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We study an extension of gradual typing—a method to integrate dynamic typing and static typing smoothly in a

single language—to parametric polymorphism and its theoretical properties, including conservativity of typing

and semantics over both statically and dynamically typed languages, type safety, blame-subtyping theorem,

and the gradual guarantee—the so-called refined criteria, advocated by Siek et al. We develop System FG,
which is a gradually typed extension of System F with the dynamic type and a new type consistency relation,

and translation to a new polymorphic blame calculus System FC, which is based on previous polymorphic

blame calculi by Ahmed et al. The design of System FG and System FC, geared to the criteria, is influenced by

the distinction between static and gradual type variables, first observed by Garcia and Cimini. This distinction

is also useful to execute statically typed code without incurring additional overhead to manage type names

as in the prior calculi. We prove that System FG satisfies most of the criteria: all but the hardest property of

the gradual guarantee on semantics. We show that a key conjecture to prove the gradual guarantee leads to

the Jack-of-All-Trades property, conjectured as an important property of the polymorphic blame calculus by

Ahmed et al.
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1 INTRODUCTION
1.1 Gradual Typing
Types are a broadly used, lightweight tool to verify programs and many programming languages

adopt either static typing or dynamic typing to prevent programs from exposing undefined behavior.

Static typing, which guarantees that programs behave as types, is useful for early and exhaustive

detection of certain classes of errors and makes it possible to generate more efficient machine code,

but programmers cannot run their programs until they pass static typechecking, which sometimes

prevents writing programs as they hope. Dynamic typing enables rapid software development and

flexible programming, while it often consumes more computational resources and it is not easy to

support exhaustive error detection. In summary, they are complementary.

Integration of static and dynamic typing has been studied widely, from theory [Abadi et al. 1991,

1995; Ahmed et al. 2011; Matthews and Ahmed 2008; Matthews and Findler 2009; Siek and Taha 2006;

Thatte 1990; Tobin-Hochstadt and Felleisen 2006; Wadler and Findler 2009] to practice [Bierman

et al. 2014, 2010; Bonnaire-Sergeant et al. 2016; Facebook 2017; Gronski et al. 2006; Meijer and

Drayton 2004; Tobin-Hochstadt and Felleisen 2008; Vitousek et al. 2014], to cite a few, and gradual
typing [Siek and Taha 2006] is a methodology for achieving a full spectrum between fully statically
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typed and fully dynamically typed programs. For example, gradual typing enables programmers to

write a fully dynamically typed program, as a prototype, at the early stage of development, change

its pieces to statically typed code gradually, and finally obtain a fully statically typed program,

which has no run-time typing errors, in a single programming language. Since Siek and Taha

[2006] proposed gradual typing for the simply typed lambda calculus, their idea has been applied

to many programming concepts such as objects [Siek and Taha 2007], generics [Ina and Igarashi

2011], effects [Bañados Schwerter et al. 2014], and type inference [Garcia and Cimini 2015; Siek

and Vachharajani 2008]. More recently, even general approaches to gradual typing, which give a

gradually typed version of a statically typed language, have been studied [Cimini and Siek 2016,

2017; Garcia et al. 2016].

Gradual typing “gradualizes” statically typed languages with two key components: the dynamic

type and type consistency. The dynamic type, denoted by ⋆, is the type of dynamically typed code.

All statically typed expressions can be injected to⋆ and, conversely, values of⋆ can be projected to

any type with run-time checking. In fact, gradual typing allows interaction between not only a

fully static type and the dynamic type but also types on the spectrum, such as⋆→ Int and Int→ ⋆,
by using type consistency. Type consistency is the same as type equality except that it allows the

dynamic type to match with any type. By using type consistency instead of type equality, gradually

typed languages achieve fine-grained transition between program pieces on the spectrum, while

all typing errors in a program without the dynamic type are detected statically.

1.2 Our Work
This work studies a gradually typed language with parametric polymorphism. We propose System

FG, a gradual extension of System F [Girard 1972; Reynolds 1974]. The design of System FG, in

particular its type consistency, is geared to the so-called “refined criteria” proposed by Siek et al.

[2015], which are properties that gradually typed languages should satisfy. In System FG, type

variables are classified into two kinds—static type variables and gradual type variables—as first
observed by Garcia and Cimini [2015]. Gradual type variables can be consistent with the dynamic

type whereas static type variables cannot. The distinction of static and gradual type variables

makes the dynamic semantics of System FG “pay-as-you-go” in the sense of Siek and Taha [2006],

that is, statically typed code can be executed without much additional overhead—in particular, the

run-time system of System FG would be able to run well-typed System F terms in almost the same

way as System F.

The dynamic semantics of System FG is defined by translation to a new polymorphic blame

calculus System FC, which is an extension of (a subset of) the simply typed blame calculus [Wadler

and Findler 2009] and aims at dynamic enforcement of parametricity. Our blame calculus is largely

based on previous polymorphic blame calculi [Ahmed et al. 2011, 2017] which use type bindings

for enforcing parametricity at run time, but System FC inherits the distinction between static and

gradual type variables from System FG and has slightly different cast semantics.

We show that System FG and System FC meet almost all of the refined criteria [Siek et al. 2015],

except the hardest property called the gradual guarantee on semantics, which is left as a conjecture.

Our contributions are summarized as follows.

• We carefully define type consistency of System FG so that it is a conservative extension over

System F in terms of typing. Our key observation is that a polymorphic type can be consistent

with a nonpolymorphic type only if the nonpolymorphic type contains the dynamic type.

We also show that untyped terms can be embedded in System FG.

• We introduce a new polymorphic blame calculus System FC and give formal translation from

System FG to System FC. The semantics of System FC is conservative over both System F and
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Syntax

Types A, B ::= ι | ⋆ | A→ B Terms e ::= c | x | λx :A. e | e e

Values v ::= c | λx :A. e Type environments Γ ::= ∅ | Γ, x : A

T ▷ T Matching

A→ A′ ▷ A→ A′

⋆ ▷ ⋆→ ⋆

A ∼ B Type consistency

A ∼ A (C_Refl) ⋆ ∼ A (C_StarL) A ∼ ⋆ (C_StarR)

A ∼ A′ B ∼ B′

A→ B ∼ A′ → B′
(C_Arrow)

Γ ⊢G e : A Typing

ty (c ) = A
Γ ⊢G c : A

(T_Const_G)

x : A ∈ Γ
Γ ⊢G x : A

(T_Var_G)

Γ, x : A ⊢G e : B
Γ ⊢G λx :A. e : A→ B

(T_Abs_G)

Γ ⊢G e1 : A1 Γ ⊢G e2 : A2 A1 ▷ A11 → A12 A11 ∼ A2

Γ ⊢G e1 e2 : A12

(T_App_G)

Fig. 1. Static semantics of GTLC

the untyped lambda calculus. We show type safety of System FG via progress and subject

reduction of System FC as well as soundness of the translation.

• We discuss type-erasing semantics of System FC and implement a prototype interpreter
1

based on it in OCaml, demonstrating that a “pay-as-you-go” implementation is possible.

• We show properties relevant to the Blame Theorem [Tobin-Hochstadt and Felleisen 2006;

Wadler and Findler 2009], which justifies the intuition that all run-time typing errors are

triggered by only untyped code, for System FC. We define our subtyping relations so that

they are subsets of type consistency because we are interested in only well-typed terms. We

have bidirectional factoring of ordinary subtyping, a.k.a., Tangram [Wadler 2015].

• We extend precision of types and terms to formalize the gradual guarantee [Siek et al. 2015],

which is concernedwith invariance of typing and semantics through code evolution. Although

the gradual guarantee on typing is proved, the gradual guarantee on semantics is still left as

a conjecture. We discuss a few key lemmas that have been proved and one key conjecture,

which turns out to be related to another tough conjecture, Jack-of-All-Trades [Ahmed et al.

2013], an important property of the prior polymorphic blame calculi.

System FG is fully explicitly typed—every variable has to declare its type and type abstraction/ap-

plication is explicit—so it may be far from practical polymorphically typed languages, where some

type information can be omitted thanks to type inference. Ideally, we should design a surface

language where many type annotations are inferred and give elaboration from the surface language

to a blame calculus, for which operational semantics is defined. System FG can be considered an

intermediate language after type inference and before translation to a blame calculus. The design

of a surface language and study of type inference (translation to System FG) are left as future work.

The rest of the paper is organized as follows. We review a simple gradually typed λ-calculus,
a simply typed blame calculus, and the refined criteria in Section 2. We present an overview of

System FG and System FC in Section 3. The definitions of System FG and System FC with their

properties are presented in Sections 4 and 5, respectively. After we discuss type erasure in Section 6,

we prove the Blame Theorem in Section 7 and discuss the gradual guarantee in Section 8. After

discussing related work in Section 9, we conclude in Section 10.

In this paper, we omit the details of proofs; they can be found in the supplementary material.

1https://github.com/SoftwareFoundationGroupAtKyotoU/SystemFg

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 40. Publication date: September 2017.



40:4 Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi

2 GRADUALLY TYPED λ-CALCULUS
In this section, we review a simple gradually typed language, a blame calculus, which works as an

internal language for the first language, and Siek et al.’s criteria that gradually typed languages

should meet.

2.1 The Source Language
We show the source language with its syntax and type system in Fig. 1. The definition is mostly the

same as the Gradually Typed Lambda Calculus (GTLC) by Siek et al. [2015]. In this paper, GTLC

refers to the definition in Fig. 1.

The syntax is a standard simply-typed lambda calculus extended with the dynamic type ⋆. The
metavariable ι ranges over base types, which include at least Int and Bool. A term is a constant c , a
variable x , a lambda abstraction λx:A. e, or an application e e. A constant includes at least integers

and Booleans. A value is a constant or a lambda abstraction.

A notable feature of gradually typed languages is type consistency A ∼ B , which is defined

by relaxing type equality, used in typechecking, say, function applications. The dynamic type is

considered as a wild card in type consistency for allowing dynamically typed code to always pass

typecheck. Formally, type consistency is defined as the least reflexive and compatible relation

including ⋆ ∼ A for any type A (rules (C_StarL) and (C_StarR)). For example, we can derive

⋆→ Int ∼ Bool→ ⋆ . It is easy to see that type consistency is symmetric but not transitive.
Typing judgment Γ ⊢G e : Ameans that term e has typeA in type environment Γ. All the rules but

(T_App_G) are standard. The function ty in (T_Const_G) assigns a constant a first-order type of

the form ι1 → · · · → ιn . In an application, the type of e1 is normalized to a function type A11 → A12

by matching A1 ▷A11 → A12. By the normalization, a term of⋆ can be applied to any term as if it is

a function; it is checked at run-time whether it is really a function. In (T_App_G), type consistency

replaces usual type equality between the function argument type A11 and the actual argument

type A2, allowing, for example, a dynamically typed expression to be passed to a statically typed

function.

2.2 The Internal Language: Blame Calculus
We define the dynamic semantics of GTLC by cast insertion translation to (a subset of) the blame
calculus by Wadler and Findler [2009]. The definition of the blame calculus, adapted from Siek et al.

[2015], is found in Fig. 2. Throughout this paper, the blame calculus refers to the definition in Fig. 2.

Types are the same as GTLC. A ground type, used as a tag of injection (w : G ⇒p ⋆), is either a
base type or ⋆→ ⋆. A blame label, which decorates a cast, abstracts a program location such as

the numbers of the row and the column. We have an involutive operator p (called negation) on

blame labels, that is, p = p. This is used to blame the context (not the subject of a cast). Terms,

ranged over by f , are GTLC terms augmented with casts, f : A ⇒p B, and blame, blame p,
which is an uncatchable exception to notify cast failure. We abbreviate a sequence of two casts

((f : A⇒p1 B) : B⇒p2 C) to f : A⇒p1 B⇒p2 C. A value, ranged over by w, is a constant, a lambda

abstraction, a value with a cast from a ground type to ⋆, or a value with a cast between function

types. Evaluation contexts indicate that the evaluation is left-to-right and call-by-value.

Typing rules are straightforward. Rules (T_Const_C), (T_Var_C), and (T_Abs_C) are the same

as those of GTLC. Rule (T_App_C) requires the actual and formal argument types to be equal and

(T_Cast_C) allows only casts for pairs of consistent types. Blame is given any type (T_Blame_C).

The dynamic semantics of GTLC is defined by cast insertion (⇝) and reduction (−→) in the

blame calculus. We write −→⋆
for the reflexive transitive closure of −→.
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Syntax Types A, B, C ::= ι | ⋆ | A→ B

Ground types G, H ::= ι | ⋆→ ⋆

Blame labels p, q ::= ℓ

Terms f ::= c | x | λx :A. f | f f | f : A⇒p B | blame p

Values w ::= c | λx :A. f | w : G ⇒p ⋆ | w : A→ B ⇒p A′ → B′

Evaluation contexts E ::= [ ] | E f | w E | E : A⇒p B

Type environments Γ ::= ∅ | Γ, x : A

Γ ⊢C f : A Typing

ty (c ) = A
Γ ⊢C c : A

(T_Const_C)

x : A ∈ Γ
Γ ⊢C x : A

(T_Var_C)

Γ, x : A ⊢C f : B
Γ ⊢C λx :A. f : A→ B

(T_Abs_C)

Γ ⊢C f1 : A→ B Γ ⊢C f2 : A
Γ ⊢C f1 f2 : B

(T_App_C)

Γ ⊢C f : A A ∼ B
Γ ⊢C f : A⇒p B : B

(Cast) Γ ⊢C blame p : A (T_Abort_C)

Γ ⊢ e ⇝ f : A Cast insertion

Γ ⊢ e1 ⇝ f1 : A1 Γ ⊢ e2 ⇝ f2 : A2 A1 ▷ A11 → A12 A11 ∼ A2

Γ ⊢ e1 e2 ⇝ (f1 : A1 ⇒
ℓ
?
A11 → A12) (f2 : A2 ⇒

ℓ
?
A11) : A12

(CI_App)

f −→ f ′ Reduction

c1 c2 −→ δ (c1, c2) (R_Delta)

(λx :A. f ) w −→ f [x B w] (R_Beta)

w : G ⇒p G −→ w if G , ⋆→ ⋆ (R_Id)

w : ⋆⇒p ⋆ −→ w (R_Idstar)

(w : A→ B ⇒p A′ → B′) w ′ −→ (w (w ′ : A′ ⇒p A)) : B ⇒p B′ (R_Wrap)

w : A→ A′ ⇒p ⋆ −→ w : A→ A′ ⇒p ⋆→ ⋆⇒p ⋆ if A→ A′ , ⋆→ ⋆ (R_Ground)

w : ⋆⇒p A→ A′ −→ w : ⋆⇒p ⋆→ ⋆⇒p A→ A′ if A→ A′ , ⋆→ ⋆ (R_Extend)

w : G ⇒q ⋆⇒p G −→ w (R_Collapse)

w : G ⇒q ⋆⇒p H −→ blame p if G , H (R_Conflict)

E , [ ]

E[blame p] −→ blame p
(R_Blame)

f −→ f ′

E[f ] −→ E[f ′]
(R_Env)

Fig. 2. Blame Calculus

Definition 2.1 (Dynamic semantics of GTLC). For e with ∅ ⊢G e : A, e ⇓G w
def

⇐⇒ ∅ ⊢ e⇝ f : A
and f −→⋆ w .

Cast insertion Γ ⊢ e ⇝ f : A shown in the middle of Fig. 2 is a syntax-directed translation from

GTLC terms to blame calculus terms. The only interesting rule is for application: casts are inserted

so as to reflect the results of matching and consistency. Here, f : A⇒
p
?
B denotes f when A = B,

otherwise f : A ⇒p B. Translation for the other forms of terms are trivial (and homomorphic)

because no casts are inserted, and so rules are omitted.

Finally, reduction rules are at the bottom of Fig. 2. The first two rules (R_Delta) and (R_Beta)

are standard. Application of a primitive function c1 c2 is processed by the oracle δ , which produces

a constant as a result of application (R_Delta). We suppose that the behavior of δ is compatible

with its type. The other rules are concerned about casts and blame. Identity casts for ground types

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 40. Publication date: September 2017.
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(except for ⋆ → ⋆) and ⋆ disappear immediately ((R_Id) and (R_Idstar), respectively). A cast

between function types breaks down into a cast of the domain types and a cast of the codomain

types, when it is applied to an argument (R_Wrap). The negation of the label means that the target

of the blame changes fromw (a term contained in the cast) tow ′ (a context containing the cast).
Casts between a function type (except for ⋆ → ⋆) and ⋆ is factored into two casts with ⋆ → ⋆
in the middle ((R_Ground) and (R_Extend)). Although the previous blame calculus by Wadler

and Findler [2009] deals with a more general case w : A ⇒p ⋆ (where A is neither ground nor

⋆), we consider only the case w : A → A′ ⇒p ⋆ because this is the only case. If we had more

type constructors, a general rule would be useful. Rules (R_Collapse) and (R_Conflict) describe

run-time checks triggered by composition of injection and projection, which may result in blame.

Blame in an evaluation context results in the blame (R_Abort). Finally, (R_Env) describes reduction

under an evaluation context.

2.3 Refined Criteria in GTLC
We review the properties desired for GTLC, advocated by Siek et al. [2015], who called them

refined criteria. We provide brief explanations and discuss their desirability here. For their formal

statements, some of which are omitted here, readers are referred to Siek et al. [2015].

Conservative extension of STLC and the untyped lambda calculus. GTLC is a superset of the simply

typed lambda calculus (STLC) and the untyped lambda calculus (DTLC). Conservativity over STLC

states that for terms in STLC, that is, terms without ⋆, typing and semantics of GTLC is equivalent

to those of STLC. In other words, as long as programmers do not use ⋆ explicitly, GTLC is just as

STLC. Conservativity over DTLC states that there exists an embedding of an untyped lambda term

to a GTLC term of type ⋆ and the results of reduction in both languages agree. In practice, these

properties ensure that programmers can use existing statically/dynamically typed code or libraries

in a gradualized language without modification or semantic changes and, conversely, that statically

typed code developed in a gradually typed language can be brought back to the statically typed

world as it is.

Type safety. Every well-typed term in GTLC results in either a value, blame, or divergence. This

argues that a well-typed term does not cause untrapped errors.

Blame-Subtyping Theorem. This is a theorem of soundness about blame. It states that a cast

between two types in the subtyping relation, whose definition is omitted, never raises blame. The

subtyping relation, which characterizes casts that never fail, can be used for static analysis and

maybe optimization to remove redundant casts.

The Gradual Guarantee. In a gradual type system, adding more static types to a program serves

only to expose more errors either statically or dynamically and should not change the behavior of a

program. In other words, for two programs, which are the same except that one is given more static

type annotations than the other, the one with more static types is (1) less likely to be statically

typechecked (due to more static errors) and (2) more likely to get blame but does not change the

result (the value or divergence) otherwise. The gradual guarantee formulates this expectation.

First, to formalize the relation between programs using more or less⋆, precision ⊑, precongruence
on types and terms in GTLC, is introduced. Intuitively, ⊑ means that the right-hand side has more

dynamic types. Here are all the rules of type precision and the key rule of term precision.

A ⊑ A A ⊑ ⋆
A ⊑ A′ B ⊑ B′

A→ B ⊑ A′ → B′
e ⊑ e ′ A ⊑ A′

λx:A. e ⊑ λx:A′. e′

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 40. Publication date: September 2017.
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Type precision is related to consistency in the following sense [Siek and Wadler 2010]: A ∼ B if and

only if there is the greatest lower bound of A and B with respect to precision.

Now, we are ready to show formal statements of the gradual guarantee. Here, e ⇑G means that e
(after cast insertion translation) diverges. (1) and (2) state that making types of well-typed terms

less precise does not affect typeability and semantics; and (3) states that making types more precise

may result in more blame; but otherwise the semantics is the same (modulo precision).

Theorem 2.2 (The Gradual Guarantee [Siek et al. 2015]). Suppose ∅ ⊢G e : A and e ⊑ e ′.

(1) ∅ ⊢G e′ : A′ and A ⊑ A′ for some A′.
(2) If e ⇓G w then e ′ ⇓G w ′ andw ⊑ w ′ for some w ′. If e ⇑G then e ′ ⇑G .
(3) If e ′ ⇓G w ′ then e ⇓G w and w ⊑ w ′ for some w ′ or e ⇓G blame p for some p. If e ′ ⇑G then

e ⇑G or e ⇓G blame p for some p.

We can show that, if e ′ invokes blame, so does e as a corollary of (2), while we cannot say much

about e ′ when e triggers blame because that blame may or may not remain in e ′.

3 KEY IDEAS OF SYSTEM FG AND SYSTEM FC
Wewill design a polymorphic extension of GTLC so that it meets (an adapted version of) the criteria

discussed in the last section. In this section, we give the key ideas behind our source language

System FG and internal language System FC informally.

3.1 Type consistency
An advantage of gradually typed languages is that dynamically typed code can incorporate with

statically typed code, so we design type consistency in System FG and System FC so that dynamically

typed and polymorphically typed terms can interact smoothly, as follows (we use ∀X .A and ΛX . v
for polymorphic types and type abstractions, respectively):

(λy:∀X .X → X . y Int 1) (λx:⋆ . x)

where nonpolymorphic value λx:⋆ . x is passed to a function that expects polymorphic arguments.

To accept this expression, type consistency has to allow ∀X .X → X ∼ ⋆→ ⋆ to be derived. Our

type consistency supports more general cases: it relates a polymorphic type and a non-∀ type.2

Then, since the dynamic type is consistent with any type—even if it is a type variable—we can

derive ∀X .X → X ∼ ⋆→ ⋆.
We have to, however, take care of what non-∀ types can be consistent with polymorphic types.

In particular, allowing a fully static non-∀ type to be consistent with a fully static polymorphic

type would result in violation of conservativity over typing of System F, one of Siek et al.’s refined

criteria. For example, a polymorphic gradually typed language with type consistency that relates

Int → Int to ∀X .Int → Int would accept (λy:∀X .Int → Int. y Int 1) (λx:Int. x) even though it

is ill-typed in System F. To prevent such a term to be accepted, our type consistency requires

non-∀ types which are consistent with polymorphic types to have one or more occurrences of

⋆. We coin quasi-polymorphic types for such non-∀ types in the sense that it may be used where

a polymorphic type is expected. For example, ⋆ → ⋆ is a quasi-polymorphic but Int → Int is

not. Thus, that requirement allows us to derive ∀X .X → X ∼ ⋆→ ⋆while disallowing deriving
∀X .Int→ Int ∼ Int→ Int.

By adding a structural rule for polymorphic types, there are two additional consistency rules

(and a symmetric variant for the first):

2
A non-∀ type refers to a type whose top-most type constructor is not ∀.
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A ∼ B B , ∀X .B′ ⋆ ∈ Types(B) X < Ftv(B)
∀X .A ∼ B

A ∼ B
∀X .A ∼ ∀X .B

In the left rule, the predicate⋆ ∈ Types(B) means that⋆ occurs somewhere in B, and so combining

it with the side condition B , ∀X .B′ says that B is a quasi-polymorphic type. Ftv(A) denotes
the set of free type variables in A and the condition X < Ftv(B) avoids that X captures free type

variables in B. These rules allow us to derive, for example, the following relations:

∀X .X → Bool ∼ ⋆→ Bool ∀X .X → Int ∼ ∀X .X → ⋆

in addition to ∀X .X → X ∼ ⋆ → ⋆. On the other hand, as intended, the following consistency

relations do not hold:

∀X .X → Bool ∼ Bool→ Bool Int→ Int ∼ ∀X .Int→ Int

because non-∀ types in the examples above do not involve⋆. Though we will refine type consistency
with distinction of type variables in Section 3.3, the rules above are the heart of our type consistency.

Ahmed et al. [2011] introduce type compatibility A ≺ B (where a cast from A to B is allowed. It

also relates a polymorphic type to a non-∀ type, for a polymorphic blame calculus instead of type

consistency, and Ahmed et al. [2017] also follows it. We considered whether we could use it as

type consistency in the source language but we soon found that type compatibility would break

conservativity over typing of System F because their type compatibility allows ∀X .Int ≺ Int, for

example.
3
Their type compatibility is asymmetric: For example, ∀X .A ≺ [B/X ]A (for any B) but

not vice versa. For source language following the GTLC, we stick to a symmetric relation.

3.2 Type bindings
As well known, naively adding the dynamic type to a polymorphically typed language results in the

lack of parametricity. For example, let us consider f1 = ΛX . λx:Int. (x : Int⇒p ⋆⇒q X ), which
performs run-time check that x of Int is at X via the injection to ⋆. Usual, substitution-based type

application makes this term nonparametric:

f1 Int 1 −→⋆
1 : Int⇒p ⋆⇒q

Int −→ 1

f1 Bool 1 −→⋆
1 : Int⇒p ⋆⇒q

Bool −→ blame q

Inhabitants of type variable X should be only expressions typed at X in the source code, so

x : Int⇒p ⋆⇒q X should raise blame. However, type substitution erases the information that the

target type in the cast was X .
The prior polymorphic blame calculus [Ahmed et al. 2011] introduces type bindings to preserve

the information about type variables. In their work, type applications generate type bindings

X := A, which record that X is instantiated with A, instead of substituting A for X . They retain type

bindings locally in the form of a term νX := A.t . Ahmed et al. [2017] refine Ahmed et al.’s “local”

type bindings and propose “global” ones, which we follow in this work. In the “global” approach,

generated type bindings are immediately moved to the global store. For that, we extend reduction

to quaternary relation Σ ▷ f −→ Σ′ ▷ f ′, where Σ is a global store having type bindings X B A,
and type applications reduce as follows:

Σ ▷ (ΛX . w) A −→ Σ,X B A ▷ w.

Thanks to the avoidance of type substitution, the examples above raise blame as we expected:

Σ ▷ f1 Int 1 −→⋆ Σ,X B Int ▷ 1 : Int⇒p ⋆⇒q X −→ Σ,X B Int ▷ blame q
Σ ▷ f1 Bool 1 −→⋆ Σ,X B Bool ▷ 1 : Int⇒p ⋆⇒q X −→ Σ,X B Bool ▷ blame q

3
Although one could argue that conservativity is not that important, we stick to it in favor of the refined criteria.
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Type bindings also enforce parametric behavior for untyped terms used as parametric values.

For example, let us consider using f2 = λx:⋆ . ((x : ⋆⇒p1
Int) + 1) : Int⇒p2 ⋆ as a polymorphic

identity function. Since f2 is not an identity function actually, it should be blamed, and it is thanks
to type bindings.

Σ ▷ (f : ⋆→ ⋆⇒p3 ∀X .X → X ) Int 1
−→ Σ,X B Int ▷ (f : ⋆→ ⋆⇒p3 X → X ) 1

−→⋆ Σ,X B Int ▷ ((1 : X ⇒p3 ⋆⇒p1
Int) + 1) : Int⇒p2 ⋆⇒p3 X

−→ Σ,X B Int ▷ blame p1
On the other hand, an untyped identity function can behaves as a parametric one:

Σ ▷ ((λx:⋆ . x) : ⋆→ ⋆⇒p ∀X .X → X ) Int 1
−→ Σ,X B Int ▷ ((λx:⋆ . x) : ⋆→ ⋆⇒p X → X ) 1

−→⋆ Σ,X B Int ▷ (1 : X ⇒p ⋆⇒p X )
−→ Σ,X B Int ▷ 1

3.3 Static and gradual type variables
Although type bindings enable run-time enforcement of parametricity, they are generated even

when unnecessary—for example, in reduction of pure System F terms—which leads to incurring

additional run-time overhead, while type substitution in System F can be erased by type-erasing

semantics [Pierce 2002, Section 23.7]. Our key observation to avoid the overhead of type binding

generation is that a type binding for X is needed only when X occurs on casts together with ⋆.
In other words, the type binding is unnecessary if X is not required to be consistent with ⋆. For
example, we need to generate type bindings in the following examples for enforcing parametricity:

ΛX . λx:Bool. x : Bool⇒p ⋆⇒q X ΛX . λx:X . λy:⋆→ ⋆. y (x : X ⇒p ⋆)

whereas we do not in the examples below:

ΛX . λx:X . x ΛX . λx:X → ⋆. (x : X → ⋆⇒p X → Int)

The second expression does not need a type binding despite that it involves a cast accompanying

X , because the cast is decomposed into a reflexive cast for X , which always succeeds even in

type-substitution semantics.

To distinguish usage of type variables, we introduce the concepts of static type variables and
gradual type variables, first discussed in [Garcia and Cimini 2015].

4
Static type variables are ones that

are consistent only with themselves, whereas gradual type variables are ones that are consistent also

with ⋆, just like other base types. In System FG and System FC, bound type variables are annotated

by the two labels,S (for static) and G (for gradual). We writeX ::S for a static type variable andX ::G

for a gradual type variable. Corresponding to the annotation of bound type variables, (ΛX ::S. w)
and (ΛX ::G. w) are called a static type abstraction and a gradual type abstraction, respectively.

Below are examples of type abstractions augmented with labels.

ΛX ::G. λx:Bool. x : Bool⇒p ⋆⇒q X ΛX ::G. λx:X . λy:⋆→ ⋆. y (x : X ⇒p ⋆)
ΛX ::S. λx:X . x ΛX ::S. λx:X → ⋆. (x : X → ⋆⇒p X → Int)

Note that S can be replaced with G, but the converse may not hold.

The distinction of type abstractions meets the needs. By the nature of static type variables, they

always appear in the same positions in the source and target types in a cast (if they ever appear),

resulting in reflexive casts in the end. Thus, we do not have to generate a type binding for a type

4
They are called static and gradual type parameters; the distinction of type parameters plays a relatively minor role to

describe a finer-grained notion of principal type schemes in their work, but it plays a central role in our work.
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application of a static type abstraction and so it reduces by type substitution, while applying a

gradual type abstraction generates a type binding still.

Σ ▷ (ΛX ::S. w) A −→ Σ ▷ w[X B A] Σ ▷ (ΛX ::G. w) A −→ Σ,X B A ▷ w

In Section 6, we demonstrate that even the cost of type substitution can be erased under type-erasing

semantics; so, the overhead is only generation of fresh type names for gradual type abstractions.

This leads us to the “pay-as-you-go” implementation of a polymorphic gradually typed language,

where there is no run-time type information at all, if a program is fully statically typed, that is,

without any ⋆. Moreover, the distinction of type abstractions makes clear the correspondence

between our calculus and System F (by regarding System-F type abstractions as static).

It is ensured by type consistency that usage of bound type variables follows their labels. To this

end, we extend the type consistency relation with a type environment Γ, where type variables are
annotated. Our type consistency relation is actually a ternary relation Γ ⊢ A ∼ B . The three rules

are extended with Γ as follows:

∀X ∈ Ftv(A). X ::G ∈ Γ

Γ ⊢ ⋆ ∼ A.

Γ,X ::G ⊢ A ∼ B B , ∀X .B′

⋆ ∈ Types(B) X < Ftv(B)
Γ ⊢ ∀X .A ∼ B

Γ,X ::S ⊢ A ∼ B
Γ ⊢ ∀X .A ∼ ∀X .B.

In the first rule, which is from (C_StarL), the side condition verifies that A does not contain static

type variables. This restriction disallows static type variables to be consistent with ⋆ as expected.

The second rule, which relates a polymorphic type and non-∀ type, chooses G as a label for X ,
because X does not occur in B and so X should be consistent with only ⋆ in A ∼ B. The choice in
the third rule is more subtle. In fact, from the perspective of type safety, both S and G would be

reasonable, but choosing S leads us to rejecting some failing casts and avoiding counterexamples

of the gradual guarantee; we discuss in Section 5.2 in detail.

Finally, we end this section with a few remarks on labels. First, the distinction of type variables

is not kinding in the sense that it does not restrict the range of type variables; we can apply both

sorts of type abstractions to any type including ⋆. So, we do not call them kinds but simply static

and gradual labels. For the same reason, we do not annotate ∀X .A with a label. The distinction

arises only when we compare two forall types as above two consistency rules. Second, we always

require an explicit label for type abstractions in our calculi, but we are sure that it is easily inferred

by observing derivation of typing. In fact, our interpreter performs label inference along with

cast insertion translation. Programmers will enjoy the pay-as-you-go property with no care about

labels at all, though its formalization and correctness are future work. Third, the distinction of type

variables is also used in the definition of term precision when we discuss the gradual guarantee in

Section 8. It is interesting to see that the distinction has found another use, which is not directly

related to our original motivation of a “pay-as-you-go” implementation.

4 SYSTEM FG: A GRADUALLY TYPED EXTENSION OF SYSTEM F
Having described key ideas in the last section, we formally define System FG, which is a gradually

typed extension of System F and also a polymorphic extension of GTLC, with its syntax and type

system and show its conservativity over typing of System F and DTLC.

The definition of System FG is found in Fig. 3. Types are augmented (from GTLC) with polymor-

phic types ∀X .A and type variables X . Terms are extended with type abstractions ΛX ::L. v and

type applications e A, where L denotes a label, S or G, meaning a static type variable or a gradual

type variable, respectively. We restrict the body of a type abstraction to a value, following the latest

polymorphic blame calculus [Ahmed et al. 2017]. A type abstraction is a value. Type environments

are extended with a type variable with a label.
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Syntax

Types A, B ::= ι | ⋆ | A→ B | ∀X .A | X

Labels L ::= S | G

Terms e ::= c | x | λx :A. e | e e | ΛX ::L. v | e A

Values v ::= c | λx :A. e | ΛX ::L. v

Type environments Γ ::= ∅ | Γ, x : A | Γ, X ::L

T ▷ T Matching

A→ A′ ▷ A→ A′

⋆ ▷ ⋆→ ⋆

∀X .A ▷ ∀X .A

A ▷ ∀X .A if QPoly (A) and X < Ftv(A)

Γ ⊢ A ∼ B Type consistency

Γ ⊢ A ∼ A (C_Refl)

Γ ⊢ A ∼ A′ Γ ⊢ B ∼ B′

Γ ⊢ A→ B ∼ A′ → B′
(C_Arrow)

GType (Γ, A) A , ∀Y .A′

Γ ⊢ ⋆ ∼ A
(C_StarL)

Γ, X ::S ⊢ A ∼ B
Γ ⊢ ∀X .A ∼ ∀X .B

(C_AllS)

Γ, X ::G ⊢ A ∼ B QPoly (B ) X < Ftv(B )
Γ ⊢ ∀X .A ∼ B

(C_AllGL)

Γ ⊢ A Type well-formedness

Γ ⊢ ι (Tw_Base) Γ ⊢ ⋆ (Tw_Star)

Γ ⊢ A Γ ⊢ B
Γ ⊢ A→ B

(Tw_Arrow)

X ::L ∈ Γ
Γ ⊢ X

(Tw_Var)

Γ, X ::L ⊢ A
Γ ⊢ ∀X .A

(Tw_All)

Γ ⊢G e : A Typing

ty (c ) = A
Γ ⊢G c : A

(T_Const_G)

x : A ∈ Γ
Γ ⊢G x : A

(T_Var_G)

Γ, x : A ⊢G e : B Γ ⊢ A
Γ ⊢G λx :A. e : A→ B

(T_Abs_G)

Γ ⊢G e1 : A1 Γ ⊢G e2 : A2 A1 ▷ A11 → A12 Γ ⊢ A11 ∼ A2

Γ ⊢G e1 e2 : A12

(T_App_G)

Γ, X ::L ⊢G v : B
Γ ⊢G ΛX ::L. v : ∀X .B

(T_Tyabs_G)

Γ ⊢G e : B B ▷ ∀X .B′ Γ ⊢ A
Γ ⊢G e A : B′[X B A]

(T_Tyapp_G)

Fig. 3. System FG

As we have discussed, type consistency is a ternary relation Γ ⊢ A ∼ B. Γ is used to know

whether each of type variables is static or gradual. (C_Refl) and (C_Arrow) are the same as before

except for the addition of Γ. In (C_StarL), we verify that A does not contain static type variables

by predicate GType, defined by:

GType (Γ,A)
def

⇐⇒ ∀X ∈ Ftv(A). X ::G ∈ Γ .

We call a type without static type variables a gradual type. Readers should note that we may also

call even a type without ⋆ as a gradual type. When we compare two polymorphic types, we record

X as a static type variable in the type environment (C_AllS). In comparison of a polymorphic type

and a non-∀ type, a type variable X is recorded as a gradual type variable ((C_AllGL)). QPoly (B)
is the set of side conditions to check that type B is quasi-polymorphic:

QPoly (A)
def

⇐⇒ A , ∀Y .A′ and ⋆ ∈ Types(A).

The condition X < Ftv(B) is to avoid the capture of free occurrences of X in the premise. We

omit symmetric variants of (C_StarL) and (C_AllGL), in which the types on both sides of ∼ are

swapped, for brevity.

Type well-formedness verifies that all the free type variables in A are declared in Γ. In typing

rules, we always check type well-formedness when new types appear in a term.

Typing rules are obtained by a mostly straightforward combination of GTLC and System F. Γ is

passed to type consistency in (T_App_G). Type application (T_Tyapp_G) is gradualized similarly
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to function application by (extended) matching B ▷ ∀X .B′. If B is a polymorphic type, matching

returns B as it is. When B is a quasi-polymorphic type, matching returns ∀X .B, where X is a fresh

type variable. The conservativity over typing of System F is retained thanks to the side condition

QPoly (B). This rule may be interesting also because the Gradualizer [Cimini and Siek 2016] does

not generate it.

The new (T_Tyapp_G) rule allows flexible prototyping. For example, type application like (λx:⋆
. x) A is allowed, where ⋆ → ⋆, the type of (λx: ⋆ . x), is quasi-polymorphic. Type application

makes no essential effects in this case yet. In this calculus, programmers can evolve code from

(λx:⋆ . x) to (ΛX . λx:X . x) and (ΛX . λx:X . x) A is naturally well-typed. The context [ ] A deals

with both cases. This context would enable programmers to write flexible code which accepts both

polymorphic and untyped prototype code, the latter of which will evolve to polymorphic code.

We describe correspondence of our calculus with System F and DTLC. By System F, we formally

mean System FG without ⋆ and (ΛX ::G. v) from the syntax. An ordinary type abstraction (ΛX . v)
is regarded as an abbreviation of (ΛX ::S. v). Typing Γ ⊢S e : A in System F is as usual.

Then, our type system is a conservative extension of that of System F.

Theorem 4.1 (Conservativity over typing of System F). Suppose e is a closed term of System
F. ∅ ⊢G e : A iff ∅ ⊢S e : A.

Proof. Because types do not include ⋆, consistency and matching are mere equality in System

FG. Especially, (C_AllGL) and (C_AllGR) cannot be used by the restriction ⋆ ∈ Types(B). □

System FG also includes fully dynamic typing—that is, there exists an embedding ⌈e⌉ for an
untyped term e . We assume a pure, call-by-value untyped lambda calculus with constants. The

embedding is defined as follows:

⌈c⌉ = (λx:⋆ . x) c ⌈x⌉ = x ⌈λx . e⌉ = (λx:⋆ . x) (λx :⋆ . ⌈e⌉) ⌈e1 e2⌉ = ⌈e1⌉ ⌈e2⌉

Theorem 4.2 (Embedding DTLC [Siek et al. 2015]). If e is a closed DTLC term, then ⊢G ⌈e⌉ : ⋆.

5 SYSTEM FC: YET ANOTHER POLYMORPHIC BLAME CALCULUS
We formally define System FC, an internal cast calculus of System FG, based on the previous

polymorphic blame calculi by Ahmed et al. [2011] and Ahmed et al. [2017]. The dynamic semantics

of System FG is defined by a cast insertion translation to System FC. We show that System FG
satisfies conservativity over the semantics of System F and DTLC; we also show type safety.

5.1 Definition
The definition of System FC is found in Fig. 4. The syntax of System FC is an extension of the blame

calculus in Fig. 2 with the features for polymorphism in System FG. A type variable is a ground

type. A value with a cast to a polymorphic type (w : A⇒p ∀X .B) is a value. This new value form

comes from the latest polymorphic blame calculus by Ahmed et al. [2017]. This makes it possible

to restrict the body of a type abstraction to a value throughout reduction. A type environment

has a type binding X B A, which means that X is definitionally equal to A. Σ is a store, a type
environment which consists of only type bindings. The predicate GType is extended along with

this extension.

GType (Γ,A)
def

⇐⇒ ∀X ∈ Ftv(A). (X ::G ∈ Γ or X B B ∈ Γ)

The bound type variable in a type binding is always considered gradual because a type binding is

generated only when a gradual type abstraction is reduced. The premise of (Tw_Var) rule is also

extended to “X ::L ∈ Γ or X B A ∈ Γ” (this rule is not displayed in Fig. 4, though).
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Syntax Types A, B ::= ι | ⋆ | A→ B | ∀X .A | X

Ground types G, H ::= ι | ⋆→ ⋆ | X

Blame labels p, q ::= l

Labels L ::= S | G

Terms f ::= c | x | λx :A. f | f f | ΛX ::L. w | f A | f : A⇒p B | blame p

Values w ::= c | λx :A. f | ΛX ::L. w | w : G ⇒p ⋆ | w : A→ B ⇒p A′ → B′ | w : A⇒p ∀X .B

Context E ::= [ ] | E f | w E | E A | E : A⇒p B

Type environments Γ ::= ∅ | Γ, x : A | Γ, X ::L |

Store Σ ::= ∅ | Σ, X B A

Γ ⊢ e ⇝ f : A Cast insertion

Γ ⊢ e1 ⇝ f1 : A1 Γ ⊢ e2 ⇝ f2 : A2 A1 ▷ A11 → A12 Γ ⊢ A11 ∼ A2

Γ ⊢ e1 e2 ⇝ (f1 : A1 ⇒
ℓ
?
A11 → A12) (f2 : A2 ⇒

ℓ
?
A11) : A12

(CI_App)

Γ ⊢ e ⇝ f : B B ▷ ∀X .B′ Γ ⊢ A
Γ ⊢ e A⇝ (f : B ⇒ℓ

?
∀X .B′) A : B′[X B A]

(CI_Tyapp)

Σ ▷ f −→ Σ′ ▷ f ′ Reduction

(ΛX ::S . w ) A −→ w[X B A] (R_Tybetas)

Σ ▷ (ΛX ::G . w ) A −→ Σ, X B A ▷ w (R_Tybetag)

(w : ∀X .A⇒p ∀X .B ) C −→ (w C ) : A[X B C]⇒p B[X B C] (R_Content)

Σ ▷ (w : A⇒p ∀X .B ) C −→ Σ, X B C ▷ w : A⇒p B if A , ∀X ′.A′ and X is fresh. (R_Generalize)

w : ∀X .A⇒p B −→ (w ⋆) : A[X B ⋆]⇒p B if B , ∀X ′.B′ (R_Instantiate)

Γ ⊢C f : A Typing

ty (c ) = A
Γ ⊢C c : A

(T_Const_C)

x : A ∈ Γ
Γ ⊢C x : A

(T_Var_C)

Γ, x : Γ(A) ⊢C f : B Γ ⊢ A
Γ ⊢C λx :A. f : Γ(A) → B

(T_Abs_C)

Γ ⊢C f1 : A→ B Γ ⊢C f2 : A
Γ ⊢C f1 f2 : B

(T_App_C)

Γ ⊢ A
Γ ⊢C blame p : A

(T_Abort_C)

Γ, X ::L ⊢C w : B
Γ ⊢C ΛX ::L. w : ∀X .B

(T_Tyabs_C)

Γ ⊢C f : ∀X .B Γ ⊢ A
Γ ⊢C f A : B[X B Γ(A)]

(T_Tyapp_C)

Γ ⊢C f : Γ(A) Γ ⊢ B Γ ⊢ A ∼ B
Γ ⊢C f : A⇒p B : Γ(B )

(T_Cast_C)

Fig. 4. System FC

We show only main rules of cast insertion; the full definition is found in the supplementary

material. Type consistency is extended to a ternary relation in (CI_App). A cast may be inserted by

following the matching for a polymorphic type (CI_Tyapp).

The reduction relation takes the form Σ ▷ f −→ Σ′ ▷ f ′. As we mentioned already, type bindings

generated by reduction are immediately stored in Σ, inspired by the configuration reduction by

Ahmed et al. [2017]. In the definition, f −→ f ′ is an abbreviation of Σ ▷ f −→ Σ ▷ f ′. All the
reduction rules of the blame calculus in Section 2.2 are implicitly adopted to System FC similarly. It

is worth noting that casts do not look through the store: that is, X B Int ▷ (1 : Int⇒p1 ⋆⇒p2 X )
raises blame. We explain the rules specific to System FC here. Type application to a static type

abstraction results in type substitution (R_TybetaS). Type application to a gradual type abstraction
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immediately stores a type binding in the store (R_TybetaG). Rule (R_Content) comes from Belo

et al. [2011] and Sekiyama et al. [2017], where a cast between polymorphic types reduces without

type arguments supplied. Our rule can be understood in terms of their rules as follows:

(w : ∀X .A⇒p ∀X .B) C −→ (ΛX ::S. (w X ) : A⇒p B) C −→ (w C) : A[X B C]⇒p B[X B C]

A static type abstraction would be created in the intermediate state because the last applied rule

in the derivation of Γ ⊢ ∀X .A ∼ ∀X .B is (C_AllS). Then, we would proceed by (R_TybetaS).

Rule (R_Generalize) can be understood similarly. Programmers should take care that gradual

type abstractions, which cause overhead of name generation, may be implicitly introduced by

(R_Generalize), even if gradual type abstractions do not appear explicitly in a program. If a

polymorphic type appears only on the left-hand side of a cast, we immediately instantiate the source

term by ⋆ (R_Instantiate). Rules (R_Generalize) and (R_Instantiate) come from the latest

polymorphic blame calculus [Ahmed et al. 2017]. We discuss further about the latter rule in Section 8

with the Jack-of-All-Trades conjecture [Ahmed et al. 2013]. As in GTLC, the dynamic semantics of

System FG is defined by cast insertion, followed by reduction in System FC. Σ ▷ f −→⋆ Σ′ ▷ f ′ is
the reflexive transitive closure of Σ ▷ f −→ Σ′ ▷ f ′ .

Definition 5.1 (Dynamic semantics of System FG). For e with ∅ ⊢G e : A, e ⇓G Σ ▷ w
def

⇐⇒

∅ ⊢ e⇝ f : A and ∅ ▷ f −→⋆ Σ ▷ w.

For typing, we take an approach slightly different from the previous polymorphic blame calculi.

One can find the difficulties of typing with type bindings in reduction by (R_TybetaG) such as

∅ ▷ (ΛX ::G. (λx:X . x)) Int −→ X B Int ▷ (λx:X . x).

The type of the left term is clearly Int → Int, but how about the right term? In terms of type

preservation, the type of the right term should also be Int→ Int, but we could not assign the type

only by the term (λx:X . x). We have to take X B Int into account and cause type application in

the derivation of typing somehow. We develop the following typing rule for a lambda abstraction.

Γ,x : Γ(A) ⊢C f : B Γ ⊢ A

Γ ⊢C λx :A. f : Γ(A) → B
(T_Abs_C)

The type environment application Γ(A) applies all type bindings in Γ to a type A as follows.

(∅) (A) = A (Γ,x : B) (A) = Γ(A) (Γ,X ::L) (A) = Γ(A) (Γ,X B B) (A) = Γ(A[X B B])

Type bindings are applied sequentially from the innermost one so that accidental capture or escape

of type variables cannot happen. Now, we can derive X B Int ⊢C λx:X . x : Int→ Int as expected.

Type environment application appears in rules (T_Tyapp_C) and (T_Cast_C) for the same reason.

In the previous polymorphic blame calculus, static casts [Ahmed et al. 2011], which syntactically

record where type substitution and abstraction occur, is used for syntax-directed typing, instead

of type environment application, to make metatheory more tractable. We believe our approach

makes the type system and reduction even simpler and easier to work with: we have achieved

syntax-directed typing by type environment application without introducing additional devices.

5.2 Why do we choose S in (C_AllS)?
The consistency rule (C_AllS), which relates two polymorphic types, assigns S to the bound type

variable. We expect that using G instead of S would work well for type safety, but it would be the

source of two subtle issues.

First, choosing G would result in acceptance of casts which always raise blame. For example,

let us consider f = (id : ∀X .X → X ⇒p ∀X .⋆→ X ) where id is a polymorphic identity function.

Giving G to bound type variables in the consistency rule for polymorphic types would allow for the
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cast in f and change the reduction rule for polymorphic types as follows (recall that the information

of type variables with label G is stored in Σ):

Σ ▷ (w : ∀X .A⇒p ∀X .B) C −→ Σ,X B C ▷ (w X ) : A⇒p B.

Then, for any A, G, and w, term f A (w : G ⇒q ⋆) triggers blame:

Σ ▷ f A (w : G ⇒q ⋆) −→ Σ,X B A ▷ ((id X ) : X → X ⇒p ⋆→ X ) (w : G ⇒q ⋆) (X , G )

−→⋆ Σ,X B A ▷ ((λx:X . x) (w : G ⇒q ⋆⇒p X )) : X ⇒p X
−→ blame p

Choosing S can reject such failing casts statically.

Second, perhaps even worse, choosing G would give rise to a counterexample to the gradual

guarantee of semantics ((2) of Theorem 2.2)—that is, there would be a case that a less precisely

typed term fail. As mentioned above, if we chose G, ∀X .⋆→ X ∼ ∀X .X → X would hold, and so

(λx:∀X .⋆→ X . x) id would be a well-typed term. We would also have ∀X .X → X ⊑ ∀X .⋆→ X 5

and (λx:∀X .X → X . x) id Int 42 ⊑ (λx:∀X .⋆ → X . x) id Int 42. As discussed above, however,

using the result of a cast from ∀X .X → X to ∀X .⋆ → X , which occurs on the right-hand side,

would trigger blame, whereas the term on the left-hand side should evaluate to 42—the gradual

guarantee of semantics is broken! The rule (C_AllS) avoids such troublesome cases by rejecting

∀X .X → X ⊑ ∀X .⋆→ X and the term precision above.

5.3 Properties
In this section, we show properties of System FC: conservativity over semantics of System F

(Theorem 5.2) and DTLC (Theorem 5.3) and type safety (Theorem 5.8).

We assume standard reduction rules of System F [Pierce 2002, Chapter 23]. Let −→S be the

reduction relation of System F and −→⋆
S be the reflexive transitive closure of −→S . The dynamic

semantics of our calculus is a conservative extension of that of System F.

Theorem 5.2 (Conservativity over reduction of System F). Suppose e is a closed term of
System F. e ⇓G Σ ▷ w iff e −→⋆

S w .

Proof. First, no casts are inserted to e in System FG because e has no dynamic types. Possible

reduction rules for e in System FC are (R_Delta), (R_Beta), or (R_TybetaS). These rules are the

same as those in System F. □

The reduction rules of DTLC are also as usual. However, we assume that a term is reduced to the

special term wrong if reduction is stuck. The dynamic semantics of our calculus is a conservative

extension of that of DTLC. The metavariable r denotes either a value or wrong in DTLC.

Theorem 5.3 (Conservativity over reduction of DTLC [Siek et al. 2015]). There exists an
embedding ⌈·⌉C from DTLC into System FC such that, if e is a closed term of DTLC, then ⌈e⌉ ⇓G ∅ ▷ ⌈r⌉C
iff e ⇓D r .

Proof. The same result holds in GTLC and our calculus is a superset of GTLC. □

If a term is well-typed in System FG, cast insertion always succeeds and the resulting term has

the same type in System FC.

Lemma 5.4. If Γ ⊢G e : A, then Γ ⊢ e⇝ f : A and Γ ⊢C f : A for some f .

We state the canonical forms lemma below. In some cases, the type of a value depends on Σ.

Lemma 5.5 (Canonical Forms). If Σ ⊢C w : A, then
5
Recall the relationship between type precison and consistency, discussed in Section 2.3.
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• w = c and A = ty (c),
• w = λx:A′. f and A = Σ(A′) → B,
• w = w ′ : B→ B′ ⇒p C → C ′ and A = Σ(C) → Σ(C ′),
• w = ΛX ::L. w ′ and A = ∀X .A′,
• w = (w ′ : B⇒p ∀X .A′) and A = ∀X .Σ(A′), or
• w = (w ′ : G ⇒p ⋆) and A = ⋆.

A usual progress property holds: a well-typed term in System FC is a value, blame, or reduced.

Lemma 5.6 (Progress). If Σ ⊢C f : A, then (1) f = w, (2) f = blame p for some p, or (3)
Σ ▷ f −→ Σ′ ▷ f ′ for some Σ′ and f ′.

System FC satisfies also type preservation under the store Σ. As a note, type bindings in reduction

are essential only for this property. In the next section, we argue that only type names are required

to reduce a term.

Lemma 5.7 (Type preservation). If Σ ⊢C f : A and Σ ▷ f −→ Σ′ ▷ f ′, then Σ′ ⊢C f ′ : A.

Then, type safety, one of the desired criteria, holds in our calculus.

Theorem 5.8 (Type Safety). If ∅ ⊢G e : A, then (1) e ⇓G Σ ▷ w and Σ ⊢C w : A for some Σ andw ,
(2) e ⇓G Σ ▷ blame p for some Σ and p, or (3) e ⇑G .

6 TYPE ERASURE
In this section, we discuss how we can implement System FC without most of the overhead of

maintaining run-time type information. In fact, well-typed System F terms are subject to the same

erasure translation as discussed by Pierce [2002, Section 23.7]: a static type abstraction is encoded

into a function abstracted by a dummy variable of type unit and a type application is into an

application to the unit value. For gradual type abstractions, we adopt an idea which is very similar

to that used for encoding a polymorphic blame calculus into a language with dynamic sealing [Siek

and Wadler 2016] with some additional twists. The cost of dynamic types is “pay-as-you-go” in

the following sense. The baseline cost, at which a fully statically typed term aims, is the same as

type-erasing semantics of System F; a static type abstraction basically meets this baseline because it

does not cause additional casts (or blame) and name generation by its nature. Additional overhead

is caused only when a gradual type abstraction is used. We have already implemented a prototype

of a type-erasing interpreter in OCaml.

As we saw in rule (R_TybetaG) in Section 5, type application of a gradual type abstraction

generates a type binding. During reduction, a type binding records the actual type which the

generated type name points at. However, in fact, the information of the actual type is required

to prove type safety but not very essential for results of reduction. For example, we can blame

following casts without knowledge about the actual types to which X and Y are bound.

1 : Int⇒p1 ⋆⇒p2 X true : X ⇒p1 ⋆⇒p2 Y

Based on this observation, we no longer keep an actual type argument at type application. It suffices

to generate a fresh ID to identify type variables introduced at each type application. The fresh ID

is reminiscent of one of the cryptographic keys, used to express type abstraction of polymorphic

blame calculus λB in λK , cryptographic lambda calculus [Siek and Wadler 2016]. We drop the other

key to represent type binding because we erase run-time types.

Our type system does not decide whether a term which is applied to a type results in a static

type abstraction or a gradual. A possible implementation is to check whether a type abstraction

is static or gradual at every type application, but we do not so. We create a thunk with a dummy
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variable of type unit for every type abstraction and we put fresh ID generation into the thunk of a

gradual type abstraction. As a result, we implement type application uniformly as application to a

unit value without any checks.
6
This strategy, i.e., fresh ID generation in a callee side, resembles

the implementation of relationally-parametric polymorphic contracts by Guha et al. [2007], where

a polymorphic contract is implemented by a function that generates an opaque container corre-

sponding to a fresh ID every time an abstracted variable is instantiated by a concrete contract. This

is in contrast to Siek and Wadler [2016], where fresh keys are generated at a caller (that is, type
application) and passed to type abstractions. (The caller-side generation would make it easy to

prove properties of encoding, though.) Cast rules such as (R_Content) and (R_Generalize) can

be implemented as in static and gradual type abstractions, respectively.

Now we show the core of the evaluator implemented in OCaml in Listing 1. The function eval
is the main function which uses the infix operator (=⇒), which implements casts. It is not a tagless

interpreter where values of statically typed expression come without run-time tags. Our main

purpose is to demonstrate that static type variables can be completely erased and gradual type

variables can be implemented in a lightweight manner. As the term constructor Var takes an integer,

we use de Bruijn indices to represent variable bindings, although the names of identifiers are still

recorded in an AST for a debugging purpose (the type id in FunExp and so on). For simplicity, error

handling code is omitted.We do not detail how blame is implemented—in Listing 1, blame is replaced

with raising a simple exception. Implementing blame requires more costs due to manipulation of

blame labels. Interested readers are referred to our prototype interpreter.

Type abstractions of both kinds (TSFunExp and TGFunExp) evaluates to functions of type unit
-> value (line 16 and 17 in eval). In the case of type abstraction by static type variables, the type

argument is just discarded and the body is evaluated. In the case of type abstraction by gradual type

variables, when it is applied, a fresh ID is generated by ref () and recorded in the environment,

which maps (term) variables to values and gradual type variables to a reference to the unit value.

A cast from a gradual type variable to⋆ results in a value tagged with the ID of the type variable,

retrieved from the environment (line 27). A cast from ⋆ to a gradual type variable will compare

two IDs; if they disagree, blame is raised (lines 30–31). Lines 34–35 represent (R_Content); (static)

type variables in terms t1 and t2 become free but their names will not be examined during

evaluation (except at the reflexive case, which is omitted). Lines 36–39 implement (R_Generalize)

and (R_Instantiate). In the former case, a fresh ID is generated just like type application of

ΛX ::G. v.

7 BLAME THEOREM
The Blame Theorem, advocated by Tobin-Hochstadt and Felleisen [2006] and dubbed by Wadler

and Findler [2009], is a standard property of a blame calculus and justifies the reasonable intuition

that run-time typing errors are never triggered by statically typed code, which indicates that the

cast semantics of the calculus is plausible. In fact, the Blame Theorem goes a step further: more
precisely typed code never invokes run-time errors.

We show the Blame Theorem by following Wadler and Findler [2009]: we introduce a few subtyp-

ing relations—positive subtyping, negative subtyping, and precision (also called naive subtyping)—

and show the relationship between them; and, finally, we prove that the “more precisely typed”

side, which is formalized by precision, never causes run-time errors via the relationship. In addition,

we introduce ordinary subtyping and show Blame-Subtyping Theorem, one of the refined criteria

by Siek et al. [2015], which says that a cast from a type to its supertype never fails. We design all

6
Ideally, it is best to avoid even creation of a thunk, considering we adopted value restriction; we leave it for future work.
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Listing 1. Interpreter

1type ty = I n t | Bool | Arr of ty ∗ ty | TyVar of i n t | F o r a l l of i d ∗ ty | Dyn

2type term = Var of i n t | · · · | FunExp of i d ∗ ty ∗ term | AppExp of term ∗ term

3| TSFunExp of i d ∗ term | TGFunExp of i d ∗ term | TAppExp of term ∗ ty

4| CastExp of term ∗ ty ∗ ty

5type t ag = I | B | Ar | TV of un i t ref ( ∗ ground type s ∗ )

6type va lue = In tV of i n t | BoolV of boo l | Fun of ( v a l u e → va lue )

7| TFun of ( u n i t → va lue ) | Tagged of t ag ∗ va lue

8and env = Empty | VB of va lue ∗ env | TB of un i t ref ∗ env

9

10( ∗ e v a l : env → term → va lue ∗ )

11l e t rec e v a l env = function
12| Var i dx → lookup idx env

13· · ·

14| FunExp ( id , _ , e ) → Fun ( fun v → e v a l (VB ( v , env ) ) e )

15| AppExp ( e1 , e2 ) → (match e v a l env e1 with Fun f → f e v a l env e2 )

16| TSFunExp ( id , e ) → TFun ( fun ( ) → e v a l env e )

17| TGFunExp ( id , e ) → TFun ( fun ( ) → e v a l ( TB ( ref ( ) , env ) ) e )

18| TAppExp ( e , _ ) → (match e v a l env e with TFun f → f ( ) )

19| CastExp ( e , ty1 , t y2 ) → l e t v = ev a l env e in ( t y1 =⇒ t y2 ) env v

20( ∗ ( =⇒ ) : t y → ty → env → va lue → va lue ∗ )

21and ( =⇒ ) t 1 t 2 env v = match t1 , t 2 with
22In t , I n t → v ( ∗ R_ID ∗ )

23| I n t , Dyn → Tagged ( I , v )

24| Dyn , I n t → (match v with
25Tagged ( I , v0 ) → v0 ( ∗ R_Collapse ∗ )

26| Tagged ( _ , _ ) → f a i l w i t h " Blame ! " ) ( ∗ R_Conflict ∗ )

27| TyVar idx , Dyn → Tagged (TV ( lookup ty i dx env ) , v )

28| Dyn , TyVar i dx → (match v with
29| Tagged (TV r , v0 ) → i f l ookup ty i dx env == r then v0 ( ∗ R_Collapse ∗ )

30e l se f a i l w i t h " Blame ! " ( ∗ R_Conflict ∗ )

31| Tagged ( _ , _ ) → f a i l w i t h " Blame ! " ) ( ∗ R_Conflict ∗ )

32| Arr ( s1 , t 1 ) , Arr ( s2 , t 2 ) → (match v with Fun f → ( ∗ R_Wrap ∗ )

33Fun ( fun w → ( t 1 =⇒ t 2 ) env ( f ( ( s2 =⇒ s1 ) env w ) ) ) )

34| F o r a l l ( id1 , t 1 ) , F o r a l l ( id2 , t 2 ) → (match v with TFun f → ( ∗ R_Content ∗ )

35TFun ( fun ( ) → ( t 1 =⇒ t 2 ) env ( f ( ) ) ) )

36| ty1 , F o r a l l ( id2 , t y2 ) → ( ∗ R_Generalize ∗ )

37TFun ( fun ( ) → ( t y p e S h i f t 1 0 ty1 =⇒ t y2 ) ( TB ( ref ( ) , env ) ) v )

38| F o r a l l ( id1 , t y1 ) , t y2 → (match v with TFun f → ( ∗ R_Instantiate ∗ )

39( t y p e I n s t ty1 Dyn =⇒ t y2 ) env ( f ( ) ) )

40· · ·

subtyping relations so that they are subsets of type consistency because we are interested in only

well-typed programs.

7.1 The Blame Theorem
The Blame Theorem says that the “more precisely typed” side of a cast never triggers run-time

errors. Namely, if A is a more precise type than B, then neither cast f : A ⇒p B nor f : B ⇒p A
invokes blame p. Intuitively, A is more precise than B if A is a result type of replacing occurrences

of the dynamic type in B with some types. Precision Γ ⊢ A ⊑ B formalizes this notion, that is, it

means that A is more precise than B under Γ. The inference rules of precision are shown at the

top of Fig. 5 and the same as the rules of type consistency except for the lack of a few rules for

symmetry: we choose rules from type consistency so that the left-hand side is more precisely typed.
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Γ ⊢ A ⊑ B Precision

Γ ⊢ A ⊑ A (P_Refl)

GType (Γ, A) A , ∀Y .A′

Γ ⊢ A ⊑ ⋆
(P_Star)

Γ ⊢ A ⊑ A′ Γ ⊢ B ⊑ B′

Γ ⊢ A→ B ⊑ A′ → B′
(P_Arrow)

Γ, X ::S ⊢ A ⊑ B
Γ ⊢ ∀X .A ⊑ ∀X .B

(P_AllS)

Γ, X ::G ⊢ A ⊑ B QPoly (B ) X < Ftv(B )
Γ ⊢ ∀X .A ⊑ B

(P_AllG)

Γ ⊢ A <:+ B Positive Subtyping

Γ ⊢ A <:+ A (Ps_Refl)

GType (Γ, A) A , ∀Y .A′

Γ ⊢ A <:+ ⋆
(Ps_Ground)

X ::G+ ∈ Γ

Γ ⊢ ⋆ <:+ X
(Ps_GVar)

Γ ⊢ A′ <:− A Γ ⊢ B <:+ B′

Γ ⊢ A→ B <:+ A′ → B′
(Ps_Arrow)

Γ, X ::S ⊢ A <:+ B
Γ ⊢ ∀X .A <:+ ∀X .B

(Ps_AllS)

Γ, X ::G ⊢ A <:+ B QPoly (B )
X < Ftv(B )

Γ ⊢ ∀X .A <:+ B
(Ps_AllGL)

Γ, X ::G ⊢ A <:+ B QPoly (A)
X < Ftv(A)

Γ ⊢ A <:+ ∀X .B
(Ps_AllGR)

Γ ⊢ A <:− B Negative Subtyping

Γ ⊢ A <:− A (Ns_Refl)

Γ ⊢ A <:− G GType (Γ, A) A , ∀X .A′

Γ ⊢ A <:− ⋆
(Ns_Ground)

A , ∀Y .A′ GType (Γ, A)
Γ ⊢ ⋆ <:− A

(Ns_Star)

Γ ⊢ A′ <:+ A Γ ⊢ B <:− B′

Γ ⊢ A→ B <:− A′ → B′
(Ns_Arrow)

Γ, X ::S ⊢ A <:− B
Γ ⊢ ∀X .A <:− ∀X .B

(Ns_AllS)

Γ, X ::G+ ⊢ A <:− B QPoly (B ) X < Ftv(B )
Γ ⊢ ∀X .A <:− B

(Ns_AllGL)

Γ, X ::G ⊢ A <:− B QPoly (A) X < Ftv(A)
Γ ⊢ A <:− ∀X .B

(Ns_AllGR)

Fig. 5. Precision, positive subtyping, and negative subtyping.

Following the prior work [Ahmed et al. 2011; Wadler and Findler 2009], our proof of the Blame

Theorem is based on two subtyping relations: positive and negative subtyping. The intention is

that, if A is a positive or negative subtype of B, cast f : A⇒p B does not invoke blame p or blame p,
respectively.

Before showing the rules of positive and negative subtyping, we discuss a subtle observation in

polymorphic blame calculi and describe an extension of type environments to address it. In general,

we should not be able to derive ⋆ <:+ X because a cast from ⋆ to X could invoke blame. However,

there are cases that X is instantiated with the dynamic type at run time—by (R_Instantiate)—in

which case a cast from⋆ toX should never cause blame. For example, castw : ∀X .X → ⋆⇒p ⋆→ ⋆
never causes blame, in particular blame p, despite that a cast from⋆ to X , obtained by decomposing

the domain types contravariantly, does not always succeed. To capture such cases, we extend type

environments with type variables given new gradual label G+:

Γ ::= ... | X ::G+

Giving G+ to X means that X will be instantiated with the dynamic type at run time. The new label

G+ is gradual and we extend GType (Γ,A) as follows:

GType (Γ,A)
def

⇐⇒ ∀X ∈ Ftv(A). (X ::G ∈ Γ or X B B ∈ Γ or X ::G+ ∈ Γ)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 40. Publication date: September 2017.



40:20 Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi

The positive subtyping relation takes the form Γ ⊢ A <:+ B and its rules are shown in the

middle of Fig. 5. (Ps_Ground) means that values of any type can be injected into the dynamic

type safely, with (Ps_AllGL) for cases where the left-hand side is a polymorphic type. (Ps_GVar)

says that f : ⋆⇒p X always succeeds if X is given G+ because X of G+ should be replaced with

the dynamic type. As we will see soon, G+ in the type environment is introduced by one of the

negative subtyping rules. Note that, in general, we cannot expect that f : ⋆⇒p A succeeds if A is

neither ⋆ nor X with G+. As ordinary subtyping, rule (Ps_Arrow), applied to function types, is

contravariant on their domain types and covariant on their codomain types. It also reverses the

polarity of subtyping in the domain types, corresponding to the negation of blame labels on casts

between domain types in (R_Wrap). Other three rules (Ps_AllS), (Ps_AllGL), and (Ps_AllGR)

follow from type consistency.

Negative subtyping Γ ⊢ A <:− B is used to identify casts f : A ⇒p B which do not invoke

blame p . The rules of negative subtyping are shown at the bottom in Fig. 5. The first four rules are

standard [Wadler and Findler 2009], except conditions to make applicable rules syntax-directed

and restrict negative subtyping to be a subset of type consistency. (Ns_Ground) requires a type on

the left-hand side to be a negative subtype of some ground typeG . This condition is needed for the

case that A is a function type. In that case, f : A ⇒p ⋆will reduce to f : A ⇒p ⋆→ ⋆⇒p ⋆ by

(R_Ground), so we have to show that f : A⇒p ⋆→ ⋆ does not invoke blame p for proving that

f : A ⇒p ⋆ does not. Negative supertype G of function types is always ⋆→ ⋆, so the condition

Γ ⊢ A <:− G guarantees that f : A ⇒p ⋆ → ⋆ never triggers blame p, as expected. (Ns_Arrow)
is dual to (Ps_Arrow). (Ns_AllGL) gives G+ to the bound type variable X , because, if B is not a

polymorphic type, cast f : ∀X .A ⇒p B will reduce to (f ⋆) : A[X B ⋆] ⇒p B by reduction rule

(R_Instantiate), and so X is bound to be instantiated with ⋆.
Before showing the Blame Theorem, we discuss properties about positive and negative subtyping.

First of all, we show that positive and negative subtyping are a subset of type consistency.

Lemma 7.1. Let [[−]]G+ 7→G be a function over type environments such that it behaves an identity
function except that it maps X ::G+ to X ::G.
(1) If Γ ⊢ A <:+ B, then [[Γ]]G+ 7→G ⊢ A ∼ B.
(2) If Γ ⊢ A <:− B, then [[Γ]]G+ 7→G ⊢ A ∼ B.

Proof. By induction on the derivations of Γ ⊢ A <:+ B and Γ ⊢ A <:− B. □

Introducing G+ to type environments in (Ns_AllGL) enables positive and negative subtyping

to relate more types than using just G. For example, we can derive ∅ ⊢ ∀X .X → ⋆ <:− ⋆ → ⋆
using (Ns_AllGL) as well as (Ps_Ground), as follows: we have X ::G+ ⊢ ⋆ <:+ X by (Ps_GVar)

and X ::G+ ⊢ ⋆ <:− ⋆ by (Ns_Refl); thus, X ::G+ ⊢ X → ⋆ <:− ⋆→ ⋆ by (Ns_Fun); finally, we can

derive ∅ ⊢ ∀X .X → ⋆ <:− ⋆→ ⋆ by (Ns_AllGL). If we did not introduce G+ and used G instead,

we could not derive that judgment because X ::G ⊢ ⋆ <:+ X does not hold. Thus, G cannot be a

replacement for G+, while G+ can be one for G, as the following lemmas show.

Lemma 7.2.

(1) If Γ,X ::G, Γ′ ⊢ A <:+ B, then Γ,X ::G+, Γ′ ⊢ A <:+ B.
(2) If Γ,X ::G, Γ′ ⊢ A <:− B, then Γ,X ::G+, Γ′ ⊢ A <:− B.

Proof. By induction on the derivations of Γ,X ::G, Γ′ ⊢ A <:+ B and Γ,X ::G, Γ′ ⊢ A <:− B. □

As usual, we first show the relationship of precision to positive and negative subtyping.

Lemma 7.3. If Γ ⊢ A ⊑ B, then Γ ⊢ A <:+ B and Γ ⊢ B <:− A.

Proof. By induction on the derivation of Γ ⊢ A ⊑ B. □
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Γ ⊢ f sf p Safe term

Γ ⊢ A <:+ B Γ ⊢ f sf p
Γ ⊢ (f : A⇒p B ) sf p

(Sf_Psub)

Γ ⊢ A <:− B Γ ⊢ f sf p

Γ ⊢ (f : A⇒p B ) sf p
(Sf_Nsub)

Γ ⊢ f sf p q , p, p
Γ ⊢ (f : A⇒q B ) sf p

(Sf_Cast)

Γ, X ::L ⊢ w sf p
Γ ⊢ (ΛX ::L. w ) sf p

(Sf_Tyabs)

q , p
Γ ⊢ blame q sf p

(Sf_Blame) Γ ⊢ x sf p (Sf_Var)

Γ ⊢ f sf p
Γ ⊢ λx :A. f sf p

(Sf_Abs)

Γ ⊢ f1 sf p Γ ⊢ f2 sf p
Γ ⊢ f1 f2 sf p

(Sf_App)

Γ ⊢ f sf p
Γ ⊢ f A sf p

(Sf_Tyapp)

Fig. 6. Safe terms.

While Lemma 7.3 is enough to show the Blame Theorem, it is weaker than the Factoring (also

known as, Tangram [Wadler 2015]) property, which states also the reverse direction [Wadler and

Findler 2009]—i.e., A ⊑ B iff A <:+ B and B <:− A. In fact, the Factoring property does not hold in

our precision and subtyping relations.

Example 7.4. ∅ ⊢ ⋆ → ⋆ <:+ ∀X .⋆ → ⋆ and ∅ ⊢ ∀X .⋆ → ⋆ <:− ⋆ → ⋆ are derivable, but

∅ ⊢ ⋆→ ⋆ ⊑ ∀X .⋆→ ⋆ is not.

According to our precision rules, there are no non-∀ types more precise than polymorphic types.

Ahmed et al. [2011] claimed that their naive subtyping satisfies the Tangram property, but we have

found a counterexample to it: for example, using their positive subtyping <:+, negative subtyping
<:−, and naive subtyping <:n , we can derive⋆→ ⋆ <:+ ∀X .X → ⋆ and ∀X .X → ⋆ <:− ⋆→ ⋆, but
we cannot ⋆→ ⋆ <:n ∀X .X → ⋆. Thus, defining naive subtyping satisfying the Tangram property

in polymorphic blame calculi is left open.

Next, we show that a cast from one type to its positive (resp. negative) supertype never invokes

positive (resp. negative) blame. Following Ahmed et al. [2011], we define safe terms Γ ⊢ f sf p,
which indicates that (1) blame p does not appear in f and (2) all casts with p in f are from one

type to its positive supertype and all ones with p are from one type to its negative supertype. The

rules for safe term are shown in Fig. 6—note that type environment Γ does not need to bind term

variables. We show the Blame Theorem by proving that reduction preserves term safety. We write

Σ ▷ f −̸→⋆ Σ′ ▷ f ′ to denote that Σ ▷ f −→⋆ Σ′ ▷ f ′ cannot be derived.

Lemma 7.5 (Blame Preservation). If Σ ⊢ f sf p and Σ ▷ f −→ Σ′ ▷ f ′, then Σ′ ⊢ f ′ sf p.

Theorem 7.6 (Blame Theorem). Let f be a closed term with a subterm f ′ : A ⇒p B such that
neither p nor p occurs at other casts in f . Suppose that Γ is a type environment such that: (1) it captures
all free type variables in A and B; and (2) type variables bound by Γ are bound in f with the same
labels.
(1) If Γ ⊢ A <:+ B, then ∅ ▷ f −̸→⋆ Σ ▷ blame p for any Σ.
(2) If Γ ⊢ A <:− B, then ∅ ▷ f −̸→⋆ Σ ▷ blame p for any Σ.
(3) If Γ ⊢ A ⊑ B, then ∅ ▷ f −̸→⋆ Σ ▷ blame p for any Σ.
(4) If Γ ⊢ B ⊑ A, then ∅ ▷ f −̸→⋆ Σ ▷ blame p for any Σ.

Proof. The first and second items are shown by Blame Preservation (Lemma 7.5) and the fact

that f = blame p contradicts the safety of f .7 The third and fourth follow from Lemma 7.3 with

the first and second, respectively. □

7
Our proof does not need Blame Progress, which is a lemma used to prove the Blame Theorem in Ahmed et al. [2011],

though it can be derived from Blame Preservation and that fact about safe terms.
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Γ ⊢ A <: B Subtyping

Γ ⊢ A <: A (S_Refl)

Γ ⊢ A <: G GType (Γ, A) A , ∀Y .A′

Γ ⊢ A <: ⋆
(S_Ground)

X ::G+ ∈ Γ

Γ ⊢ ⋆ <: X
(S_GVar)

Γ ⊢ A′ <: A Γ ⊢ B <: B′

Γ ⊢ A→ B <: A′ → B′
(S_Arrow)

Γ, X ::S ⊢ A <: B
Γ ⊢ ∀X .A <: ∀X .B

(S_AllS)

Γ, X ::G+ ⊢ A <: B QPoly (B )
X < Ftv(B )

Γ ⊢ ∀X .A <: B
(S_AllGL)

Γ, X ::G ⊢ A <: B QPoly (A)
X < Ftv(A)

Γ ⊢ A <: ∀X .B
(S_AllGR)

Fig. 7. Ordinary subtyping.

We make a remark on a slight difference from positive and negative subtyping in Ahmed et al.

[2011]. While we introduce G+ to deal with casts from polymorphic types, Ahmed et al. adopts

rules that, instead of using G+, substitute the dynamic type for bound type variables, following

their type compatibility. Although we believe that the Blame Theorem holds under their rules (with

reasonable side conditions), they would violate our design policy that a subtyping relation should

be a subset of type consistency. For example, it is derivable ∀X .X → X <:− Int→ Bool in Ahmed

et al. [2011], though ∀X .X → X ∼ Int → Bool is not derivable in our type consistency. For the

same reason, our subtyping rule, shown in Section 7.2, that takes polymorphic types on only the

left-hand side uses G+, unlike the corresponding rule in Ahmed et al. [2011].

7.2 Blame-Subtyping Theorem
In this section, we investigate how to identify casts which never fail. For that, following the early

work, we introduce ordinary subtyping Γ ⊢ A <: B and show that casts from a type to its ordinary

supertype never fail by factoring the ordinary subtyping into positive and negative subtyping.

The rules of ordinary subtyping are shown in Fig. 7. A cast from a subtype of a ground type

to the dynamic type does not fail because a cast from the ground type to the dynamic just adds

a tag (S_Ground). A cast from the dynamic type to a type variable of G+ succeeds because such

a type variable is instantiated with the dynamic type, as discussed in Section 7.1 (S_GVar). Rule

(S_AllGL) gives G+ to X because X is instantiated with the dynamic type by (R_Instantiate).

We show that casts from a type to its ordinary supertype never trigger blame.

Theorem 7.7 (Factoring Subtyping). Γ ⊢ A <: B iff Γ ⊢ A <:+ B and Γ ⊢ A <:− B.

Proof. The left-to-right direction is shown by induction on the derivation of Γ ⊢ A <: B. The
other direction is by induction on the sum of sizes of A and B. □

Corollary 7.8 (Blame-Subtyping Theorem). Suppose that f , A, B, p, and Γ are the same as
given in the Blame Theorem. If Γ ⊢ A <: B, then ∅ ▷ f −̸→⋆ Σ ▷ blame p and ∅ ▷ f −̸→⋆ Σ ▷ blame p
for any Σ.

Proof. By Factoring Subtyping (Theorem 7.7) and the Blame Theorem (Theorem 7.6). □

8 THE GRADUAL GUARANTEE
In this section, we discuss the gradual guarantee property for System FG. We first extend term

precision of GTLC to System FG (type precision has been presented at the top of Fig. 5) and then

prove that the term precision preserves typing (corresponding to Theorem 2.2 (1)). We state a

conjecture that term precision also preserves the semantics (corresponding to Theorem 2.2 (2) and

(3)), show auxiliary lemmas, which have been proved, and discuss how the conjecture may be
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proved. Finally, we discuss that the simulation conjecture, a key lemma for the gradual guarantee,

implies (the System FC version of) the Jack-of-All-Trades property [Ahmed et al. 2011, 2013],

which has been proposed as a justification of the choice of ⋆ in the (R_Instantiate) rule of the

polymorphic blame calculus but is still left open.
8

Term precision for System FG is actually nontrivial for two reasons: (1) naively extending the

GTLC term precision by adding congruence rules for type abstraction and type application would

break the expected gradual guarantee; and (2) in System FG, there is reasonable code evolution

other than change in type annotations in lambda abstractions as in GTLC.

We first discuss (1). We may expect that the term precision contains the following terms.

(ΛX ::G. (λx:X . (x : X ))) Int (42 : Int) ⊑ (ΛX ::G. (λx:⋆ . (x : X ))) Int (42 : ⋆)

Here, the term of the form (e : A), which is an abbreviation of (λz:A. z) e, ascribes type A to e. Their
differences are the type annotations on x and type ascription for 42. Both terms are well-typed,

but, while the term on the left is reduced to a value, the term on the right results in blame. This

would be a counterexample of the gradual guarantee because making types less precise introduces

blame. The problem here is code evolution within a type abstraction, more concretely, the type

annotations X and ⋆ on x: X should not be considered more precise than ⋆, if they appear under

ΛX (and even if X is declared to be gradual). To address this problem, we index our precision by
χ
,

which is another type environment (consisting only of X ::S or X ::G), and give precision rules for

lambda abstractions and type abstractions as follows:

e ⊑χ e ′ χ ⊢ A ⊑ A′

λx:A. e ⊑χ λx:A′. e′
v ⊑χ,X ::S v

′

ΛX ::L. v ⊑χ ΛX ::L′. v ′

Type annotations at λ are compared under χ . The rule for type abstractions assigns S to X ,
irrespective of the label declared at Λ. The latter rule can be understood by analogy with the type

consistency rule (C_All_S), where S is assigned to X in comparison between two polymorphic

types.

We will see cases where X is given G soon.

Next, we discuss about (2). In GTLC, term precision captures change only in type annotation in

lambda abstractions but, in System FG in which ∀X .X → X ⊑ ⋆→ ⋆ holds, it is also reasonable to

allow evolution from lambda abstraction, say λx:⋆ . x, to a type abstraction ΛX ::S. λx:X . x. Corre-
spondingly, a more precise expression may have more type abstractions: (ΛX ::S. λx:X . x) Int 42
should be considered more precise than (λx:⋆ . x) 42. This observation leads to rules like:

v ⊑χ,X ::G v ′ QPoly (TypeOf (v ′))
ΛX ::L. v ⊑χ v ′

e ⊑χ e′ TypeOf (e) = ∀X .B QPoly (TypeOf (e′))
e A ⊑χ e′

(where TypeOf (e) is the type of e under a certain implicitly assumed type environment). The

condition QPoly(...) means that the type of the right-hand side has to be quasi-polymorphic to

align with the typing rule. Note also that X in
χ
is given G, so that X is considered more precise

than ⋆ in this context.

The complete definition of term precision of System FG is found in Fig. 8. Both sides of term

precision are accompanied by typing (that is, a type environment and a type) to avoid TypeOf (e),
which has been informally used above and in the literature [Siek et al. 2015]. If Γ and types are

ignored, the rules are as we explained.

The property corresponding to Theorem 2.2 (1) holds. As a note, environment precision Γ ⊑χ Γ′

in Fig. 9 is needed. Label precision L ⊑ L′ is a reflexive relation withS ⊑ G. The second environment

precision rule is essential in this proof.

8
The proof given in Ahmed et al. [2011] has turned out to be flawed [Ahmed et al. 2013].

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 40. Publication date: September 2017.



40:24 Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi

ty (c ) = A
Γ ⊢G c : A ⊑χ Γ′ ⊢G c : A

(Tp_Const_G)

x : A ∈ Γ x : A′ ∈ Γ′

Γ ⊢G x : A ⊑χ Γ′ ⊢G x : A′
(Tp_Var_G)

Γ, x : A ⊢G e : B ⊑χ Γ′, x : A′ ⊢G e′ : B′ χ ⊢ A ⊑ A′ Γ ⊢ A Γ′ ⊢ A′

Γ ⊢G λx :A. e : A→ B ⊑χ Γ′ ⊢G λx :A′. e′ : A′ → B′
(Tp_Abs_G)

Γ ⊢G e1 : A1 ⊑χ Γ′ ⊢G e′
1
: A′

1
Γ ⊢G e2 : A2 ⊑χ Γ′ ⊢G e′

2
: A′

2

A1 ▷ A11 → A12 A′
1
▷ A′

11
→ A′

12
Γ ⊢ A11 ∼ A2 Γ′ ⊢ A′

11
∼ A′

2

Γ ⊢G e1 e2 : A12 ⊑χ Γ′ ⊢G e′
1
e′
2
: A′

12

(Tp_App_G)

Γ, X ::L ⊢G v : A ⊑χ ,X ::G Γ′ ⊢G v ′ : A′ QPoly (A′) X < Ftv(A′)
Γ ⊢G ΛX ::L. v : ∀X .A ⊑χ Γ′ ⊢G v ′ : A′

(Tp_Tyabs1_G)

Γ, X ::L ⊢G v : A ⊑χ ,X ::S Γ′, X ::L′ ⊢G v ′ : A′ L ⊑ L′

Γ ⊢G ΛX ::L. v : ∀X .A ⊑χ Γ′ ⊢G ΛX ::L′. v ′ : ∀X .A′
(Tp_Tyabs2_G)

Γ ⊢G e : B ⊑χ Γ′ ⊢G e′ : B′ Γ ⊢ A
B ▷ ∀X .B1 GType (χ, A) QPoly (B′) X < Ftv(B′)

Γ ⊢G e A : B1[X B A] ⊑χ Γ′ ⊢G e′ : B′
(Tp_Tyapp1_G)

Γ ⊢G e : B1 ⊑χ Γ′ ⊢G e′ : B′
1

B1 ▷ ∀X .B1 B′
1
▷ ∀X .B′

1

Γ ⊢ A Γ′ ⊢ A′ χ ⊢ A ⊑ A′

Γ ⊢G e A : B1[X B A] ⊑χ Γ′ ⊢G e′ A′ : B′
1
[X B A′]

(Tp_Tyapp2_G)

Γ ⊢G e : ∀X .B ⊑χ Γ′ ⊢G e′ : ∀X .B′ ∀X .B ▷ ∀X .B ∀X .B′ ▷ ∀X .B′

Γ ⊢ A Γ′ ⊢ A′ χ ⊢ A ⊑ A′

Γ ⊢G e A : B[X B A] ⊑χ Γ′ ⊢G e′ A′ : B′[X B A′]
(Tp_Tyapp3_G)

Fig. 8. Term precision.

∅ ⊑χ ∅
Γ ⊑χ Γ′ χ ⊢ A ⊑ A′

Γ, x : A ⊑χ Γ′, x : A′
Γ ⊑χ Γ′ L ⊑ L′

Γ, X ::L ⊑χ Γ′, X ::L′
Γ ⊑χ Γ′

Γ, X ::L ⊑χ Γ′

Fig. 9. Environment precision.

Theorem 8.1 (The Gradual Guarantee on Typing). If Γ ⊢G e : A ⊑χ Γ′ ⊢G e′ : A′ and
Γ ⊢G e : A and Γ ⊑χ Γ′, then Γ′ ⊢G e′ : A′ and χ ⊢ A ⊑ A′.

Proof. By induction on the derivation of Γ ⊢G e : A ⊑χ Γ′ ⊢G e′ : A′. □

The proof of the other gradual guarantee properties, which are concerned about the semantics,

is not completed and so only conjectured here:

Conjecture 8.2 (The Gradual Guarantee on Semantics). Suppose ∅ ⊢G e : A and ∅ ⊢G e :
A ⊑∅ ∅ ⊢G e′ : A.
(1) If e ⇓G Σ ▷ w , then e ′ ⇓G Σ′ ▷ w ′ and Σ ⊢C w : A ⊑χ Σ′ ⊢C w ′ : A′ for some χ .
(2) If e ⇑G then e ′ ⇑G .
(3) If e ′ ⇓G Σ′ ▷ w ′, then e ⇓G Σ ▷ w and Σ ⊢C w : A ⊑χ Σ′ ⊢C w ′ : A′ for some χ or

e ⇓G Σ ▷ blame p.
(4) If e ′ ⇑G , then e ⇑G or e ⇓G Σ ▷ blame p.

Our plan for proving this conjecture is to define term precision Σ ⊢C f : A ⊑χ Σ′ ⊢C f ′ : A′ of
System FC similarly (the definition is omitted) and show that cast insertion preserves term precision
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and, finally, that term precision is a weak simulation (modulo blame on the left). Unfortunately, we

have not managed to finished proofs as of writing. In order to reduce the complexity of the proof,

we might explore more sophisticated term precision so as to reflect the codomain of cast insertion

translation.

Conjecture 8.3. If Γ ⊢G e : A ⊑χ Γ′ ⊢G e′ : A′ and Γ ⊑χ Γ′ and Γ ⊢ e ⇝ f : A and
Γ′ ⊢ e′⇝ f ′ : A′, then Γ ⊢C f : A ⊑χ Γ′ ⊢C f ′ : A′.

Conjecture 8.4. Suppose Σ1 ⊢C f1 : A ⊑χ Σ′
1
⊢C f ′

1
: A′ and Σ1 ⊑χ Σ′

1
. If Σ1 ▷ f1 −→ Σ2 ▷ f2,

then Σ′
1
▷ f ′

1
−→⋆ Σ′

2
▷ f ′

2
and Σ2 ⊢C f2 : A ⊑χ Σ′

2
⊢C f ′

2
: A′ for some Σ′

2
and f ′

2
.

Jack-of-All-Trades. Ahmed et al. [2011] formulated the Jack-of-All-Trades property as a justifica-

tion of the rule (R_Instantiate):

w : ∀X .A⇒p B −→ (w ⋆) : A[X B ⋆]⇒p B

Instantiation by ⋆ is a very delicate design choice. Suppose we have a term w : ∀X .X → X ⇒p1

⋆ → ⋆ ⇒p2
Int → Int, it seems that instantiation by Int is more reasonable than ⋆. We do not

know whether this optimistic instantiation by ⋆ preserves the behavior of instantiation by more

precise types (by Int in this case). In order to trust in the (R_Instantiate) rule, we have to verify

that there are no situations where ⋆ results in a blame while instantiation by a more precise type

gets a value. The conjecture the Jack-of-All-Trades aims at such a justification and has been known

as one of the big challenges of polymorphic blame calculi (See Ahmed et al. [2013] for the history).

In fact, we have found that Conjecture 8.4 implies Jack-of-All-Trades in System FC, for which it can

be stated as follows:

Theorem 8.5 (Jack-of-All-Trades in System FC). Suppose Conjecture 8.4 holds and Σ ⊢C
E[(w C) : A[X B C]⇒p A′] : B and Σ ⊢C E[(w ⋆) : A[X B ⋆]⇒p A′] : B and GType (χ ,C) where
χ = {X ::S | X B A ∈ Σ or X is bound in E}.
• If Σ ▷ E[(w C) : A[X B C]⇒p A′] −→⋆ Σ1 ▷ w1, then Σ ▷ E[(w ⋆) : A[X B ⋆]⇒p A′] −→⋆

Σ′
1
▷ w ′

1
for some Σ′

1
and w ′

1
.

• If E[(w C) : A[X B C]⇒p A′] diverges, then E[(w ⋆) : A[X B ⋆]⇒p A′] diverges.

Proof. It is easy to show Σ ⊢C E[(w C) : A[X B C] ⇒p A′] : B ⊑χ Σ ⊢C E[(w ⋆) : A[X B
⋆]⇒p A′] : B. Then the statement follows straightforwardly from Conjecture 8.4. □

9 RELATEDWORK
Adding the dynamic type to statically typed languages with polymorphism. Abadi et al. [1995]

studied adding the dynamic type to polymorphic programming languages. In their work, expressions

of the dynamic type are investigated by typecase operation explicitly, and neither parametricity nor

smooth transition between statically and dynamically typed code were studied. Gronski et al. [2006]

developed the Sage language, which extends hybrid type checking by Flanagan [2006] to advanced

typing features including the dynamic type, first-class types, the Type:Type discipline [Cardelli 1986].

Polymorphic functions can be expressed in Sage, but run-time checks do not enforce parametricity.

Matthews and Ahmed [2008] studied parametricity in the multi-language combining an ML-like,

polymorphically typed language and a Scheme-like, untyped language. They also use dynamic

sealing [Morris 1973] for enforcing parametricity of statically typed values in untyped code and

show parametricity.
9
Sealing in their work sticks to casts—more precisely, type annotations given

to untyped code—while we separate sealing and casts, following Ahmed et al. [2011]. Since the

ML-like and Scheme-like languages are fully typed and fully untyped respectively, types on sides

9
Its proof turned out to be flawed [Neis et al. 2011], though.
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of a cast are either fully static (that is, without the dynamic type) or fully dynamic (that is, the

dynamic type), while types in our work may contain the dynamic type as their subcomponents,

which motivates study of precision on types and the gradual guarantee. Ina and Igarashi [2011]

introduced generics, which is a typing feature to obtain polymorphism in object-oriented languages,

to gradual typing, but they did not study enforcement of parametricity.

Polymorphic Blame Calculus. Ahmed et al. [2009, 2011, 2013] introduced a series of polymorphic

extensions of (a subset of) the blame calculus [Wadler and Findler 2009] and developed cast

semantics which dynamically enforces parametricity. The later version [Ahmed et al. 2011, 2013]

used type bindings to treat instantiated type variables in a special manner but the calculus had a

problem that terms that are usually considered values reduce. Ahmed et al. [2017] addressed this

problem by introducing a refined polymorphic blame calculus λB, from which we also incorporate

some of the improvements. They also studied a formal encoding of λB into a calculus of dynamic

sealing [Morris 1973]. They use dynamic sealing for expressing type bindings and casts between

type variables and the dynamic type. Our interpreter uses dynamic sealing only for the latter

purpose because most type information, including type bindings, is erased. Ahmed et al. [2017]

proved relational parametricity of λB by a step-indexed Kripke logical relation. We expect that their

proof method can be adapted to prove parametricity of System FC because it is largely based on λB.
Although the polymorphic blame calculi are studied as foundations for polymorphic gradual

typing, a source language design has never been studied,
10
not to mention the refined criteria [Siek

et al. 2015]. As we have discussed, their compatibility relation could not be used in the type

consistency of the source language as the fact that it relates ∀X .Int → Int and Int → Int would

break conservativity over typing of System F.

Static and Gradual Type Variables/Parameters. Garcia and Cimini [2015], who studied type in-

ference for gradual typing, proposed the distinction between static and gradual type parameters,

which correspond to our two kinds of type variables. In their work, type variables
11
constrained

only to be consistent with⋆ are instantiated to gradual type parameters, and type variables without

any constraints are instantiated to static type parameters. The distinction of type parameters leads

to the fine-grained notion of principal type schemes. They also mentioned possibility of using

dynamic sealing only for gradual type parameters but did not elaborate the idea further.

General approaches to gradual typing. Cimini and Siek [2016] introduced the Gradualizer, a
general algorithmic methodology to generate gradual type systems from static type systems, and

Cimini and Siek [2017] extended it so that the Gradualizer can generate dynamic semantics of

gradually typed languages automatically. Garcia et al. [2016] introduced a framework called AGT
(standing for Abstracting Gradual Typing); they reformalized type consistency by an interpretation

of gradual types on the basis of the abstract interpretation. Once an interpretation of gradual types

is given, all other definitions and properties of gradual typing are obtained systematically.

In spite of a great deal of generality in these approaches, they are, unfortunately, not very

satisfactory to our demand. The first approach, the Gradualizer, does not instruct us how to define

type consistency, which is one of the main difficulties in designing our calculus. The second, AGT,

seems to need some nontrivial extensions as we have extended type consistency to a ternary

relation in order to manage the classification of type variables. It will be an interesting future

direction to extend these approaches so as to handle parametric polymorphism.

10
The blame calculus itself could be used as a source language, though, as mentioned in Ahmed et al. [2011].

11
In Garcia and Cimini [2015], type variables refer to unknown types to be inferred, while type parameters are for expressing

polymorphism.
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Polymorphic Manifest Contracts. Belo et al. [2011] and, more recently, Sekiyama et al. [2017]

studied polymorphic extensions of a manifest contract calculus [Flanagan 2006; Greenberg et al.

2010], which integrates refinement types and dynamic contract checking. They enforce parametric-

ity statically; in this sense, all type variables are static there. In fact, our cast rule (R_Content) is

derived from their cast semantics.

10 CONCLUSION
We have introduced System FG as a foundation of polymorphic gradual typing. Type abstractions

and the key relations of gradual typing, such as type consistency, subtyping, precision, and so on, are

extended, along with the introduction of static and gradual type variables. We have also proposed

System FC as an intermediate cast calculus on the basis of the existing polymorphic blame calculi.

We have informally demonstrated the “pay-as-you-go” result by showing prototype implementation

of a type-erasing interpreter. It is interesting future work to study erasure translation more formally

along the line of Siek and Wadler [2016]. The Blame Theorem is also shown with sophisticated

subtyping relations. Almost all the desired criteria of gradual typing have been proved in our

calculus except for the gradual guarantee about semantics. As future work, we are going to prove

the gradual guarantee on semantics; the Jack-of-All-Trades problem will also be solved in the

process. Finally, parametricity of System FC should be proved.
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