

Atsushi
 Igarashi
Kyoto Univ.

A Featherweight
Approach
to FOOL

What I Have Been Working On

Type theory and its applications:

Static program analysis based on type inference

Behavioral types for concurrent programs

Multi-stage programming

Type systems based on modal logic

Object-oriented programming

What is FOOL?

“Foundations of Object-Oriented Languages”

Semantics

Type Theory

Verification techniques

For the development of

Correct systems

Correct compilers

What I Mean By
a “Featherweight Approach”

Usual scientific approach to a complex problem:

Discarding irrelevant details

To concentrate on central issues

With a stronger emphasis on simplicity

Even “lighter” than lightweight

My Featherweight Approach to
FOOL

1. Build a tiny
 model of OOPLs

My Featherweight Approach to
FOOL

2. Extend the model with
 cool mechanisms

3. Study their theories to
 show they are reasonable and ...

...
...

My Featherweight Approach to
FOOL

??... hope someone
implements them :-)

lightweight2 adj 1 weighing less than average:
special lightweight fabric

Longman Dictionary of Contemporary English says...

lightweight2 adj 1 weighing less than average:
special lightweight fabric 2 showing a lack of
serious thought: She's written nothing but light-
weight novels.

Longman Dictionary of Contemporary English says...

Uh-oh...

Aim of This Talk

Convince that featherweight approaches

have been useful for FOOL

esp. language extensions
(are not lightweight in the second sense)

Share some lessons I learned over the years

Table of Contents

A brief review of FOOL study in mid 80s & 90s

Featherweight Java (FJ)

A tiny model of (Java-like) class-based
OOPLs

Applications of FJ

Generics

Inner Classes

Variance

A Few Final Words

A Brief History of
FOOL Study

in '80s & '90s

Caveats

(Un)intentionally oversimplified

Focusing only on Smalltalk-style languages

Class-based

Single-dispatch

Early FOOL Study

Main questions:

What are objects?

What are inheritance, subtyping, and their
relationship?

What is a static type system for objects?

Approach: “Landin reductionism”

Slogan: “Express everything in the λ-calculus!”
Object as a recursive record of functions

Message send as field projection

Class as a function from “self” to a method suite

Parameterization to express late binding

Inheritance as record extension

{x=3} ++ {y=2} {x=3; y=2}

Early Type Theory for Objects

Object type (recursive) record types≒

'84:'84: Record and function subtyping [Cardelli]

 '85:'85: Bounded quantification [Cardelli&Wegner]

 '89:'89: F-bounded quantification [Canning et al.]

 '91:'91: Subtyping recursive types [Amadio&Cardelli]

Lots of cool ideas,
but somewhat overwhelming...

FOOL Study in '90s

 Simpler approaches to typed objects

'92:'92: Existential encoding [Pierce&Turner92]

 '93'93〜〜 Calculi of primitive objects
 '96:'96: [Abadi&Cardelli][Fisher,Honsel&Mitchell]

A slight departure from Landin
reductionism

Base calculi are still very primitive

Between Theory and Practice

Theory Practice
Subtyping Structural Nominal ()

Classes First-class () Second-class

 Result from (intentional?) confusion between

classes and types

inheritance and subtyping

 A consequence of Ladin reductionism

Classes have to be given types

aka. declaration-based

Summarizing FOOL Study
until Mid '90s

Encoding objects and classes into very
primitive calculi

Successful especially for untyped objects

Lots of interesting and substantial type theory

Still gaps from mainstream languages

Table of Contents

A brief review of FOOL study in mid 80s & 90s

Featherweight Java (FJ)

Applications of FJ

A Few Final Words

Boom of Java!

Triggered two lines of research:

“Is Java really safe?”
A FOOL-ish question, obviously!

“It's a chance to add my cool idea to this
new popular language!”

Generics, Multi-methods, Virtual Types,
Mixins...

Research on Type Safety of Java

“Java is not Type Safe” [Saraswat97]

“Java is Type Safe – Probably” [Drossopoulou&Eisenbach97]

“Javalight is Type Safe – Definitely” [Nipkow&von Oheimb98]

and many other interesting papers...

Research on Type Safety of Java

“Java is not type safe” [Saraswat97]

Pointing out a class loader bug

“Java is Type Safe – Probably” [Drossopoulou&Eisenbach97]

Formal model of a significant subset of Java

Type safety proofs

“Javalight is Type Safe – Definitely” [Nipkow&von Oheimb98]

Model and proofs mechanized on Isabelle/HOL

Language Extensions Reseach

Few papers really discuss foundational issues

Some notable exceptions:

“Classes and Mixins” [Flatt, Krishnamurthi & Felleisen'98]

ClassicJava: A subset of imprerative Java
MixedJava: ClassicJava with mixins

“Ownership Types for Flexible Alias Protection”
[Clarke, Potter & Noble'98]

“Featherweight Java:
A Minimal Core Calculus for Java and GJ”

by I., B.C. Pierce, & P. Wadler [OOPSLA'99, TOPLAS'01]

A sublanguage of Java with a formal type system
and (operational) semantics

Minimal set of features

(Second-class) classes with (single) inheritance

Recursion through this

Dynamic typecast

No assignments

The choice of features depended upon the main
motivation, namely...

Main Motivation

Study of foundational issues of generics for
Java (in particular, GJ [Bracha et al. 98])

Type safety

Correctness of “erasure” compilation to
JVML

Not to prove type safety of as large a subset of
Java as possible

Main Technical Results

Def. of Featherweight Java (FJ)

Type safety theorem of FJ

Def. of Featherweight GJ (FGJ)

An extension of FJ with generics

“Direct” operational semantics

Type safety of Featherweight GJ

Def. of compilation from FGJ to FJ

Theorem of compilation correctness

FJ: Some Points of Interest

Classes are second-class citizens

Nominal subtyping

Reminiscent of “Amber rule”

Dynamic casts

Needed to model erasure compilation

Minimal set of language features

Lack of assignments

Inherited from
earlier work

P (programs) ::= (L1
,...,Ln

, e) L (classes) ::= ...

e (expr.) ::= x | e.m(e1,...,en) | new C(e1,...,en) | ...

P (programs) ::= (L1
,...,Ln

, e) L (classes) ::= ...

e (expr.) ::= x | e.m(e1,...,en) | new C(e1,...,en) | ...

Classes are Second-Class
Classes are not part of expressions to “run”

Reduction: e e' (under a fixed set of classes)

c.f. Term rewriting systems
Classes do not really compose

No need for fancy operations on records

No type expressions for classes

Expression typing: x1:C1,...,xn:Cn┣ e : C

Class typing: L ok

Nominal Subtyping

Subtyping relation C <:D is extracted from
extends clauses of the given classes

Subtyping is “confirmed” to be safe only after
typechecking

esp. after checking correct method overriding

c.f. Subtyping for recursive types (Amber rule)

Declaration-based Subtyping

Subtyping relation C <:D is extracted from
extends clauses of the given classes

Subtyping is “confirmed” to be safe only after
typechecking

esp. after checking correct method overriding

c.f. Subtyping for recursive types (Amber rule)

 X <: Y ┣ S(X) <: T(Y)

┣ X.S(X) <: Y.T(Y)

Obj.{clone: ()→Obj, …}
 <:
Num.{clone: ()→Num, ...}

Dynamic Casts

Hard to express in typed lambda-calculus

Casts bypass typechecking

Casts do run-time checking, which compares
class names according to extends

Required (only) to model erasure compilation

Obvious candidates of further simplification

Minimal Set of Features

This is the whole syntax of FJ!

P (programs) ::= (L1,...,Ln, e)
L (classes) ::=
 class C extends C { C f;... C f; K M … M }
K (constructors) ::= ...
M (methods) ::= C m(C x,...,C x){ return e; }
e (expressions) ::=
 x | this | e.f | e.m(~e) | new C(~e) | (C)e

Quantitative Evaluation

Quantitative Evaluation :-)

JLS 3rd ed.: 650 pages,

2.2 pounds

FJ: 1 page, in 9pt, two columns,

0.0 pounds

Re: Lack of Assignments

We felt formalizing assignments wouldn't give us
deeper insights (matching the price to pay)

Some reasonable responses we got:

“State change is the essence of OO!”
“Do you know ML type inference?”

In fact, GJ type inference turned out to be
flawed later ;-([Jefferey]

One (and, perhaps, only) justification (excuse?):

Interesting results even without them

Pleasant Surprise!

FJ has become a popular tool to study (type
systems of) language extensions

Especially, class-based language abstractions

Some reasons for wide adoption:

The name was catchy, perhaps (thanks, Phil!)

Initially called “the J-calculus,” IIRC
It doesn't have your favorite mechanism

You cannot help adding something!

Variant Path Types
[OOPSLA'07]

Variant Path Types
[OOPSLA'07]

Applications of FJ

GenericsGenerics

Inner
Classes
Inner

Classes

Use-site
Variance
Use-site
Variance

Lightweight Family
Polymorphism

[APLAS'05; JFP'08]

Lightweight Family
Polymorphism

[APLAS'05; JFP'08]

Existing Advanced
Class Mechanisms

New Advanced
Class Mechanisms

Union types
[SAC'06; JOT'07]

Union types
[SAC'06; JOT'07]

Self Type
Constructors

[OOPSLA'09]

Self Type
Constructors

[OOPSLA'09]

Gradua Typing
[OOPSLA'11]

Gradua Typing
[OOPSLA'11]

Variant Path Types
[OOPSLA'07]

Variant Path Types
[OOPSLA'07]

Applications of FJ

GenericsGenerics

Inner
Classes
Inner

Classes

Use-site
Variance
Use-site
Variance

Lightweight Family
Polymorphism

[APLAS'05; JFP'08]

Lightweight Family
Polymorphism

[APLAS'05; JFP'08]

Existing Advanced
Class Mechanisms

New Advanced
Class Mechanisms

Union types
[SAC'06; JOT'07]

Union types
[SAC'06; JOT'07]

Self Type
Constructors

[OOPSLA'09]

Self Type
Constructors

[OOPSLA'09]

Gradua Typing
[OOPSLA'11]

Gradua Typing
[OOPSLA'11]

Formal Semantics for Inner Classes
I. & B.C. Pierce. “On Inner Classes” [ECOOP'00]

Applying FJ to inner classes of Java 1.2 to answer

How do inheritance and nesting interact when

An inner class can access members of an
enclosing class

A top-level subclass can extend an inner class
nested in an unrelated class

 ?

Nightmarish Aspect of This Work

Inner Classes Specification didn't help figuring
out corner cases

It was “software physics”:

Observe the behavior of software (in this case,
javac)

without reading the source code
Formalize it!

Interesting

Indeed, this work led us to
(re)discovering (known) compiler bugs

Variant Path Types
[OOPSLA'07]

Variant Path Types
[OOPSLA'07]

Applications of FJ

GenericsGenerics

Inner
Classes
Inner

Classes

Use-site
Variance
Use-site
Variance

Lightweight Family
Polymorphism

[APLAS'05; JFP'08]

Lightweight Family
Polymorphism

[APLAS'05; JFP'08]

Existing Advanced
Class Mechanisms

New Advanced
Class Mechanisms

Union types
[SAC'06; JOT'07]

Union types
[SAC'06; JOT'07]

Self Type
Constructors

[OOPSLA'09]

Self Type
Constructors

[OOPSLA'09]

Gradua Typing
[OOPSLA'11]

Gradua Typing
[OOPSLA'11]

Type System for Use-Site Variance
I. & M. Viroli. “On Variance-Based Subtyping for Parametric Types”

[ECOOP'02]

Slogan: “More Subtyping for Generics”
Generalization of structural virtual types

Formalization on top of Featherweight GJ

First type safety proof of a variance system

Existential types as a background theory

Basis of Java Wildcards

Two Subtyping Schemes for
Generics

Inheritance-based subtyping:

Q: When C<T> <: D<T> for given type T?

A: class C<X> extends D<X> {...}

Variance-based subtyping:

Q: When C<S> <: C<T>?

Subtyping between two types from the
same generic class

List<Integer> <: List<Number>?

A few different Answers:

Unsafe subtyping (Eiffel around '90 [Cook90]):
“Yes, as long as your program doesn't add a
Number to List<Number>.”

“Otherwise, your program may crash :-p ”
Java array types inherit this

Definition-site variance (POOL-I [America90])

Use-site variance

Definition-Site Variance
“Yes, provided that List doesn't have public
methods to put elements”

Type parameter declaration with a variance property

Trade-off between methods and subtyping

class List<+X> {
 // List<Int>
 // <: List<Num>
 // no meth. to put
}

class List<+X> {
 // List<Int>
 // <: List<Num>
 // no meth. to put
}

class List<-X> {
 // List<Num>
 // <: List<Int>
 // no meth. to get
}

class List<-X> {
 // List<Num>
 // <: List<Int>
 // no meth. to get
}

class RWList<X>
 X head();
 void add(X x);
 int length();

When you need RWLists ...

RWList<Int>

RWList<Num>

class RWList<X>
 X head();
 void add(X x);
 int length();

When you need RWLists ...

RWList<Int>

ROList<Int>

intf ROList<+X>
 X head();
 int length();

RWList<Num>

ROList<Num>

class RWList<X>
 X head();
 void add(X x);
 int length();

intf WOList<-X>
 void add(X x);
 int length();

When you need RWLists ...

RWList<Int>

ROList<Int>

WOList<Num>

WOList<Int>

intf ROList<+X>
 X head();
 int length();

intf LenList
 int length();

LenList

RWList<Num>

ROList<Num>

RWList<Int>

ROList<Int>

WOList<Num>

WOList<Int>

LenList

RWList<Num>

ROList<Num>

class RWList<X>
 X head();
 void add(X x);
 int length();

intf WOList<-X>
 void add(X x);
 int length();

When you need RWLists ...

intf ROList<+X>
 X head();
 int length();

intf LenList
 int length();

Careful advanced planning would be needed

Especially under nominal subtyping

Because supertypes cannot be added later

(POOL-I is based on structural subtyping)

Our Answer:
Use-Site Variance

class List<X>
 X head();
 void add(X x);
 int length();

List<Int>

List<+Int>

List<-Num>

List<-Int>

List<*>

List<Num>

List<+Num>

Different interfaces from a single generic class by
annotating actual type arguments

add() missing in
List<+T> and List<*>

head() missing
in List<-T>
and List<*>

Use-site Variance as Existential Types

A variable of List<+Num> can store

List<Int>, List<Float>, and so on

namely, List of some kind of numbers

In type theory, such a type is expressed as an
existential type ∃X<:Num.List<X>

Similarly, List<-Num> = ∃X:>Num.List<X>

Typing rules for use-site variance follow
from this intuitive correspondence!

It's a Natural Idea (to me :-)!

Virtual types as an alternative to generics [Thorup 97]

Safe virtual types [Torgersen 98]

Structural virtual types [Thorup&Torgersen 99]

Essentially, use-site variance only with
List<T> and List<+T>

Modeling virtual types as existentials [I.&Pierce 99]

From Use-Site Variance to Wildcards
“Adding Wildcards to the Java Programming Language”

[Torgersen at al. 04]

Cosmetic changes ...

Emphasizing the existential nature

which we tried to hide under the hood :-)
... and some other improvements to make them
useful

Adaption of library to take adv. of wildcards

List<*>
List<+Number>
List<-Number>

List<?>
List<? extends Number>
List<? super Number>

Some Criticisms on Wildcards

“Use-site variance places a great burden on the
user of generic types” [Emir et al. 06]

In fact, OCaml, Scala and C# later adopt
definition-site variance

Decidability of subtyping of use-site variance is
still open! [Kennedy&Pierce07]

And even...

““We simply cannot affordWe simply cannot afford
another wildcaranother wildcardsds””

– Joshua Bloch– Joshua Bloch

““I feel sorry for students when I have I feel sorry for students when I have
to teach what I cannot understandto teach what I cannot understand””

– Anonymous (Japanese Prof.)– Anonymous (Japanese Prof.)

What's Unusual about
Use-Site Variance

Subtyping with more of structural flavor

Separation of static and run-time types

There is no instance of List<+Num>

“Post hoc” supertypes

Types Type comparison

Java 1.x Atomic Atomic

GJ Structural Mostly atomic

Wildcards Structural Structural

Was It Really a Bad Idea?

I'm not qualified to judge :-)

Maybe only history will tell us

Still, post-hoc supertypes are often very useful

C<S> and C<T> always have a common
supertype C<? extends U> (for S, T <: U)

Otherwise, it might even be Object

Further research is needed, anyway

“Taming the Wildcards” [Altidor, Huang, Smaragdakis11]

Table of Contents

A brief review of FOOL study in mid 80s & 90s

Featherweight Java (FJ)

Applications of FJ

Formalizing Advanced Class Mechanisms

Designing Advanced Class Mechanisms

Final Words

Final Words

You can throw away most
 as long as something interesting is left

You can throw away most
 as long as something interesting is left

should

to distill

Serious thought
needed, though!

Type systems should help peopleType systems should help people

Type systems should help people Type systems should help people
write programs in write programs in good stylesgood styles

Igarashi's Conjecture
If a new, cool programming
style emerges, there will be a
type system to enforce it.

Working for building FOOL might not
look very attractive at first...

… but, the Fun of Your OO Life is
Dependent on FOOL!

… but, the Fun of Your OO Life is
Dependent on FOOL!

Really!

To my collaborators:

João Filipe Belo Shigeru Chiba Michael Greenberg
Robert Hirschfeld Lintaro Ina Masashi Iwaki

Futoshi Iwama Yukiyoshi Kameyama

Naoki Kobayashi Kensuke Kojima Hidehiko Masuhara

Hideshi Nagira Benjamin C. Pierce
Chieri Saito Takafumi Sakurai Masahiko Sato

Naokata Shikuma Manabu Toyama

Takeshi Tsukada Mirko Viroli Philip Wadler
Yosihiro Yuse Salikh Zakirov

… … my family and my family and ALLALL users of FJ! users of FJ!

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52
	ページ 53
	ページ 54
	ページ 55
	ページ 56
	ページ 57
	ページ 58
	ページ 59
	ページ 60
	ページ 61
	ページ 62
	ページ 63
	ページ 64
	ページ 65
	ページ 66
	ページ 67
	ページ 68
	ページ 69
	ページ 70
	ページ 71

