ′ : T ′, then

(1) if Γ, x :T ′,Γ′ ` e : T then Γ, [e ′/x ]Γ′ ` [e ′/x ]e : [e ′/x ]T ,
(2) if Γ, x :T ′,Γ′ ` T then Γ, [e ′/x ]Γ′ ` [e ′/x ]T , and
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(3) if ` Γ, x :T ′,Γ′ then ` Γ, [e ′/x ]Γ′.

PROOF. By induction on e, T , and Γ′. In the first two clauses, we are careful to leave
Γ′ as long as it is well formed.

A.34 Lemma [Type substitution (Lemma 4.12)]: If Γ ` T ′ then

(1) if Γ, α,Γ′ ` e : T , then Γ, [T ′/α]Γ′ ` [T ′/α]e : [T ′/α]T ,
(2) if Γ, α,Γ′ ` T , then Γ, [T ′/α]Γ′ ` [T ′/α]T , and
(3) if ` Γ, α,Γ′, then ` Γ, [T ′/α]Γ′.

PROOF. By induction on e, T , and Γ′.

A.35 Lemma [Lambda inversion (Lemma 4.13)]: If Γ ` λx :T1. e12 : T , then there
exists some T2 such that

(1) Γ ` T1,
(2) Γ, x :T1 ` e12 : T2, and
(3) x :T1→T2 ≡ unref(T ).

PROOF. By induction on the typing derivation. Cases not mentioned only apply to
terms which are not lambdas.
(T ABS): By inversion, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. We find conversion
immediately by reflexivity (Lemma A.19), since unref(T ) = T = x :T1→T2.
(T CONV): We have Γ ` λx :T1. e12 : T ; by inversion, T ≡ T ′ and ∅ ` λx :T1. e12 : T ′. By
the IH on this second derivation, we find ∅ ` T1 and x :T1 ` e12 : T2 where, unref(T ′) ≡
x :T1→T2. By weakening, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. Since T ′ ≡ T , we have
x :T1→T2 ≡ unref(T ′) ≡ unref(T ) by C TRANS.
(T EXACT): T = {x :T ′ | e}, and we have Γ ` λx :T1. e12 : {x :T ′ | e}; by inversion,
∅ ` λx :T1. e12 : T ′. By the IH, ∅ ` T1 and x :T1 ` e12 : T2, where x :T1→T2 ≡ unref(T ′).
By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since unref(T ′) = unref({x :T ′ | e}), we
have the conversion by C TRANS): x :T1→T2 ≡ unref(T ′) = unref({x :T ′ | e}).
(T FORGET): We have Γ ` λx :T1. e12 : T ; by inversion, ∅ ` λx :T1. e12 : {x :T | e}. By
the IH on this latter derivation, we ∅ ` T1 and x :T1 ` e12 : T2, where x :T1 → T2 ≡
unref({x :T | e}). By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since unref({x :T | e}) =
unref(T ), we have by C TRANS that x :T1→T12 ≡ unref({x :T | e}) = unref(T ).

A.36 Lemma [Cast inversion]: If Γ ` 〈T1 ⇒ T2〉lσ : T , then

(1) Γ ` σ(T1),
(2) Γ ` σ(T2),
(3) T1 ‖ T2

(4) :σ(T1)→σ(T2) ≡ unref(T ) (i.e., T2 does not mention the dependent variable), and
(5) AFV(σ) ⊆ dom(Γ).

PROOF. By induction on the typing derivation, as for A.35.

A.37 Lemma [Type abstraction inversion]: If Γ ` Λα. e : T , then

(1) Γ, α ` e : T ′ and
(2) ∀α.T ′ ≡ unref(T ).

PROOF. By induction on the typing derivation, as for A.35.

A.38 Lemma [Canonical forms (Lemma 4.14)]: If ∅ ` v : T , then:

(1) If unref(T ) = B then v is k ∈ KB for some k .
(2) If unref(T ) = x :T1→T2 then

(a) v is λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1, and e12, or
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(b) v is 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2 for some T ′1,T
′
2, σ, and l .

(3) If unref(T ) = ∀α.T ′ then v is Λα. e for some e.

PROOF. By induction on the typing derivation.
(T VAR): Contradictory: variables are not values.
(T CONST): ∅ ` k : T and unref(T ) = B ; we are in case 1. By assumption, k ∈ KB .
(T OP): Contradictory: op (e1, ... , en) is not a value.
(T ABS): ∅ ` λx :T1. e12 : T and T = unref(T ) = x :T1→T2; we are in case 2a. Conver-
sion is by reflexivity (Lemma A.19).
(T APP): Contradictory: e1 e2 is not a value.
(T TABS): ∅ ` Λα. e : ∀α.T ; we are in case 3. It is immediate that v = Λα. e, and
conversion is by reflexivity (Lemma A.19).
(T TAPP): Contradictory: e T is not a value.
(T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : :σ(T1)→ σ(T2); we are in case 2b. It is immediate that
v = 〈T1 ⇒ T2〉lσ. Conversion is by reflexivity (Lemma A.19).
(T CHECK): Contradictory: 〈{x :T | e1}, e2, v〉l is not a value.
(T BLAME): Contradictory: ⇑l is not a value.
(T CONV): ∅ ` v : T ; by inversion, ∅ ` v : T ′ and T ′ ≡ T . We find an appropriate form
for unref(T ′) by the IH on ∅ ` v : T ′. We go by cases, in each case reproving whatever
case was found in the IH and finding conversions by C TRANS.

Case 1: unref(T ) = B and v = k ∈ KB . Since unref(T ′) ≡ unref(T ), we know that
unref(T ′) = B , which is all we needed to show.
Case 2a: unref(T ) = x :T1→T2 and v = λx :T ′′1 . e12 and T ′′1 ≡ T1. Since T ′ ≡ T , we
have unref(T ′) ≡ unref(T ) (Lemma A.26) and so unref(T ′) = x :T ′1→T ′2 for some T ′1
and T ′2 such that T ′1 ≡ T1 (Lemma A.21); by C TRANS, we have T ′′1 ≡ T ′1.
Case 2b: unref(T ) = x :T1→T2 and v = 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and T ′2 ≡ T2. Since
T ′ ≡ T , we have unref(T ′) ≡ unref(T ) (Lemma A.26) and so unref(T ′) = x :T ′′1 →T ′′2
for some T ′′1 and T ′′2 such that T ′′1 ≡ T1 and T ′′2 ≡ T2 (Lemmas A.20 and A.21); by
C TRANS, we have T ′1 ≡ T ′′1 and T ′2 ≡ T ′′2 as required.
Case 3: unref(T ) = ∀α.T0 and v is Λα. e. Since T ′ ≡ T , then unref(T ′) ≡ unref(T )
(Lemma A.26).

(T EXACT): ∅ ` v : {x :T | e}; by inversion, ∅ ` v : T . Noting that unref({x :T |
e}) = unref(T ), we apply the IH. Unlike the previous case, we need not change the
conversion—it is in terms of the unrefined type.
(T FORGET): ∅ ` v : T ; by inversion ∅ ` v : {x :T | e}. By the IH (noting unref({x :T |
e}) = unref(T )), so we use the IH’s conversion directly.

A.39 Theorem [Progress (Theorem 4.15)]: If ∅ ` e : T , then either

(1) e −→ e ′, or
(2) e is a result r , i.e., a value or blame.

PROOF. By induction on the typing derivation.
(T VAR): Contradictory: there is no derivation ∅ ` x : T .
(T CONST): ∅ ` k : ty(k). In this case, e = k is a result.
(T OP): ∅ ` op (e1, ... , en) : σ(T ), where ty(op) = x1 : T1 → ... → xn : Tn → T . By
inversion, ∅ ` ei : σ(Ti). Applying the IH from left to right, each of the ei either steps
or is a result.

Suppose everything to the left of ei is a value. Then either ei steps or is a result. If
ei −→ e ′i , then op(v1, ... , vi−1, ei , ... , en) −→ op(v1, ... , vi−1, e

′
i , ... , en) by E COMPAT.

One the other hand, if ei is a result, there are two cases. If ei = ⇑l , then the original
expression steps to ⇑l by E BLAME. If ei is a value, we can continue this process for
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each of the operation’s arguments. Eventually, all of the operations arguments are val-
ues. By value inversion (Lemma A.18), we know that we can type each of these values
at the exact refinement types we need by T EXACT. We assume that if op (v1, ... , vn) is
well defined on values satisfying the refinements in its type, so E OP applies.
(T ABS): ∅ ` λx :T1. e12 : (x :T1→T2). In this case, e = λx :T1. e12 is a result.
(T APP): ∅ ` e1 e2 : [e2/x ]T2; by inversion, ∅ ` e1 : (x :T1→T2) and ∅ ` e2 : T1.

By the IH on the first derivation, e1 steps or is a result. If e1 steps, then the entire
term steps by E COMPAT. In the latter case, if e1 is blame, we step by E BLAME. So e1
is a value, v1.

By the IH on the second derivation, e2 steps or is a result. If e2 steps, then by
E COMPAT. Otherwise, if e2 is blame, we step by E BLAME. So e2 is a value, v2.

By canonical forms (Lemma A.38) on ∅ ` e1 : (x :T1→T2), there are two cases:

(e1 = λx :T ′1. e12 and T ′1 ≡ T1): In this case, (λx :T ′1. e12) v2 −→ [v2/x ]e12 by E BETA.
(e1 = 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2): We know that T ′1 ‖ T ′2 by cast
inversion (Lemma A.36). We determine which step is taken by cases on T ′1 and T ′2.

(T ′1 = B ):
(T ′2 = B ′): It must be the case that B = B ′, since B ‖ B ′. By E REFL, 〈B ⇒
B〉lσ v2 −→ v2.
(T ′2 = α or x :T21→T22 or ∀α.T22): Incompatible; contradictory.
(T ′2 = {x :T ′′2 | e}): If T ′′2 = B , then by E CHECK, 〈B ⇒ {x :B | e}〉lσ v2 −→
〈σ({x :B | e}), σ([v2/x ]e), v2〉l . Otherwise, by E PRECHECK, we have:

〈B ⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1
(〈B ⇒ T ′′2 〉lσ2

v2)

where σ1 = σ|AFV({x :T ′′
2 |e}) and σ2 = σ|AFV(T ′′

2 ).
(T ′1 = α):

(T ′2 = α′): It must be the case that α = α′, since α ‖ α′. By E REFL, 〈α ⇒
α〉lσ v2 −→ v2.
(T ′2 = B or x :T21→T22 or ∀α.T22): Incompatible; contradictory.
(T ′2 = {x :T ′′2 | e}): If T ′′2 = α, then by E CHECK, 〈α ⇒ {x :α | e}〉lσ v2 −→
〈σ({x :α | e}), σ([v2/x ]e), v2〉l . Otherwise,

〈α⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1
(〈α⇒ T ′′2 〉lσ2

v2)

where σ1 = σ|AFV({x :T ′′
2 |e}) and σ2 = σ|AFV(T ′′

2 ), by E PRECHECK.
(T ′1 = x :T11→T12):

(T ′2 = B or α or ∀α.T22): Incompatible; contradictory.
(T ′2 = x :T21→T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′1〉lσ v2 −→ v2 by E REFL. If not,
then
〈x :T11→T12 ⇒ x :T21→T22〉lσ v2 −→
λx :σ(T21). let y : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in (〈[y/x ]T12 ⇒ T22〉lσ2
(v2 y))

for some fresh variable y , where σi = σ|AFV(T1i )∪AFV(T2i ) (i ∈ {1, 2}), by
E FUN.
(T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉lσ v2 −→ 〈σ({x :T ′1 |
e}), σ([v2/x ]e), v2〉l by E CHECK. If not, then

〈T ′1 ⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1
(〈T ′1 ⇒ T ′′2 〉lσ2

v2)

, where σ1 = σ|AFV({x :T ′′
2 |e}) and σ2 = σ|AFV(T ′

1)∪AFV(T ′′
2 ), by E PRECHECK.

(T ′1 = ∀α.T12):
(T ′2 = B or α or x :T21→T22): Incompatible; contradictory.
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(T ′2 = ∀α.T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′2〉lσ v2 −→ v2 by E REFL. If not, then
〈∀α.T11 ⇒ ∀α.T22〉lσ v2 −→ Λα. (〈[α/α]T11 ⇒ T22〉lσ (v2 α)) by E FORALL.
(T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉lσ v2 −→ 〈σ({x :T ′1 |
e}), σ([v2/x ]e), v2〉l by E CHECK. If not, then 〈T ′1 ⇒ {x :T ′′2 | e}〉lσ v2 −→
〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1

(〈T ′1 ⇒ T ′′2 〉lσ2
v2) where σ1 = σ|AFV({x :T ′′

2 |e}) and
σ2 = σ|AFV(T ′

1)∪AFV(T ′′
2 ), by E PRECHECK.

(T ′1 = {x :T ′′1 | e ′1}):
(T ′2 = B or α or x :T21→T22 or ∀α.T22): We see

〈{x :T ′′1 | e ′1} ⇒ T ′2〉lσ v2 −→ 〈T ′′1 ⇒ T ′2〉lσ′ v2

where σ′ = σ|AFV(T ′′
1 )∪AFV(T ′

2)
, by E FORGET.

(T ′2 = {x :T ′′2 | e ′2}): If T ′1 = T ′2, then we immediately have 〈T ′1 ⇒ T ′2〉lσ v2 −→
v2 by E REFL. If T ′1 = T ′′2 , then

〈T ′1 ⇒ {x :T ′1 | e ′2}〉lσ v2 −→ 〈σ({x :T ′1 | e ′2}), σ([v2/x ]e ′2), v2〉l

by E CHECK. Otherwise,
〈{x :T ′′1 | e ′1} ⇒ {x :T ′′2 | e ′2}〉lσ v2 −→ 〈T ′′1 ⇒ {x :T ′′2 | e ′2}〉lσ′ v2

where σ′ = σ|AFV(T ′′
1 )∪AFV({x :T ′′

2 |e′
2}), by E FORGET.

(T TABS): ∅ ` Λα. e ′ : ∀α.T . In this case, Λα. e ′ is a result.
(T TAPP): ∅ ` e1 T2 : [T2/α]T1; by inversion, ∅ ` e1 : ∀α.T1 and ∅ ` T2. By the IH on the
first derivation, e1 steps or is a result. If e1 −→ e ′1, then e1 T2 −→ e ′1 T2 by E COMPAT.
If e1 = ⇑l , then ⇑l T2 −→ ⇑l by E BLAME.

If e1 = v1, then we know that v1 = Λα. e ′1 by canonical forms (Lemma A.38). We can
see (Λα. e ′1)T2 −→ [T2/α]e ′1 by E TBETA.
(T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : T1→T2. In this case, 〈T1 ⇒ T2〉lσ is a result.
(T CHECK): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}; by inversion, ∅ ` e2 : Bool. By the
IH, either e2 −→ e ′2 steps or e2 = r2. In the first case, 〈{x :T | e1}, e2, v〉l −→ 〈{x :T |
e1}, e ′2, v〉l by E COMPAT. In the second case, either r2 = ⇑l or r2 = v2. If we have blame,
then the entire term steps by E BLAME. If we have a value, then we know that v2 is
either true or false, since it is typed at Bool. If it is true, we step by E OK. Otherwise we
step by E FAIL.
(T BLAME): ∅ ` ⇑l : T . In this case, ⇑l is a result.
(T CONV): ∅ ` e : T ′; by inversion, ∅ ` e : T . By the IH, we see that e −→ e ′ or e = r .
(T EXACT): ∅ ` v : {x :T | e}. Here, v is a result by assumption.
(T FORGET): ∅ ` v : T . Again, v is a result by assumption.

A.40 Lemma [Regularity (Lemma 4.16)]: (1) If Γ ` e : T , then ` Γ and Γ ` T ; and
(2) if Γ ` T then ` Γ.

PROOF. By induction on the typing and well formedness derivations.

A.41 Theorem [Preservation (Theorem 4.17)]: If ∅ ` e : T and e −→ e ′, then ∅ `
e ′ : T .

PROOF. By induction on the typing derivation.
(T VAR): Contradictory—we cannot have ∅ ` x : T .
(T CONST): ∅ ` k : ty(k). Contradictory—values do not step.
(T OP): ∅ ` op (e1, ... , en) : σ(T ). By cases on the step taken:

(E REDUCE/E OP): op (v1, ... , vn) −→ [[op]] (v1, ... , vn). This case is by assumption.
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(E BLAME): ei = ⇑l , and everything to its left is a value. By context and type well
formedness (Lemma A.40), ∅ ` σ(T ). So by T BLAME, ∅ ` ⇑l : σ(T ).
(E COMPAT): Some ei −→ e ′i . By the IH and T OP, using T CONV to show that
σ(T ) ≡ σ′(T ) (Lemma A.24).

(T ABS): ∅ ` λx :T1. e12 : (x :T1→T2). Contradictory—values do not step.
(T APP): ∅ ` e1 e2 : [e2/x ]T ′2, with ∅ ` e1 : (x :T ′1→T ′2) and ∅ ` e2 : T ′1, by inversion. By
cases on the step taken.

(E REDUCE/E BETA): (λx :T1. e12) v2 −→ [v2/x ]e12. First, we have ∅ ` λx :T1. e12 :
(x :T ′1 → T ′2). By inversion for lambdas (Lemma A.35), x :T1 ` e12 : T2. Moreover,
x :T1→T2 ≡ x :T ′1→T ′2, which means T2 ≡ T ′2 (Lemma A.21).
By substitution, ∅ ` [v2/x ]e12 : [v2/x ]T2. We then see that [v2/x ]T2 ≡ [v2/x ]T ′2
(Lemma A.24), so T CONV completes this case.
(E REDUCE/E REFL): 〈T ⇒ T 〉lσ v2 −→ v2. By cast inversion (Lemma A.36),

:σ(T ) → σ(T ) ≡ x :T ′1 → T ′2 and ∅ ` σ(T ). In particular, we have σ(T ) ≡ T ′2
and σ(T ) ≡ T ′1 (Lemma A.21). By substitutivity of conversion (Lemma A.24),
[v2/x ]σ(T ) ≡ [v2/x ]T ′2. Since σ(T ) is closed, we really know that σ(T ) ≡ [v2/x ]T ′2.
By C SYM and C TRANS, we have T ′1 ≡ σ(T ) ≡ [v2/x ]T ′2. By T CONV on ∅ ` v2 : T ′1,
we have ∅ ` v2 : [v2/x ]T ′2.
(E REDUCE/E FORGET): 〈{x :T1 | e} ⇒ T2〉lσ v2 −→ 〈T1 ⇒ T2〉lσ′ v2 where σ′ =
σ|AFV(T1)∪AFV(T2). We have σ(T1) = σ′(T1) and σ(T2) = σ′(T2). We restate the
typing judgment and its inversion:

∅ ` 〈{x :T1 | e} ⇒ T2〉lσ v2 : [v2/y ]T ′2
∅ ` 〈{x :T1 | e} ⇒ T2〉lσ : (y :T ′1→T ′2)
∅ ` v2 : T ′1

By cast inversion (Lemma A.36), we know that ∅ ` σ(T1) from ∅ ` σ({x :T1 | e}) and
∅ ` σ(T2)—as well as :σ({x :T1 | e})→σ(T2) ≡ y :T ′1→T ′2 and {x :T1 | e} ‖ T2 and
AFV(σ) ⊆ ∅. Inverting this conversion (Lemma A.21), finding σ({x :T1 | e}) ≡ T ′1
and σ(T2) ≡ T ′2. Then by T CONV and C SYM, ∅ ` v2 : σ({x :T1 | e}); by T FORGET,
∅ ` v2 : σ(T1).
By T CAST, we have ∅ ` 〈T1 ⇒ T2〉lσ′ : y :σ(T1)→ σ(T2), with T1 ‖ T2 iff {x :T1 |
e} ‖ T2, and AFV(σ′) ⊆ AFV(σ) ⊆ ∅. (Note, however, that y does not appear in
σ(T2)—we write it to clarify the substitutions below.)
By T APP, we find ∅ ` 〈T1 ⇒ T2〉lσ′ v2 : [v2/y ]σ(T2). Since σ(T2) ≡ T ′2, we have
[v2/y ]σ(T2) ≡ [v2/y ]T ′2 by Lemma A.24. We are done by T CONV.
(E REDUCE/E PRECHECK):

〈T1 ⇒ {x :T2 | e}〉lσ v2 −→
〈T2 ⇒ {x :T2 | e}〉lσ1

(〈T1 ⇒ T2〉lσ2
v2)

where σ1 = σ|AFV({x :T2|e}) and σ2 = σ|AFV(T1)∪AFV(T2). We have σ(T1) = σ2(T1)
and σ(T2) = σ1(T2) = σ2(T2) and σ({x :T2 | e}) = σ1({x :T2 | e}). We restate the
typing judgment and its inversion:

∅ ` 〈T1 ⇒ {x :T2 | e}〉lσ v2 : [v2/y ]T ′2
∅ ` 〈T1 ⇒ {x :T2 | e}〉lσ : y :T ′1→T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma A.36), ∅ ` σ(T1) and ∅ ` σ({x :T2 | e}), and y :σ(T1)→
σ({x :T2 | e}) ≡ y :T ′1→T ′2 Also, T1 ‖ {x :T2 | e} and AFV(σ) ⊆ ∅.
By inversion on ∅ ` σ({x :T2 | e}), we find ∅ ` σ(T2). Next, T1 ‖ T2 iff T1 ‖ {x :T2 | e},
and AFV(σ2) ⊆ AFV(σ) ⊆ ∅. Now by T CAST, we find ∅ ` 〈T1 ⇒ T2〉lσ2

: y :σ(T1)→
σ(T2). Note, however, that y does not occur in σ(T2).
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We can take the convertible function types and see that their parts are convertible:
σ(T1) ≡ T ′1 and σ({x :T2 | e}) ≡ T ′2. Using the first conversion, we find ∅ ` v2 : σ(T1)
by T CONV. By T APP, ∅ ` 〈T1 ⇒ T2〉lσ2

v2 : [v2/y ]σ(T2), where [v2/y ]σ(T2) = σ(T2).
By reflexivity of compatibility (easily proved) and SIM REFINER, σ(T2) ‖ σ({x :T2 |
e}). We have well formedness derivations for both types and AFV(σ1) ⊆ AFV(σ) ⊆
∅, as well, so ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1

: y :σ(T2)→σ({x :T2 | e}) by T CAST. Again, y
does not appear in σ(e) or σ(T2). By T APP, we have ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1

(〈T1 ⇒
T2〉lσ2

v2) : [〈T1 ⇒ T2〉lσ2
v2/y ]σ({x :T2 | e}).

Since y is not in σ({x :T2 | e}), we can see:
[〈T1 ⇒ T2〉lσ2

v2/y ]σ({x :T2 | e}) = σ({x :T2 | e}) = [v2/y ]σ({x :T2 | e})
By substitutivity of conversion (Lemma A.24), we have [v2/y ]σ({x :T2 | e}) ≡
[v2/y ]T ′2. We can now apply T CONV to find ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1

(〈T1 ⇒
T2〉lσ2

v2) : [v2/y ]T ′2.
(E REDUCE/E CHECK): 〈T ⇒ {x :T | e}〉lσ v2 −→ 〈σ({x :T | e}), σ([v2/x ]e), v2〉l

′
.

Without loss of generality, we can suppose that x is fresh for σ. We restate the
typing judgment with its inversion:

∅ ` 〈T ⇒ {x :T | e}〉lσ v2 : [v2/y ]T ′2
∅ ` 〈T ⇒ {x :T | e}〉lσ : y :T ′1→T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma A.36), ∅ ` σ({x :T | e}) and ∅ ` σ(T ) and AFV(σ) ⊆ ∅.
Moreover, y :σ(T )→ σ({x :T | e}) ≡ y :T ′1→T ′2, where y does not occur in σ({x :T |
e}). This means that σ(T ) ≡ T ′1 and σ({x :T | e}) ≡ T ′2.
Using T CONV and C SYM with the first conversion shows ∅ ` v2 : σ(T ). By
inversion on ∅ ` σ({x :T | e}), we see x :σ(T ) ` σ(e) : Bool. By term sub-
stitution (Lemma A.33), we find ∅ ` [v2/x ]σ(e) : Bool. Since [v2/x ]σ = σ, by
Lemma A.4, [v2/x ]σ(e) = σ([v2/x ]e). Finally, σ([v2/x ]e) −→∗ σ([v2/x ]e) by reflex-
ivity (Lemma A.19).
T CHECK (with WF EMPTY) shows ∅ ` 〈σ({x :T | e}), σ([v2/x ]e), v2〉l : σ({x :T | e}).
By substitutivity of conversion (Lemma A.24), [v2/y ]σ({x :T | e}) ≡ [v2/y ]T ′2. Since
y does not occur in σ({x :T | e}), we know that [v2/y ]σ({x :T | e}) = σ({x :T | e}),
so we can show that σ({x :T | e}) ≡ [v2/y ]T ′2 by C SYM, and now ∅ ` 〈σ({x :T |
e}), σ([v2/x ]e), v2〉l : [v2/y ]T ′2 by T CONV.
(E REDUCE/E FUN):

〈x :T11→T12 ⇒ x :T21→T22〉lσ v2 −→
λx :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in (〈[z/x ]T12 ⇒ T22〉lσ2
(v2 z ))

for some fresh variable z , where σi = σ|AFV(T1i )∪AFV(T2i ) (i ∈ {1, 2}). Without loss of
generality, we can suppose that x is fresh for σ. We have σ(Tji) = σi(Tji) (j ∈ {1, 2}).
We restate the typing judgment with its inversion:

∅ ` 〈x :T11→T12 ⇒ x :T21→T22〉lσ v2 : [v2/y ]T ′2
∅ ` 〈x :T11→T12 ⇒ x :T21→T22〉lσ : (y :T ′1→T ′2)
∅ ` v2 : T ′1

By cast inversion on the first derivation:
∅ ` σ(x :T11→T12) ∅ ` σ(x :T21→T22)

x :T11→T12 ‖ x :T21→T22 AFV(σ) ⊆ ∅
:σ(x :T11→T12)→σ(x :T21→T22) ≡ y :T ′1→T ′2

By inversion of this last (Lemma A.21):
σ(x :T11→T12) ≡ T ′1 σ(x :T21→T22) ≡ T ′2
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So by T CONV and C SYM, we have ∅ ` v2 : σ(x :T11 → T12). By weakening
(Lemma A.31), x :σ(T21), z :σ(T11) ` v2 : σ(x :T11→T12).
By inversion of the well formedness of the function types:

∅ ` σ(T11) x :σ(T11) ` σ(T12) ∅ ` σ(T21) x :σ(T21) ` σ(T22)

By weakening (Lemma A.31), we find x :σ(T21) ` σ(T11) and x :σ(T21) ` σ(T21). By
compatibility:

T11 ‖ T21 T12 ‖ T22

Since AFV(σ1) ⊆ AFV(σ) ⊆ ∅, we have x :σ(T21) ` 〈T21 ⇒ T11〉lσ1
: ( :σ(T21)→

σ(T11)) by T CAST (compatibility is symmetric, per Lemma A.27). By T APP and
T VAR, we can see x :σ(T21) ` 〈T21 ⇒ T11〉lσ1

x : [x/ ]σ(T11) = σ(T11). Again by
T APP, we have x :σ(T21), z :σ(T11) ` v2 z : [z/x ]σ(T12). By weakening (Lemma A.31)
and substitution (Lemma A.33), we have the following two derivations:

x :σ(T21), z :σ(T11) ` [z/x ]σ(T12) = [z/x ]σ2(T12) = σ2([z/x ]T12)
x :σ(T21), z :σ(T11) ` σ(T22)

By T CAST and Lemma A.28:
x :σ(T21), z :σ(T11) ` 〈[z/x ]T12 ⇒ T22〉lσ2

: (y :[z/x ]σ(T12)→σ(T22))

Noting that y is free here. By T APP:
x :σ(T21), z :σ(T11) ` 〈[z/x ]T12 ⇒ T22〉l (v2 z )

: [v2 z/y ]T22(= T22)

Finally, by T ABS and T APP:

∅ ` λx :σ(T21).
let z : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in
〈[z/x ]T12 ⇒ T22〉lσ2

(v2 z )
: x :σ(T21)→σ(T22)

since [〈T21 ⇒ T11〉lσ1
x/z ]σ(T22) = σ(T22).

Since y is not in x :σ(T21) → σ(T22), we can see that x :σ(T21) → σ(T22) =
[v2/y ](x :σ(T21) → σ(T22)). Using this fact with substitutivity of conversion
(Lemma A.24), we find x :σ(T21)→ σ(T22) ≡ [v2/y ]T ′2. So—finally—by T CONV we
have:
∅ ` λx :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in 〈[z/x ]T12 ⇒ T22〉lσ2
(v2 z ) : [v2/y ]T ′2

(E REDUCE/E FORALL): 〈∀α.T1 ⇒ ∀α.T2〉lσ v2 −→ (Λα. 〈[α/α]T1 ⇒ T2〉lσ (v α))
Without loss of generality, we can suppose that α is fresh for σ. We restate the
typing and its inversion:

∅ ` 〈∀α.T1 ⇒ ∀α.T2〉lσ v2 : [v2/x ]T ′2
∅ ` 〈∀α.T1 ⇒ ∀α.T2〉lσ : x :T ′1→T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma A.36):
∅ ` σ(∀α.T1) ∅ ` σ(∀α.T2)
∀α.T1 ‖ ∀α.T2 AFV(σ) ⊆ ∅

:σ(∀α.T1)→σ(∀α.T2) ≡ x :T ′1→T ′2

By inversion of this last σ(∀α.T1) ≡ T ′1 and σ(∀α.T2) ≡ T ′2 (Lemma A.21). By
T CONV and C SYM, ∅ ` v2 : σ(∀α.T1) = ∀α.σ(T1). By type variable weakening
(Lemma A.32), WF TVAR, and T TAPP, we have:

α ` v2 α : [α/α]σ(T1) = σ([α/α]T1)

. Note that σ([α/α]T1) may be syntactically different from σ(T1). By inversion of
the universal type’s well formedness, compatibility, type weakening (Lemma A.32),
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type substitution (Lemma A.34) and Lemma A.30:
α ` σ([α/α]T1) α ` σ(T2) [α/α]T1 ‖ T2

So by T CAST, α ` 〈[α/α]T1 ⇒ T2〉lσ : (x :σ([α/α]T1)→ σ(T2)), noting that x does
not occur in σ(T2). By T APP, α ` 〈[α/α]T1 ⇒ T2〉lσ (v2 α) : [v2 α/x ]σ(T2) = σ(T2).
By T TABS, ∅ ` Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) : ∀α.σ(T2).
We know that ∀α.σ(T2) ≡ T ′2, so by term substitutivity of conversion (Lemma A.24),
[v2/x ]∀α.σ(T2) ≡ [v2/x ]T ′2. Since x is not in ∀α.σ(T2), we know that ∀α.σ(T2) ≡
[v2/x ]T ′2. Now we can see by T CONV that ∅ ` Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) :
[v2/x ]T ′2.
(E COMPAT): E [e] −→ E [e ′] when e −→ e ′ By cases on E:

(E = [ ] e2, e1 −→ e ′1): By the IH and T APP.
(E = v1 [ ], e2 −→ e ′2): By the IH, T APP, and T CONV, since [e2/x ]T2 ≡ [e ′2/x ]T2

by reflexivity (Lemma A.19) and substitutivity (Lemma A.24).
(E BLAME): E [⇑l ] −→ ⇑l ∅ ` E [⇑l ] : T by assumption. By type well formedness
(Lemma A.40), we know that ∅ ` T . We then have ∅ ` ⇑l : T by T BLAME.

(T TABS): ∅ ` Λα. e : ∀α.T . This case is contradictory—values do not step.
(T TAPP): ∅ ` e T : [T/α]T ′. By cases on the step taken.

(E REDUCE/E TBETA): (Λα. e ′)T −→ [T/α]e ′ We restate the typing derivation
and its inversion:

∅ ` (Λα. e ′)T : [T/α]T ′ ∅ ` Λα. e ′ : ∀α.T ′ ∅ ` T

By type abstraction inversion (Lemma A.37): α ` e ′ : T ′′ and ∀α.T ′′ ≡ ∀α.T ′; by
inversion of this last (Lemma A.23), T ′′ ≡ T ′.
By type variable substitution (Lemma A.34), ∅ ` [T/α]e ′ : [T/α]T ′′. By type sub-
stitutivity of conversion (Lemma A.25), [T/α]T ′′ ≡ [T/α]T ′. T CONV gives us
∅ ` [T/α]e ′ : [T/α]T ′ as desired.
(E COMPAT): E [e] −→ E [e ′], where E = [ ]T . By the IH and T TAPP.
(E BLAME): E [⇑l ] −→ ⇑l . ∅ ` E [⇑l ] : T by assumption. By type well formedness
(Lemma A.40), we know that ∅ ` T . So we see ∅ ` ⇑l : T by T BLAME.

(T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : σ(T1)→ σ(T2). This case is contradictory—values do not
step.
(T CHECK): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}. By cases on the step taken.

(E REDUCE/E OK): 〈{x :T | e1}, true, v〉l −→ v . By inversion, ∅ ` v : T and ∅ `
{x :T | e}; we also have [v/x ]e1 −→∗ true. By WF EMPTY and the assumption that
[v/x ]e −→∗ true, we can find ∅ ` v : {x :T | e} by T EXACT.
(E REDUCE/E FAIL): 〈{x :T | e1}, false, v〉l −→ ⇑l We have ∅ ` {x :T | e} by inver-
sion. By WF EMPTY and T BLAME, ∅ ` ⇑l : {x :T | e}.
(E COMPAT): E [e] −→ E [e ′], where E = 〈{x :T | e1}, [ ] , v〉l. By the IH on e, we
know that ∅ ` e ′ : Bool. We still have ∅ ` {x :T | e1} and ∅ ` v : T from our original
derivation. Since [v/x ]e1 −→∗ e and e −→ e ′, then [v/x ]e1 −→∗ e ′. Therefore, ∅ `
〈{x :T | e1}, e ′, v〉l : {x :T | e1} by T CHECK.
(E BLAME): E [⇑l ] −→ ⇑l . ∅ ` E [⇑l ] : T by assumption. By type well formedness
(Lemma A.40), we know that ∅ ` T . So ∅ ` ⇑l : T by T BLAME.

(T BLAME): ∅ ` ⇑l : T . This case is contradictory—blame does not step.
(T CONV): ∅ ` e : T ′; by inversion we have ∅ ` e : T and T ≡ T ′ and ∅ ` T ′ (and,
trivially, ` ∅). By the IH on the first derivation, we know that ∅ ` e ′ : T . By T CONV,
we can see that ∅ ` e ′ : T ′.
(T EXACT): ∅ ` v : {x :T | e}. This case is contradictory—values do not step.
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(T FORGET): ∅ ` v : T . This case is contradictory—values do not step.

A.4. Parametricity
This section proves parametricity; an outline of the proof is described in Section 5.2.
We write RT ,θ,δ for {(r1, r2) | r1 ∼ r2 : T ; θ; δ}.

A.42 Lemma [Term compositionality (Lemma 5.1)]: If θ1(δ1(e)) −→∗ v1 and
θ2(δ2(e)) −→∗ v2 then r1 ∼ r2 : T ; θ; δ[(v1, v2)/x ] iff r1 ∼ r2 : [e/x ]T ; θ; δ.

PROOF. By induction on the (simple) structure of T , proving both directions simul-
taneously. We treat the case where r1 = r2 = ⇑l separately from the induction, since it
is the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective of T and δ. So for the
rest of proof, we know r1 = v1 and r2 = v2. Only the refinement case is interesting.
(T = {y :T ′ | e ′}): We show both directions simultaneously, where x 6= y , i.e., y is fresh.
By the IH for T ′, we know that

v1 ∼ v2 : T ′; θ; δ[(e1, e2)/x ] iff v1 ∼ v2 : [e/x ]T ′; θ; δ.

It remains to show that the values satisfy their refinements.
That is, we must show:

θ1(δ1([v1/y ][e1/x ]e ′)) −→∗ true iff θ1(δ1([v1/y ][e/x ]e ′)) −→∗ true

θ2(δ2([v2/y ][e2/x ]e ′)) −→∗ true iff θ2(δ2([v2/y ][e/x ]e ′)) −→∗ true
So let:

σ1 = θ1δ1[δ1(e)/x , v1/y ] −→∗ θ1δ1[e1/x , v1/y ] = σ′1
σ2 = θ2δ2[δ2(e)/x , v2/y ] −→∗ θ2δ2[e2/x , v2/y ] = σ′2

We have σ1 −→∗ σ′1 by reflexivity except for δ1(e) −→∗ e1, which we have by assump-
tion; likewise, we have σ2 −→∗ σ′2. Then σi(e

′) and σ′i(e
′) coterminate (Lemma A.16),

and we are done.

A.43 Lemma [Term Weakening/Strengthening]: If x 6∈ T , then r1 ∼ r2 :
T ; θ; δ[(e1, e2)/x ] iff r1 ∼ r2 : T ; θ; δ.

PROOF. Similar to Lemma A.42.

A.44 Lemma [Type Weakening/Strengthening]: If α 6∈ T , then r1 ∼ r2 : T ; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : T ; θ; δ.

PROOF. Similar to Lemma A.42.

A.45 Lemma [Type compositionality (Lemma 5.2)]:
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : [T ′/α]T ; θ; δ.

PROOF. By induction on the (simple) structure of T , proving both directions simul-
taneously. As for Lemma A.42, we treat the case where r1 = r2 = ⇑l separately from
the induction, since it is the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective
of T and δ. So for the rest of proof, we know r1 = v1 and r2 = v2. Here, the interesting
case is for function types, where we must deal with some asymmetries in the definition
of the logical relation. We also include the case for quantified types.
(T = x :T1→T2): There are two cases:

(⇒): Given v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we wish
to show that v1 ∼ v2 : [T ′/α](x :T1→T2); θ; δ. Let v ′1 ∼ v ′2 : [T ′/α]T1; θ; δ. We must
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show that v1 v ′1 ' v2 v
′
2 : [T ′/α]T2; θ; δ[(v ′1, v

′
2)/x ]. By the IH on T1, v ′1 ∼ v ′2 : T1; θ[α 7→

RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By assumption,
v1 v

′
1 ' v2 v

′
2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v

′
2)/x ].

These normalize to r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v
′
2)/x ].

Since x 6∈ T ′, Lemma A.43 gives RT ′,θ,δ = RT ′,θ,δ[(v ′
1,v

′
2)/x ]

and so
r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ[(v ′

1,v
′
2)/x ]

, θ1(δ1([v ′1/x ]T ′)), θ2(δ2([v ′2/x ]T ′))]; δ[(v ′1, v
′
2)/x ].

By the IH on T2, r ′1 ∼ r ′2 : [T ′/α]T2; θ; δ[(v ′1, v
′
2)/x ]. By expansion, v1 v ′′1 ' v2 v

′′
2 :

[T ′/α]T2; θ; δ[(v ′1, v
′
2)/x ].

(⇐): This case is similar: Given v1 ∼ v2 : [T ′/α](x :T1→T2); θ; δ, we wish to show
that v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let v ′1 ∼ v ′2 :
T1; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. We must show that

v1 v
′
1 ' v2 v

′
2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v

′
2)/x ].

By the IH on T1, v ′1 ∼ v ′2 : [T ′/α]T1; θ; δ. By assumption, v1 v
′
1 ' v2 v

′
2 :

[T ′/α]T2; θ; δ[(v ′1, v
′
2)/x ]. These normalize to r ′1 ' r ′2 : [T ′/α]T2; θ; δ[(v ′1, v

′
2)/x ]. By

the IH on T2,
r ′1 ' r ′2 : [T ′/α]T2;

θ[α 7→ RT ′,θ,δ[(v ′
1,v

′
2)/x ]

, θ1(δ1([v ′1/x ]T ′)), θ2(δ2([v ′2/x ]T ′))];
δ[(v ′1, v

′
2)/x ].

Since x 6∈ T ′, Lemma A.43 gives
r ′1 ' r ′2 : [T ′/α]T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v

′
2)/x ].

Finally, by expansion
v1 v

′
1 ' v2 v

′
2 : [T ′/α]T2;

θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))];
δ[(v ′1, v

′
2)/x ].

(T = ∀α′.T0): There are two cases:

(⇒): Given v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we wish
to show that v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ. Let a relation R and closed types
T1 and T2 be given. By assumption, we know that v1 T1 ' v2 T2 : T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 :
[T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. By expansion, v1 T1 ' v2 T2 : [T ′/α]T0; θ[α′ 7→
R,T1,T2]; δ. Then, v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ.
(⇐): This case is similar: given v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ, we wish to
show that v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let a re-
lation R and closed types T1 and T2 be given. By assumption, we know that
v1 T1 ' v2 T2 : [T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
[T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 : T0; θ[α′ 7→ R,T1,T2][α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By expansion, v1 T1 ' v2 T2 : T0; θ[α′ 7→
R,T1,T2][α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Then, v1 ∼ v2 : ∀α′.T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ.

A.46 Lemma [Convertibility (Lemma 5.3)]: If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff
r1 ∼ r2 : T2; θ; δ.

PROOF. By induction on the conversion relation, leaving θ and δ general. The case
where r1 = r2 = ⇑l is immediate, so we only need to consider the case where r1 = v1
and r2 = v2.
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(C VAR): It must be that T1 = T2 = α, so we are done immediately.
(C BASE): It must be that T1 = T2 = B , so we are done immediately.
(C REFINE): We have that T1 = {x :T ′1 | σ1(e)} and T2 = {x :T ′2 | σ2(e)}, where T ′1 ≡ T ′2
and σ1 −→∗ σ2.

By cotermination (Lemma A.16):

[v1/x ](θ1(δ1(σ1(e)))) −→∗ true iff [v1/x ](θ1(δ1(σ2(e)))) −→∗ true
[v2/x ](θ2(δ2(σ1(e)))) −→∗ true iff [v2/x ](θ2(δ2(σ2(e)))) −→∗ true.

We have [vi/x ](θi(δi(σj (e)))) = σj ([vi/x ](θi(δi(e)))) for i, j ∈ {1, 2} since all substitu-
tions here are closing.
(C FUN): We have that T1 = x :T11→T12 ≡ x :T21→T22 = T2.

Let v ′1 ∼ v ′2 : T21; θ; δ be given; we must show that v1 v ′1 ' v2 v
′
2 : T22; θ; δ[(v ′1, v

′
2)/x ].

By the IH, we know that v ′1 ∼ v ′2 : T11; θ; δ, so we know that v1 v
′
1 ' v2 v

′
2 :

T12; θ; δ[(v ′1, v
′
2)/x ]. We are done by another application of the IH.

The other direction is similar.
(C FORALL): We have that T1 = ∀α.T ′1 ≡ ∀α.T ′2 = T2.

Let R, T , and T ′ be given. We must show that v1 T ' v2 T
′ : T ′2; θ[α 7→ R,T ,T ′]; δ.

We know that v1 T ' v2 T
′ : T ′1; θ[α 7→ R,T ,T ′]; δ, so we are done by the IH.

The other direction is similar.
(C SYM): By the IH.
(C TRANS): By the IHs.

A.47 Lemma [Cast reflexivity (Lemma 5.4)]: If ` Γ and T1 ‖ T2 and Γ ` σ(T1) '
σ(T1) : ∗ and Γ ` σ(T2) ' σ(T2) : ∗ and AFV(σ) ⊆ dom(Γ), then Γ ` 〈T1 ⇒ T2〉lσ '
〈T1 ⇒ T2〉lσ : σ( :T1→T2).

PROOF. By induction on cc(〈T1 ⇒ T2〉l). We omit the majority of this proof, but we
leave in the case when T1 = T2 to highlight the need for the E REFL reduction rule.
(T1 = T2): Given Γ ` θ; δ, we wish to show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉lσ ' 〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉lσ : σ(T1→T1); θ; δ.

Let v1 ∼ v2 : σ(T1); θ; δ. We must show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉lσ v1 '
〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉lσ v2 : σ(T1); θ; δ[(v1, v2)/z ]

for fresh z . By E REFL, these normalize to v1 ∼ v2 : σ(T1); θ; δ[(v1, v2)/z ]. Lemma A.43
finishes the case.

A.48 Theorem [Parametricity (Theorem 5.5)]: (1) If Γ ` e : T then Γ ` e ' e : T ;
and (2) if Γ ` T then Γ ` T ' T : ∗.

PROOF. By simultaneous induction on the derivations with case analysis on the last
rule used.
(T VAR): Let Γ ` θ; δ. We wish to show that θ1(δ1(x )) ' θ2(δ2(x )) : T ; θ; δ, which follows
from the assumption.
(T CONST): By the assumption that constants are assigned correct types.
(T OP): By the assumption that operators are assigned correct types (and the IHs for
the operator’s arguments).
(T ABS): We have e = λx :T1. e12 and T = x :T1→T2 and Γ, x :T1 ` e12 : T2. Let Γ ` θ; δ.
We wish to show that

θ1(δ1(λx :T1. e12)) ∼ θ2(δ2(λx :T1. e12)) : (x :T1→T2); θ; δ.
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Let v1 ∼ v2 : T1; θ; δ. We must show that

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 ' (λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 : T2; θ; δ[(v1, v2)/x ].

Since

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 −→ [v1/x ]θ1(δ1(e12))

(λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 −→ [v2/x ]θ2(δ2(e12)),

it suffices to show

[v1/x ]θ1(δ1(e12)) ' [v2/x ]θ2(δ2(e12)) : T2; θ; δ[(v1, v2)/x ].

By the IH, Γ, x :T1 ` e12 ' e12 : T2. The fact that Γ, x :T1 ` θ; δ[(v1, v2)/x ] finishes the
case.
(T APP): We have e = e1 e2 and Γ ` e1 : x :T1→T2 and Γ ` e2 : T1 and T = [e2/x ]T2. Let
Γ ` θ; δ. We wish to show that

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : [e2/x ]T2; θ; δ.

By the IH,

θ1(δ1(e1)) ' θ2(δ2(e2)) : x :T1→T2; θ; δ, and
θ1(δ1(e2)) ' θ2(δ2(e2)) : T1; θ; δ.

These normalize to r11 ∼ r12 : x :T1 → T2; θ; δ and r21 ' r22 : T1; θ; δ, respectively. If
r11 = r12 = ⇑l or r21 = r22 = ⇑l for some l , then we are done:

θ1(δ1(e1 e2)) −→∗ ⇑l
θ2(δ2(e1 e2)) −→∗ ⇑l .

So let rij = vij . By definition,

v11 v21 ' v12 v22 : T2; θ; δ[(v21, v22)/x ].

These normalize to r ′1 ∼ r ′2 : T2; θ; δ[(v21, v22)/x ]. By Lemma A.42,

r ′1 ∼ r ′2 : [e2/x ]T2; θ; δ.

By expansion, we can then see

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : [e2/x ]T2; θ; δ.

(T TABS): We have e = Λα. e0 and T = ∀α.T0 and Γ, α ` e0 : T0. Let Γ ` θ; δ. We wish
to show that

θ1(δ1(Λα. e0)) ∼ θ2(δ2(Λα. e0)) : ∀α.T0; θ; δ.

Let R,T1,T2 be given. We must show that

θ1(δ1(Λα. e0))T1 ' θ2(δ2(Λα. e0))T2 : T0; θ[α 7→ R,T1,T2]; δ.

Since

θ1(δ1(Λα. e0))T1 −→ [T1/α]θ1(δ1(e0))

θ2(δ2(Λα. e0))T2 −→ [T2/α]θ2(δ2(e0))

it suffices to show that

[T1/α]θ1(δ1(e0)) ' [T2/α]θ2(δ2(e0)) : T0; θ[α 7→ R,T1,T2]; δ.

Since Γ, α ` θ[α 7→ R,T1,T2]; δ, the IH finishes the case with Γ, α ` e0 ' e0 : T0.
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(T TAPP): We have e = e1 T2 and Γ ` e1 : ∀α.T0 and Γ ` T2 and T = [T2/α]T0. Let
Γ ` θ; δ. We wish to show that

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : [T2/α]T0; θ; δ.

By the IH,

θ1(δ1(e1)) ' θ2(δ2(e1)) : ∀α.T0; θ; δ.

These normalize to r1 ∼ r2 : ∀α.T0; θ; δ. If both results are blame, θ1(δ1(e1 T2)) and
θ2(δ2(e1 T2)) also normalize to blame, and we are done. So let r1 = v1 and r2 = v2.
Then, by definition,

v1 T
′
1 ' v2 T

′
2 : T0; θ[α 7→ R,T ′1,T

′
2]; δ

for any R,T ′1,T
′
2. In particular,

v1 θ1(δ1(T2)) ' v2 θ2(δ2(T2)) : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

These normalize to

r ′1 ∼ r ′2 : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

By Lemma A.45, r ′1 ∼ r ′2 : [T2/α]T0; θ; δ. By expansion,

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : [T2/α]T0; θ; δ.

(T CAST): We have e = 〈T1 ⇒ T2〉lσ and ` Γ and T1 ‖ T2 and Γ ` T1, Γ ` T2 and
T = T1→T2. By the IH, Γ ` T1 ' T1 : ∗ and Γ ` T2 ' T2 : ∗. By Lemma A.47,

Γ ` 〈T1 ⇒ T2〉lσ ' 〈T1 ⇒ T2〉lσ : σ(T1→T2),

which is exactly what we were looking for.
(T BLAME): Immediate.
(T CHECK): We have e = 〈{x :T1 | e1}, e2, v〉l and ∅ ` v : T1 and ∅ ` e2 : Bool, ` Γ and
∅ ` {x :T1 | e1} and [v/x ]e1 −→∗ e2 and T = {x :T1 | e1}. Let Γ ` θ; δ. We wish to show
that

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.
By the IH,

θ1(δ1(e2)) ' θ2(δ2(e2)) : Bool; θ; δ

and these normalize to the same result. If the result is false or ⇑l ′ for some l ′, then, for
some l ′′,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′

θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′.
Otherwise, the result is true. Then, by the IH, v ∼ v : T1; θ; δ and ∅ ` {x :T1 | e1} '
{x :T1 | e1} : ∗. By definition,

[v/x ]θ1(δ1(e1)) ' [v/x ]θ2(δ2(e1)) : Bool; θ; δ[(v , v)/x ].

Then, we have

[v/x ]θ1(δ1(e1)) = [v/x ]e1 −→∗ true

[v/x ]θ2(δ2(e1)) = [v/x ]e1 −→∗ true.

By definition, v ' v : {x :T1 | e1}; θ; δ. By expansion,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.
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(T CONV): By Lemma A.46.
(T EXACT): We have e = v and ∅ ` v : T and ∅ ` {x :T0 | e0} and [v/x ]e0 −→∗ true and
T = {x :T0 | e0}. Let Γ ` θ; δ. We wish to show that

v ∼ v : {x :T0 | e0}; θ; δ.
By the IH, v ∼ v : T0; θ; δ. Since ∅ ` {x :T0 | e0}, the only free variable in e0 is x and

[v/x ]θ1(δ1(e0)) = [v/x ]e0 −→∗ true

[v/x ]θ2(δ2(e0)) = [v/x ]e0 −→∗ true.

By definition, v ∼ v : {x :T0 | e0}; θ; δ.
(T FORGET): By the IH, ∅ ` v ' v : {x :T | e}, which implies Γ ` v ' v : T .
(WF BASE): Trivial.
(WF TVAR): Trivial.
(WF FUN): By the IH.
(WF FORALL): By the IH.
(WF REFINE): By the IH.
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