
A Hoare Logic for SIMT Programs

Kensuke Kojima1,2 and Atsushi Igarashi1,2

1 Kyoto University, Japan
2 JST CREST, Japan

Abstract. We study a Hoare Logic to reason about GPU kernels, which
are parallel programs executed on GPUs. We consider the SIMT (Sin-
gle Instruction Multiple Threads) execution model, in which multiple
threads execute in lockstep (that is, execute the same instruction at a
time). When control branches both branches are executed sequentially
but during the execution of each branch only those threads that take it
are enabled; after the control converges, all threads are enabled and exe-
cute in lockstep again. In this paper we adapt Hoare Logic to the SIMT
setting, by adding an extra component representing the set of enabled
threads to the usual Hoare triples. It turns out that soundness and rel-
ative completeness do not hold for all programs; a difficulty arises from
the fact that one thread can invalidate the loop termination condition
of another thread through shared memory. We overcome this difficulty
by identifying an appropriate class of programs for which soundness and
relative completeness hold.

1 Introduction

General purpose computing on graphics processing units (GPGPU) has recently
become widely available even to end-users, enabling us to utilize computational
power of GPUs for solving problems other than graphics processing. Application
areas include physics simulation, signal and image processing, etc. [1]. However,
writing and optimizing GPU kernels, which are parallel programs executed on
GPUs, is still a hard task and error-prone. For example, in programming in
CUDA, a parallel computing platform and programming model on GPU [2],
we have to care about synchronization and data races so that many threads
cooperate correctly. Moreover, to obtain the best performance, we usually have
to take into account more low-level mechanisms, to optimize memory access
pattern, increase occupancy, etc.

Much effort has recently been made to develop automated verification tools
for GPU kernels [3–11]. These tools try to automate detections of synchroniza-
tion errors, data races, and inefficiency, as well as checking functional correctness
and generating test cases. They, although automation is a great advantage, tend
to suffer false positives/negatives because of approximation, as well as combina-
torial explosion.

Another approach to formal verification is deductive verification, in which
the correctness of a program is verified by formally proving (using a fixed set

of deduction rules) that it is indeed correct. The relative completeness of the
inference rules guarantee that all correct programs can be proved to be correct,
although much effort is often required to complete the correctness proof. Deduc-
tive approach has been implemented as tools that can be applied to real-world
programs (Why33, for example). However, in the context of GPU programming,
this approach is not extensively studied yet (at the time of writing, we are only
aware of the ongoing work using separation logic by Huisman and Mihelčić [12]).

In this work, we study a deductive verification method for GPU programs. We
focus on the SIMT execution model (described in Section 1.1), and demonstrate
that Hoare Logic, one of the traditional approaches to deductive verification, can
be applied to GPU kernels with few modifications. Our contributions are (1) an
extension of Hoare Logic to GPU kernels, and (2) proofs of its soundness and
relative completeness for a large class of GPU kernels.

Generally speaking, reasoning about parallel programs requires much more
sophisticated techniques than the sequential ones, because threads can interfere
with each other through shared resources [13]. Although existing techniques
could be applied to GPU kernels, we take advantage of the so-called lockstep
semantics of SIMT to obtain simpler inference rules. In fact, our inference rules
are similar to the usual Hoare Logic, and the soundness and relative completeness
hold under a very mild restriction.

In the rest of this section we describe how SIMT works, and how we can
extend Hoare Logic to the SIMT setting.

1.1 Overview of the SIMT Execution Model

SIMT (Single Instruction Multiple Threads) is a parallel execution model of
GPUs employed by CUDA. A CUDA program is written in CUDA C, an ex-
tension of C language, and run on GPUs as specified in the SIMT execution
model. In the SIMT execution model, multiple (typically thousands of) threads
are launched and execute in lockstep, i.e., execute the same instruction at a time.

When a conditional branch is encountered during the lockstep execution,
and the decisions on which branch to be taken vary among threads, then both
branches are executed sequentially. During the execution of each branch, only
those threads that take it are enabled. After all branches are completed, all
threads are enabled and executed in lockstep again.

Therefore, in SIMT, some statements actually may be executed by only some
of the threads, depending on the branching. We say that a thread is active if it is
currently enabled, and inactive otherwise. A mask is a piece of data (typically a
bit mask) that describe which thread is active. The state of a mask may change
during execution, and the result of executing a statement may depend on a mask.

As an example, let us consider the following program.

k = tid; while (k < n) { c[k] = a[k] + b[k]; k = k + ntid; }

3 http://why3.lri.fr/

Here we assume that k is a thread local variable, a, b, and c are shared arrays
of length n, and ntid is a constant whose value is the number of threads. The
constant tid represents the thread identifier, ranging from 0 to ntid - 1. Let us
suppose that this program is launched with 4 threads, and n equals 6. In the first
iteration, the condition k < n holds in all threads, so the mask is {0, 1, 2, 3}, and
all threads execute the loop body. In the second iteration, however, the values
of k in threads 0, 1, 2, 3 are 4, 5, 6, 7 respectively, so the condition k < n does
not hold in threads 2 and 3. Therefore these threads are deactivated, and the
loop body is executed with mask {0, 1}. After that all threads exit the loop, and
program terminates. The final value of c is the sum of a and b.

Although the way SIMT executes threads looks similar to SIMD (Single
Instruction Multiple Data) in that a single instruction operates on multiple data,
they are different in that parallel operations on vectors are explicitly specified in
SIMD while it is not the case for SIMT. Indeed, when programming in CUDA
C we only specify a behavior of a single scalar thread, like a usual sequential
program written C or C++.

1.2 Extending Hoare Logic

Next we consider a Hoare Logic for the SIMT execution model. The programs
we are going to reason about is a single GPU kernel, like the example above.

Actually, we can employ many of the inference rules from the ordinary Hoare
Logic without significant changes, although Hoare triples have to be changed.
As explained above, in SIMT the effect of the execution of a statement depends
on the mask. Since the usual Hoare triple {ϕ}P {ψ} does not contain the infor-
mation about a mask, it cannot fully specify a program. Therefore we augment
the usual Hoare triple with another piece of information, and consider a Hoare
quadruple of the form {ϕ}m | P {ψ}, where m denotes a mask. Intuitively this
quadruple means that “if an initial state satisfies ϕ, and we execute a program
P with a mask denoted by m, then after termination the state satisfies ψ.”

However, a difficulty arises from while loops. We found that, in some corner
cases, it is difficult to reason about while loops correctly. Although it would be
possible to modify the inference rule so that we can handle all programs soundly,
we decided to keep simplicity by making some assumption on the program we
deal with. As a result we consider a certain class of programs, which we call
regular programs, and obtain the soundness and relative completeness for regular
programs. However, this is not a serious restriction because any program can be
transformed into a regular one without changing the behavior (with respect to
our operational semantics).

Interestingly, the resulting Hoare Logic is quite similar to the ordinary one,
despite the parallel nature of GPU programs. It seems that this simplicity is a
result of the fact that in SIMT dependency between threads is relatively weak.
Threads basically work independently, and only at synchronization points they
have to wait for each other. As a result the execution of a SIMT program is very
similar to a sequential program.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we formalize the SIMT
execution model by extending the usual while-language. Section 3 describes our
Hoare Logic. Section 4 introduces the notion of regular programs, and prove
soundness and relative completeness of our Hoare Logic for regular programs.
In Section 5 we discuss some variants of our system. Section 6 mentions related
work and Section 7 concludes the paper.

2 SIMT Execution Model

In this section we formalize SIMT execution model. Our formalization is based
on Habermaier and Knapp [14], but there are some differences. First, we omit
break, function calls, and return. Second, we include arrays, which is almost
always used in CUDA programs, and barrier synchronization.

In the semantics formalized here, the execution is in complete lockstep, but
the actual GPU program is not necessarily executed in this manner. Possible
approaches to filling this gap will be discussed in Section 7.

2.1 Formal Syntax

We assume countable, disjoint sets of variables LV n and SV n for each nonnega-
tive integer n. Elements of LV n and SV n are thread local and shared variables of
arrays of dimension n respectively (when n = 0 they are considered as scalars).
We also fix the set of n-ary operations Opn for each n. We assume that the
standard arithmetic and logical operations such as +, <, && and ! are included
in the language.

Well-formed expressions e and programs P are defined as follows:

e ::= tid | ntid | xn[ē] | fn(ē)
P ::= xn[ē] := e | skip | sync | P ; P ′ | if e thenP elseP ′ | while e doP

where xn and fn range over LV n ∪ SV n and Opn, respectively, and ē stands for
the sequence e1, . . . , en.

Expressions include special constants tid, thread identifier, and ntid, the
number of threads4. If a variable x is of dimension 0, we write x instead of x[].

xn[e1, ... , en] := e is an assignment, which is performed by all active threads
in parallel. skip is a statement that has no effect. sync is a barrier, typically
used to avoid data races in CUDA. Although in our formalization a barrier does
not play a significant role, we include it so that we can reason about dead-
locks (sometimes called barrier divergence) caused by a barrier. The remaining
constructs are the same as the usual while-language. Note that we do not have
boolean expressions, so we use integer expressions for conditions of if and while

statements, and regard any nonzero value as true.
4 The name of this constant is taken from a special register in PTX [15]. In our
formalization this is the same as the number of threads, although this is not always
the case for PTX.

2.2 Operational Semantics

Next we define a formal semantics of SIMT. For simplicity, arrays are represented
simply by total maps from tuples of integers to integers, so we do not care about
array bounds, and negative indices are also allowed. Our operational semantics
basically follows the standard evaluation rules, but one of the main differences
is that it is nondeterministic because multiple threads may try to write into the
same shared variables simultaneously.

Below we fix a positive integer N which is the number of threads, and there-
fore is an interpretation of the constant ntid. We also assume for each n-ary
operation fn, a map from Zn to Z (also denoted by fn) is assigned. We denote
the set of threads {0, 1, . . . , N − 1} by T.

Definition 1. A state σ consists of a map σ(x) : T → Zn → Z for each x ∈
LV n, and σ(y) : Zn → Z for each y ∈ SV n.

Given a state σ, we naturally interpret σ(x) as the value of x.
The denotation of an expression e under a state σ is a map σ JeK : T → Z

defined by:

σ JtidK (i) = i σ JntidK (i) = N

σ Jx[e1, ... , en]K (i) = {
σ(x)(i)(σ Je1K (i), . . . , σ JenK (i)) if x is local
σ(x)(σ Je1K (i), . . . , σ JenK (i)) if x is shared

σ Jf (e1, ... , en)K (i) = f(σ Je1K (i), . . . , σ JenK (i))
Notation 1. For a state σ, we define σ[x 7→ a] to be the state σ′ such that:
σ′(x) = a and σ′(y) = σ(y) for each y 6= x.

When an expression is used as a predicate (e.g. the condition part of an if-
statement), we regard σ JeK as a set of threads satisfying the condition e, that is,
the set {i ∈ T | σ JeK (i) 6= 0}. We also use the notation σ JeK to denote this set,
when no confusion arises.

The execution of a program is defined as a relation of the form

P, µ, σ ⇓ σ′,

where P is a program, µ ⊆ T, and σ, σ′ are states. This relation means that “if
P is executed with mask µ and initial state σ, then the resulting state is σ′.”

Evaluation rules are listed in Figure 1. The rule E-Inactive means that, if
there is no active thread, the execution has no effect. A barrier synchronization
succeeds only if all threads are active (or no thread is active, in which case
E-Inactive is applicable), hence the set of active thread should be T in the rule
E-Sync. A synchronization does not change the state.

Nondeterministic behavior can arise from E-SAssign; there can be more
than one choice of σ′, in case of a data race. More precisely, by a data race
here we mean a situation that there exist two (or more) distinct active threads
i and j where the index ē takes the same value on i and j, while e does not

P, ∅, σ ⇓ σ (E-Inactive) skip, µ, σ ⇓ σ (E-Skip) sync,T, σ ⇓ σ (E-Sync)

x is local σ′(y) = σ(y) for each variable y 6= x
σ′(x)(i) = σ(x)(i) for each i /∈ µ

σ′(x)(i) = σ(x)(i) [σ JēK (i) 7→ σ JeK (i)] for each i ∈ µ

x[ē] := e, µ, σ ⇓ σ′ (E-LAssign)

x is shared σ′(y) = σ(y) for each variable y 6= x
if ∀i ∈ µ.σ JēK (i) 6= n̄, then σ′(x)(n̄) = σ(x)(n̄)

otherwise ∃i ∈ µ.σ JēK (i) = n̄ and σ′(x)(n̄) = σ JeK (i)
x[ē] := e, µ, σ ⇓ σ′ (E-SAssign)

P, µ, σ ⇓ σ′ Q,µ, σ′ ⇓ σ′′

P ; Q , µ, σ ⇓ σ′′ (E-Seq)

P, µ ∩ σ JeK , σ ⇓ σ′ Q,µ \ σ JeK , σ′ ⇓ σ′′

if e thenP elseQ , µ, σ ⇓ σ′′ (E-If)

P, µ ∩ σ JeK , σ ⇓ σ′ while e doP , µ ∩ σ JeK , σ′ ⇓ σ′′

while e doP , µ, σ ⇓ σ′′ (E-While)

Fig. 1. Operational semantics of SIMT programs.

(formally, σ JēK (i) = σ JēK (j) and σ JeK (i) 6= σ JeK (j)). In such a case, following
Habermaier and Knapp [14], we allow to choose either σ JeK (i) or σ JeK (j), and
set its value to x[ē]. As discussed in Section 5.1, it is possible to define a
semantics which raises an error in such cases.

3 Reasoning about SIMT Programs

In this section we describe how to extend Hoare Logic to the SIMT setting
formalized in the previous section.

3.1 Assertion Language

Our assertion language is based on first-order logic with function variables. We
assume as many n-ary variables as we want for each nonnegative integer n.
Formally, the syntax is as follows:

terms t ::= c | fn(t1, ..., tn) | xn(t1, ..., tn)
formulas ϕ ::= pn(t1, ..., tn) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ¬ϕ | ∀x.ϕ | ∃x.ϕ

Here c ranges over constant symbols, and fn, xn, and pn range over n-ary func-
tion symbols, variables, and predicate symbols, respectively.

We assume our assertion language contain N (the number of threads) as
a constant symbol, and each operation f ∈ Opn as an n-ary function symbol.

Extra constants and function symbols are allowed. We also assume that standard
predicates on integers such as ≤ are included.

We associate a unique variable to each program variable. A variable that
is not associated to any program variable is called a specification variable. We
denote the variable corresponding to a program variable x again by x. Each
x ∈ SV n is n-ary, and each x ∈ LV n is (n + 1)-ary. This is because a local
variable’s value varies among threads, so has to receive one extra argument as
thread identifier to determine its value. The first argument of a local variable
represents a thread identifier.

An assertion is just a formula of the first-order logic. We briefly describe
how to interpret it. First, we fix a model M of our first-order signature, with
domain Z, such that the interpretation of ntid is N that we fixed above, and
the interpretation of each fn ∈ Opn also equals the function used to define the
denotation of an expression. An assignment, ranged over by ρ, is a map which
assigns to (both program and specification) variables of arity n a map Zn → Z.
The satisfaction relation ρ |= ϕ for each assignment ρ and a formula ϕ is defined
as usual.

By abuse of notation we write P, µ, ρ ⇓ ρ′ if and only if there exists σ′ such
that P, µ, σ ⇓ σ′, where σ is the restriction of ρ and ρ′ equals σ′ on program
variables and ρ on specification variables. We also use the notation ρ JeK for the
set {i ∈ T | ρ JeK (i) 6= 0}.

Definition 2. A Hoare quadruple is of the form {ϕ}m | P {ψ}, where P is a
program,m is a term built from specification variables, and ϕ and ψ are formulas.
Note that no variable occurring in m occurs in P .

Definition 3. A Hoare quadruple {ϕ}m | P {ψ} is valid if, for every assign-
ment ρ satisfying ϕ and every ρ′ such that P, ρ JmK , ρ ⇓ ρ′, it holds that ρ′ |= ψ.

Precisely speaking we have to distinguish states σ and assignments ρ but for
brevity we will not distinguish them, if no confusion arises.

Definition 4. For an expression e and a term t, we define a term e@t as follows:

tid@t = t ntid@t = N

(x[e1, ... , en])@t =

{
x(t, e1@t, . . . , en@t) if x is local
x(e1@t, . . . , en@t) if x is shared

(f (e1, ... , en))@t = f(e1@t, . . . , en@t)

The intended meaning of e@t is the value of e at thread t.

Notation 2. We occasionally use T in place of m when m is an expression
always nonzero in all threads (1, for example).

Definition 5. We use the following abbreviations.

– all(e) := (∀i.0 ≤ i < N → e@i 6= 0)
– none(e) := (∀i.0 ≤ i < N → e@i = 0)

{ϕ}m | skip {ϕ} (H-Skip)

{all(m) ∨ none(m) → ϕ}m | sync {ϕ} (H-Sync)

|= ϕ′ → ϕ {ϕ}m | P {ψ} |= ψ → ψ′

{ϕ′}m | P {ψ′}
(H-Conseq)

{ϕ}m | P {ψ} {ψ}m | Q {χ}
{ϕ}m | P ; Q {χ}

(H-Seq)

{∀x′.assign(x′,m, x, ē, e) → ϕ[x′/x]}m | x[ē] := e {ϕ} (H-Assign)

{ϕ ∧ e = z}m && z | P {ψ} {ψ}m && ! z | Q {χ}
{ϕ}m | if e thenP elseQ {χ}

(H-If)

{ϕ ∧ e = z}m && z | P {ϕ}
{ϕ}m | while e doP {ϕ ∧ none(m && e)}

(H-While)

Fig. 2. Inference rules.

– i ∈ m := (m@i 6= 0)
– ∀i ∈ m.ϕ := (∀i.0 ≤ i < N → m@i 6= 0 → ϕ). Similarly for ∃ and other

variants.
– If x is a shared variable, assign(x′,m, x, ē, e) is defined to be

∀n̄. ((∀i ∈ m.ē@i 6= n̄) ∧ x′(n̄) = x(n̄)) ∨ (∃i ∈ m.ē@i = n̄ ∧ x′(n̄) = e@i) ,

and if x is local,

∀n̄, i. (i /∈ m ∨ ē@i 6= n̄→ x′(i, n̄) = x(i, n̄)) ∧
(i ∈ m ∧ ē@i = n̄→ x′(i, n̄) = e@i) .

The last one of the definitions above would require some explanation. Intuitively,
assign(x′,m, x, ē, e) is true when x′ is (one of) the result(s) of executing x[ē] := e
with mask m. If x is shared this is the case if for each index n̄, either

– no thread modifies x(n̄) and x′(n̄) equals the the original value x(n̄), or
– some (possibly multiple) threads try to modify x(n̄), and x′(n̄) equals a value

written by one of these threads.

The description is complicated because of possible data races. The case x is local
is similar, but the situation is simpler because there is no data race.

We can state the meaning of assign formally as follows:

Lemma 1. x[ē] := e, σ JmK , σ ⇓ σ′ holds if and only if there exists a such that
σ′ = σ[x 7→ a], and σ[x′ 7→ a] |= assign(x′,m, x, ē, e).

3.2 Inference Rules

Inference rules are listed in Figure 2. We write ` {ϕ}m | P {ψ} if the quadru-
ple {ϕ}m | P {ψ} is provable from the rules in Figure 2. The variables x′ in

H-Assign and z in H-If and H-While are fresh specification variables of an
appropriate arity. The expression e = z appearing in H-If and H-While is
shorthand for ∀i ∈ T.e@i = z@i.

Rules H-Conseq, H-Skip and H-Seq are standard. H-Assign looks differ-
ent from the standard assignment rule of Hoare Logic, but in view of Lemma 1
this would be natural. H-Sync is also understood in a similar way.

Rules H-If and H-While are more interesting. Since an if statement exe-
cutes both then- and else-branches sequentially, the precondition of the second
premise is ψ (the postcondition of the first), not ϕ. In both rules, we have to
remember the initial value of e into a fresh variable z (see Remark 1 below).
Since the threads in which the condition is false do not execute the body, the
mask part of the premises has to be m && z (or m && ! z).

Remark 1. We introduce a fresh variable z in rules H-If and H-While. To
see that this is indeed necessary, suppose the rule were of the following form
(although this is actually ill-formed because the mask part contain a program
variable).

{ϕ}m && e | P {ψ} {ψ}m && ! e | Q {χ}
{ϕ}m | if e thenP elseQ {χ}

Let x and y be shared variables and e = (x > 0), P = (x := 0; y := 1), and
Q = skip. Then the following is valid:

{x@0 > 0}T | if e thenP elseQ {y@0 = 1} .

To prove this by using the above rule, we try to prove

{x@0 > 0} x > 0 | P {y@0 = 1}

but this is impossible because the verification condition would be

x@0 > 0 → ∀x′.assign(x′, x > 0, x, ·, 0) → ∀y′.assign(y′, x ′ > 0, y, ·, 1) → y′@0 = 1

which is not true: x@0 > 0 implies x′@0 = 0, but we can prove y′@0 = 1 only if
x′@0 > 0.

The problem is that, when executing y := 1, the actual mask is represented
by x > 0, whereas in the above verification condition it is incorrectly replaced by
x ′ > 0. This does not happen in the actual rule H-If because instead of directly
evaluating e the value of e at the point of the execution branch is referenced
through a fresh variable z.

3.3 Examples

Vector addition. Let us consider the program having appeared in Section 1.1.
When this program is called with N threads, each thread i writes a[k] + b[k]
into c[k] for k = i,N + i, 2N + i, . . . until k exceeds the length n of the arrays.

Therefore after this program terminates, the value of c should be the sum of a
and b. More precisely, letting P be the above program, the following holds:

{}T | P {∀i.0 ≤ i < n→ c(i) = a(i) + b(i)} .

Note that in the postcondition we have to write c(i), not c@i, because c is a
shared variable and i is the index specified in the program (and similarly for a
and b). We can prove this quadruple using the following loop invariant:

∀i ∈ T.∃l.k@i = lN + i ∧ ∀l′.0 ≤ l′ < l → c(l′N + i) = a(l′N + i) + b(l′N + i).

This formula asserts that at the beginning and the end of each iteration, the value
of k at thread i is of the form lN + i, and all elements of indices i,N + i, . . . , (l−
1)N+i are processed correctly. Here l is actually the number of iterations having
been performed by thread i.

Array sum. For simplicity we assume the number of threads N is a power of
2, and a is an array of length n = 2N . Consider the following program P :

s = n / 2;

while (s > 0) {

if (tid < s) a[tid] = a[tid] + a[tid + s];

s = s / 2;

sync;

}

After executing this program the value of a[0] is the sum of all values in the
original array a. Intuitively, this program implements the following algorithm.
In each iteration, we split a given array into two arrays of equal lengths (s in the
program), say a1 and a2. Then, compute the sum a1 + a2, and store the result
into a1. Continue this process until the length of the array becomes 1. The final
value of 0-th element is the answer.

The following is an invariant:

∃l ≥ 0.
(
∀i ∈ T.s@i = 2l/2

)
∧ ∀j.

(
0 ≤ j < 2l → a(j) =

∑
k a0(j + 2lk)

)
.

Here a0 denotes the initial value of a, and the variable k in
∑

k a0(i + 2lk)
ranges over all nonnegative integers such that i+ 2lk < n. The expression 2l/2
is interpreted to be 0 when l = 0. We can verify that{

n = 2N = 2t+1 ∧ a = a0
}
T | P

{
a(0) =

∑n−1
m=0 a0(m)

}
.

4 Soundness and Relative Completeness

We are going to prove soundness and relative completeness. Unfortunately, how-
ever, they do not hold for all programs. We first describe how soundness fails,
and introduce the notion of regular programs, being based on this observation.
After that we prove soundness and relative completeness for regular programs.

4.1 Regular Programs

As a counterexample for the soundness, let us consider the program

e = x[tid] == tid, P = while e do (x[0] := 1; x[1] := 1),

where x is a shared variable and the assertion

ϕ = (∃i ∈ T.x(i) = i).

It can be verified that ϕ is an invariant:

{ϕ ∧ z = e} z | x[0] := 1; x[1] := 1 {ϕ} ,

and therefore we can prove {ϕ}T | P {ϕ ∧ none(e)} . However, this is not a valid
quadruple. Suppose that the initial value of x is x[0] = x[1] = 0. Starting
from such a state, it is easy to see that P terminates with some state, say σ′.
If the quadruple above is valid, it means that σ′ satisfies ϕ ∧ none(e). However,
this formula is inconsistent, so this is a contradiction. It follows that the rule
H-While is not sound for this example.

The problem is that initially the condition e is false in thread 1, but after the
body is executed by thread 0, it becomes true at thread 1. In general, a difficulty
arises when

– thread i has already exited the loop,
– another active thread j modifies some shared variable, and
– as a result the condition e becomes true at thread i.

Actually, this is the only obstacle to proving soundness and relative complete-
ness. We will restrict our attention to programs that do not cause this situation.

First we define the notion of a stable expression under a given program. We
say that e is stable under P , if the value of e at thread i does not change by
executing P with i being disabled. More precisely:

Definition 6. Let P be a program and e an expression. We say that e is stable
under P if for all µ, σ and σ′ such that P, µ, σ ⇓ σ′, it holds that σ JeK (i) =
σ′ JeK (i) for all i /∈ µ.

If e is stable under P , the above difficulty would not arise during the execution
of the loop while e doP . Formally this is stated as follows:

Lemma 2. Suppose e is stable under P . Then for all µ, σ and σ′ such that
P, µ ∩ σ JeK , σ ⇓ σ′, it holds that µ ∩ σ′ JeK ⊆ µ ∩ σ JeK.
Definition 7. Let us say a loop while e doP is regular if e is stable under P .
A program is said to be regular if any while-loop contained in it is regular.

The following lemma gives a reasonable sufficient condition for the regularity.

Lemma 3. Let P be a program and e an expression. Suppose that any shared
variable occurring in e does not occur on the left-hand side of any assignment
in P . Then e is stable under P .

Proof. It suffices to show that if P, µ, σ ⇓ σ′ then

– σ(x)(i) = σ′(x)(i) for all local x and i /∈ µ, and
– σ(x) = σ′(x) for all shared x not occurring on the left-hand side of any

assignment in P .

This is done by induction on the derivation of P, µ, σ ⇓ σ′.

Lemma 4. Let P be a program, and assume that for any subprogram of the form
while e doQ, e and Q satisfy the condition of Lemma 3. Then P is regular.

Below we consider regular programs. However, this is not actually a problem
because it is possible to transform a program into a regular one, which is equiv-
alent (in the sense that if they are executed under the same state with the same
mask, then the set of resulting states are also the same).

To do this, given a program, replace its subprograms of the form while e doP
with z := e; while z do (P ; z := e), where z is a fresh local variable. The program
obtained by this transformation satisfies the condition of Lemma 4.

4.2 Soundness and Relative Completeness for Regular Programs

After restricting our attention to regular programs, we can prove the soundness
by verifying that each rule preserves validity. H-While can be checked by in-
duction on the number of iterations (more precisely, the height of the derivation
tree of the execution relation ⇓). For details, see Section A.2.

Theorem 1 (Soundness). If P is a regular program and {ϕ}m | P {ψ} is
derivable from the rules in Figure 2, then it is valid.

Next we consider relative completeness. The statement and proof strategy is
mostly standard, except that masks are involved in the weakest preconditions.

Definition 8 (Weakest Liberal Precondition). The weakest liberal precon-
dition wlp(m,P, ϕ) is defined as follows:

wlp(m,P, ϕ) = {σ | ∀σ′.P, σ(m), σ ⇓ σ′ =⇒ σ′ |= ϕ} .

If this set is definable in the assertion language, we also use wlp(m,P, ϕ) to
denote a formula defining this set.

To prove the relative completeness, by the standard argument it suffices
to show that ` {wlp(m,P, ϕ)}m | P {ϕ}. We can prove this by induction
on P . When P is a while-statement, we can use the formula ∃z.e = z ∧
wlp(m && z , P, ϕ) as an invariant. For the details, see Section A.3.

Theorem 2 (Relative Completeness). Suppose that the weakest liberal pre-
conditions are definable in the assertion language. If P is a regular program and
{ϕ}m | P {ψ} is valid, then it is derivable.

5 Extensions

In GPU programs, there are two kinds of errors that are intensively studied:
data race and barrier divergence. In the above development we did not consider
these errors explicitly. Below we discuss how our framework can be modified to
detect these errors.

5.1 A Variant of the Assignment Rule

In rule E-SAssign, conflicting writes on a shared variable result in a nondeter-
ministic behavior. Although this is consistent with NVIDIA’s specification [15],
such a conflict is often unintended. Thus it would be useful to regard such a sit-
uation as an error, so that a Hoare Logic can detect this data race. One of such
semantics has been considered by Betts et al. [3]. (Below, we limit our attention
to a data race of this type, although other types of data races may arise when
lockstep execution is not assumed.)

Let us consider the following variant of E-SAssign:

x is shared σ′(y) = σ(y) for each variable y 6= x
(∀i ∈ µ.σ JēK (i) 6= n̄) =⇒ σ′(x)(n̄) = σ(x)(n̄)
∀i ∈ µ.(σ JēK (i) = n̄ =⇒ σ′(x)(n̄) = σ JeK (i))

x[ē] := e, µ, σ ⇓ σ′ (E-SAssign’)

If we employ this rule, the execution gets stuck when there are conflicting writes.
Indeed, if σ JēK (i) = n̄ holds for multiple i’s, with σ JeK (i) being distinct, then
no σ′ satisfy the last line of the premises. In other words, the premises require
that all values being written into a certain location must be the same.

If we replace E-SAssign with E-SAssign’, then the definition of assign in
H-Assign has to be modified accordingly. The definition would be as follows
(here, we show the definition for shared variables):

assign ′(x′,m, x, ē, e) = ∀n̄. ((∀i ∈ m.ē@i 6= n̄) ∧ x′(n̄) = x(n̄)) ∨
(∀i ∈ m.ē@i = n̄→ x′(n̄) = e@i) .

If there exist distinct active threads i, j such that ē@i = ē@j(= n̄) and e@i 6=
e@j (that is, if two threads are trying to write different values to the same
location), then there does not exist x′ satisfying this formula. For example, if
x := tid is executed with mask T, then assign ′(x′,T, x, ·, tid) implies ∀i ∈ T.x′ =
i which is a contradiction (unless N = 1).

5.2 Treatment of Erroneous Situations

In the proof rules considered above (including E-SAssign’ above), any postcon-
dition can be proved if a program gets stuck. It may be desirable if the rules
prevent us from proving such a consequence when a program may get stuck.

To handle such a situation explicitly, we can introduce a special state rep-
resenting an error, denoted by ⊥. We extend |= so that ⊥ do not satisfy any
specification; in other words, ⊥ 6|= ϕ for all ϕ.

Consider the following rule, which treats a data race as an error.

x is shared i, j ∈ µ
σ JēK (i) = σ JēK (j) σ JeK (i) 6= σ JeK (j)

x[ē] := e, µ, σ ⇓ ⊥
(E-SAssignRace)

The following axiom would replace the original H-Assign.

{∃x′.assign ′(x′,m, x, ē, e) ∧ ϕ[x′/x]}m | x[ē] := e {ϕ}
Here we use assign ′ defined in Section 5.1. The precondition of this rule requires
that there exists a result of the assignment, so if a program causes a data race,
then the precondition becomes inconsistent. Therefore this rule prevents us from
proving {ϕ}m | x[ē] := e {ψ}, whenever there can be a data race, without ϕ
being inconsistent. Also note that replacing ∀x′ in H-Assign with ∃x′ does not
cause a problem, because E-SAssignRace excludes nondeterminism (there is
at most one x′ that has to be considered).

Similarly we can treat a so-called barrier divergence (a failure of synchroniza-
tion) by modifying H-Sync. In the original rule H-Sync, similarly to H-Assign,
the precondition is vacuously true for any state σ and a mask m such that
σ JmK 6= ∅,T (that is, a barrier divergence).

We add the following evaluation rule

µ 6= ∅,T
sync, µ, σ ⇓ ⊥

(E-SyncDiv)

and replace H-Sync with

{(all(m) ∨ none(m)) ∧ ϕ}m | sync {ϕ} .
Then, we can prove {ϕ}m | sync {ψ} only if ϕ implies all(m) ∨ none(m).

6 Related Work

Semantics of GPU programs. Habermaier and Knapp [14] formalized both SIMT
and interleaved multi-thread semantics, and discussed relationships between
them. In particular, they proved that their SIMT semantics can be simulated by
the interleaved semantics with an appropriate scheduling. Collingbourne et al.
considered a lockstep execution of an unstructured programs based on control-
flow graph [4]. They defined both interleaving and lockstep semantics, and proved
that two semantics are equivalent in a certain sense under the assumption of
race-freedom and termination. Betts et al. [3] defined another semantics, called
synchronous, delayed visibility (SDV) semantics. The major difference from ours
is that, in SDV semantics, a conflicting write results in an error, while in our
semantics it is not. They developed a verification tool GPUVerify that detects
race condition and barrier divergence, based on their SDV semantics.

Verification tools. Verification tools for GPU programs are developed by several
authors. Tripakis, Stergiou and Lublinerman developed a method to check de-
terminism and equivalence of SPMD programs based on non-interference [16].

Collingbourne, Cadar and Kelly proposed a method of symbolic execution of
SIMD programs based on KLEE symbolic execution tool [5, 6]. Li and Gopalakr-
ishnan developed an SMT-based verification tools PUG [7] and PUGpara [8].
They first transform a CUDA program into a first-order formula, and detect
assertion failures, barrier divergence and date races by using an SMT solver. Li
et al. developed a concolic verification and test generation tool for GPU pro-
grams, called GKLEE [9]. Further optimizations and extensions of GKLEE are
also considered [10, 11].

Deductive verification. Huisman and Mihelčić suggest permission-based separa-
tion logic [12] for deductive verification of GPU programs. They demonstrated
how they can verify race-freedom and functional correctness by separation logic.
They consider an assignment of resources to threads, and use it to prove race-
freedom. As discussed in Section 5, our approach can also be used to detect data
races, although we did not consider explicit resource assignments. This is because
in our language there is no pointers, and no two arrays can ovarlap. Moreover,
in our semantics the execution is in lockstep, which implies that there is no data
races between different instructions. Under these assumptions, absence of data
races can be expressed without introducing a new construct like points-to re-
lation in separation logic. Since Huisman and Mihelčić do not assume lockstep
execution, the same method would not apply to their setting.

7 Conclusions and Future Work

We have formalized the SIMT execution model for while-language extended with
arrays and SIMT constructs, and defined a Hoare Logic for this language. We
also proved that the inference rules are sound and relatively complete for a
regular program. This restriction is, as discussed above, not significant, because
it is always possible to transform a given program into a regular one without
changing the meaning of the program.

In our semantics, each program is executed in all threads in complete lock-
step. However, actual execution on GPUs do not necessarily proceed in such a
way. For example, CUDA has a thread hierarchy in its programming model, and
the execution of threads may be interleaved [2]. One possible future direction
would be to extend our framework so that it can handle this thread hierarchy.

However, there is another possible approach to fill the gap. Even if the actual
thread execution is interleaved, if we restrict our attention to programs that
are scheduling independent (that is, programs that produce the same result
regardless of which scheduling is selected), it would be sound to assume that
programs are executed in complete lockstep. So under such an assumption, our
method can be applied to a more realistic programs such as CUDA without
significant changes. Since, as far as we know, many GPU programs are intended
to be scheduling independent, a detailed investigation is left for future work.

Acknowledgement. We thank Kohei Suenaga and anonymous reviewers for valu-
able comments.

References

1. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1) (2007) 80–113

2. NVIDIA: NVIDIA CUDA C Programming Guide. (2012)
3. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a

verifier for GPU kernels. In: Proc. of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications. OOPSLA ’12, New
York, NY, USA, ACM (2012) 113–132

4. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-
step semantics for analysis and verification of GPU kernels. In: Proc. of European
Symposium on Programming (ESOP’13). Volume 7792 of LNCS., Springer Verlag
(2013) 270–289

5. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic crosschecking of floating-point
and SIMD code. In: Proc. of the sixth conference on Computer systems. EuroSys
’11, New York, NY, USA, ACM (2011) 315–328

6. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic testing of OpenCL code. In
Eder, K., Lourenço, J.a., Shehory, O., eds.: Proc. of Hardware and Software: Ver-
ification and Testing. Volume 7261 of LNCS., Springer Verlag (2012) 203–218

7. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proc. of the 18th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE’10), ACM 187–196

8. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs.
In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, IEEE (May 2012) 2450–2459

9. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proc. of the 17th ACM
SIGPLAN symposium on Principles and Practice of Parallel Programming. PPoPP
’12, New York, NY, USA, ACM (2012) 215–224

10. Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equiva-
lencing for symbolic analysis of races in CUDA programs. In: Proc. of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis (SC’12), IEEE Computer Society Press (2012) 29:1–29:10

11. Chiang, W.F., Gopalakrishnan, G., Li, G., Rakamarić, Z.: Formal analysis of GPU
programs with atomics via conflict-directed delay-bounding. In: Proc. of the 5th
NASA Formal Methods Symposium (NFM 2013). Volume 7871 of LNCS., Springer
Verlag (2013) 213–228

12. Huisman, M., Mihelčić, M.: Specification and verification of GPGPU programs
using permission-based separation logic. Bytecode 2013, 8th Workshop on Byte-
code Semantics, Verification, Analysis and Transformation, available as http:

//hgpu.org/?p=9099 (2013)
13. Apt, K.R., de Boer, F., Olderog, E.R.: Verification of Sequential and Concurrent

Programs. 3rd edn. Springer Publishing Company, Incorporated (2009)
14. Habermaier, A., Knapp, A.: On the correctness of the SIMT execution model of

GPUs. In: Proc. of European Symposium on Programming (ESOP’12). Volume
7211 of LNCS., Springer Verlag (2012) 316–335

15. NVIDIA: Parallel Thread Execution ISA Version 3.1. (2012)
16. Tripakis, S., Stergiou, C., Lublinerman, R.: Checking equivalence of SPMD pro-

grams using non-interference. Technical Report UCB/EECS-2010-11, EECS De-
partment, University of California, Berkeley (Jan 2010)

A Proofs of Theorems

A.1 Auxiliary Lemmas

First, we list some basic lemmas for later use.

Lemma 5. The following holds for any state σ.

– σ |= all(e) ⇐⇒ σ JeK = T
– σ |= none(e) ⇐⇒ σ JeK = ∅

Lemma 6. If x′ is a variable not occurring in ϕ, then

σ[x′ 7→ a] |= ϕ[x′/x] ⇐⇒ σ[x 7→ a] |= ϕ.

Lemma 7. Suppose that m consists of specification variables. Then,

P, σ JmK , σ ⇓ σ′ =⇒ σ JmK = σ′ JmK .
Lemma 8. If P, ∅, σ ⇓ σ′, then σ = σ′.

Lemma 9. Let W = while e doP. Suppose µ ∩ σ JeK = µ′ ∩ σ JeK and there is
a derivation of W,µ, σ ⇓ σ′. Then there is a derivation of the same size (the
number of nodes) with conclusion W,µ′, σ ⇓ σ′.

A.2 Proof of Soundness

Soundness of H-Conseq, H-Skip, and H-Seq are obvious. H-Sync is also easy;
sync gets stuck if and only if σ 6|= all(m) ∨ none(m).

To show that H-Assign is sound, suppose x[ē] := e, σ JmK , σ ⇓ σ′. From
Lemma 1, σ′ is of the form σ[x 7→ a] where a satisfies σ[x′ 7→ a] |= assign(x′,m, x, ē, e).
So if we have σ |= ∀x′.assign(x′,m, x, ē, e) → ϕ[x′/x], then σ[x′ 7→ a] |= ϕ[x′/x].
By using Lemma 6, we obtain σ[x 7→ a] |= ϕ, and therefore σ′ |= ϕ (because
σ′ = σ[x 7→ a]), as required.

Next we check H-If. Suppose σ |= ϕ and if e thenP elseQ , σ JmK , σ ⇓ σ′′.
Then there exists σ′ such that P, σ JmK∩ σ JeK , σ ⇓ σ′ and Q, σ JmK \ σ JeK , σ′ ⇓
σ′′. We have to show σ′′ |= χ. Let σ0 = σ[z 7→ σ JeK], σ′

0 = σ′[z 7→ σ JeK], and
σ′′
0 = σ′′[z 7→ σ JeK]. Then, since z does not occur in P and σ JeK = σ0(z) it holds

that P, σ0 Jm && z K , σ0 ⇓ σ′
0. Similarly, we also have Q, σ′

0 Jm && ! z K , σ′
0 ⇓ σ′′

0 .
Then from the induction hypotheses we have σ′

0 |= ψ and σ′′
0 |= χ. Since z does

not occur in χ, and σ′′
0 and σ′′ differ only in z, it holds that σ′′ |= χ.

Finally we show that H-While is sound by induction on the size of the
derivation of ⇓. Precisely, by induction we prove that if {ϕ ∧ e = z}m && z |

P {ϕ} is valid, then for all σ and σ′ such that while e doP , σ JmK , σ ⇓ σ′ and
σ |= ϕ, it holds that σ′ |= ϕ ∧ none(m && e).

The base case is the rule E-Inactive, which is obvious. For the induction
step, let us assume the derivation has the form

P, σ JmK ∩ σ JeK , σ ⇓ σ′

.... D
while e doP , σ JmK ∩ σ JeK , σ′ ⇓ σ′′

while e doP , σ JmK , σ ⇓ σ′

and suppose σ |= ϕ. We have to show that σ′′ |= ϕ ∧ none(m && e).
Let σ0 = σ[z 7→ σ JeK] and σ′

0 = σ′[z 7→ σ JeK]. Then, since z is fresh, we have

P, σ0 JmK ∩ σ0 JeK , σ0 ⇓ σ′
0,

and σ0 |= ϕ ∧ e = z. Since σ0 JmK ∩ σ0 JeK = σ0 Jm && z K, by assumption we
obtain σ′

0 |= ϕ.
Let σ′′

0 = σ′′[z 7→ σ0 JeK]. Then we have a derivation of

while e doP , σ JmK ∩ σ JeK , σ′
0 ⇓ σ′′

0

with the same size as D. Now we are going to use Lemma 9 to obtain a derivation
of

while e doP , σ′
0 JmK , σ′

0 ⇓ σ′′
0 ,

again with the same size as D. Here the assumption of Lemma 9 is indeed
satisfied: the regularity and Lemma 2 implies σ JmK ∩ σ′ JeK ⊆ σ JmK ∩ σ JeK, so
by definition of σ′

0 we have (σ JmK ∩ σ JeK) ∩ σ′
0 JeK = σ′

0 JmK ∩ σ′
0 JeK.

Then we can apply the induction hypothesis, therefore σ0 |= ϕ implies σ2 |=
ϕ ∧ none(m && e). Since the antecedent is already proved, we have σ2 |= ϕ ∧
none(m && e). Moreover, z does not occur in ϕ, m nor e, which this implies
σ′ |= ϕ ∧ none(m && e). This completes the proof.

A.3 Proof of Relative Completeness

By the standard argument, it suffices to show that

` {wlp(m,P, ϕ)}m | P {ϕ} .

We proceed by induction on P
When P = skip, by H-Skip we have ` {ϕ}m | skip {ϕ}. So it suffices to

show that |= wlp(m, skip, ϕ) → ϕ. Suppose σ |= wlp(m, skip, ϕ). Then, since
skip,m, σ ⇓ σ, we conclude σ |= ϕ.

When P = sync, byH-Sync we have ` {all(m) ∨ none(m) → ϕ}m | sync {ϕ},
so it suffices to show that |= wlp(m, sync, ϕ) → all(m) ∨ none(m) → ϕ. This is
clear from E-Sync and E-Inactive.

When P = x[ē] := e, by H-Assign we have

` {∀x′.assign(x′,m, x, ē, e) → ϕ[x′/x]}m | x[ē] := e {ϕ} .

So it suffices to show that

|= wlp(m, x[ē] := e, ϕ) → ∀x′.assign(x′,m, x, ē, e) → ϕ[x′/x].

Suppose σ |= wlp(m, x[ē] := e, ϕ) and σ[x′ 7→ a] |= assign(x′,m, x, ē, e). Then
from Lemma 1, we have x[ē] := e, σ JmK , σ ⇓ σ[x 7→ a]. Therefore σ[x 7→ a] |= ϕ,
hence by Lemma 6 we obtain σ[x′ 7→ a] |= ϕ[x′/x].

When P = P1; P2, by the induction hypotheses we have ` {wlp(m,P1, ψ)}m |
P1 {ψ} and ` {wlp(m,P2, ϕ)}m | P2 {ϕ} for all ψ and ϕ. Therefore by H-Seq

` {wlp(m,P1,wlp(m,P2, ϕ))}m | P1;P2 {ϕ} .

So it suffices to show that

|= wlp(m,P1; P2, ϕ) → wlp(m,P1,wlp(m,P2, ϕ)).

Suppose σ |= wlp(m,P1; P2, ϕ), and consider σ′ such that P1, σ JmK , σ ⇓ σ′.
We have to show that σ′ |= wlp(m,P2, ϕ), that is, σ′′ |= ϕ for all σ′′ with
P2, σ

′ JmK , σ′ ⇓ σ′′. This is immediate from P1; P2, σ JmK , σ ⇓ σ′′ which follows
from assumptions and E-Seq.

When P = if e thenP1 elseP2, let χ = wlp(m && z , P1,wlp(m && ! z , P2, ϕ)).
Then by the induction hypotheses we have

` {χ}m && z | P1 {wlp(m && ! z , P2, ϕ)} ,
` {wlp(m && ! z , P2, ϕ)}m && ! z | P2 {ϕ} .

Since
|= (∃z.e = z ∧ χ) ∧ e = z → χ,

we have
` {(∃z.e = z ∧ χ) ∧ e = z}m && z | P1 {ϕ} .

Therefore, by H-If,

` {∃z.e = z ∧ χ}m | if e thenP1 elseP2 {ϕ} .

So our goal is to prove

|= wlp(if e thenP1 elseP2,m, ϕ) → ∃z.e = z ∧ χ.

Suppose σ |= wlp(if e thenP1 elseP2,m, ϕ), and let σ0 = σ[z 7→ σ JeK]. It
suffices to show that σ0 |= e = z ∧ χ. It is obvious that σ0 |= e = z. To prove
σ0 |= χ, suppose

P1, σ0 Jm && z K , σ0 ⇓ σ′,

P2, σ
′ Jm && ! z K , σ′ ⇓ σ′′.

Then, since z and variables in m are specification variables, we also have

P2, σ0 Jm && ! z K , σ′ ⇓ σ′′.

By E-If and the equality σ0(z) = σ JeK we have

if e thenP1 elseP2, σ0 JmK , σ0 ⇓ σ′′.

On the other hand, we assumed that σ |= wlp(if e thenP1 elseP2,m, ϕ) and
this formula does not depend on z, so σ0 satisfies the same formula. Hence
σ′′ |= ϕ, as required.

When P = while e doQ , let ψ = ∃z.e = z ∧ wlp(m && z , P, ϕ). We prove

1. ` {ψ ∧ e = z}m && z | Q {ψ},
2. |= ψ ∧ none(m && e) → ϕ, and
3. |= wlp(m,P, ϕ) → ψ.

The conclusion follows from them by H-While and H-Conseq.
First we prove (1). By the induction hypothesis it suffices to prove the validity

instead of the provability. So our goal is

σ |= ψ ∧ e = z and Q, σ Jm && z K , σ ⇓ σ′ =⇒ σ′ |= ψ,

which is, by definition of ψ, equivalent to

σ |= ψ ∧ e = z, Q, σ Jm && z K , σ ⇓ σ′, and

P, (σ′[z 7→ σ′ JeK]) Jm && z K , σ′[z 7→ σ′ JeK] ⇓ σ′′

=⇒ σ′′ |= ϕ.

So suppose the premises hold for σ, σ′ and σ′′. Let σ′′
0 = σ′′[z 7→ σ′(z)]. Then it

suffices to show that σ′′
0 |= ϕ.

First, from σ |= ψ ∧ e = z it easily follows that σ |= wlp(m && z , P, ϕ), so
σ′′
0 |= ϕ follows from

P, σ Jm && z K , σ ⇓ σ′′
0 .

To prove this, we first show that

Q, σ Jm && z K ∩ σ JeK , σ ⇓ σ′, P, σ Jm && z K ∩ σ JeK , σ′ ⇓ σ′′.

and then applyE-While. The former follows from σ Jm && z K∩σ JeK = σ Jm && z K,
which is a consequence of the assumption σ |= e = z. For the latter, note that

P, (σ′[z 7→ σ′ JeK]) Jm && z K , σ′ ⇓ σ′′
0

holds from assumption and the fact that z is fresh. In view of Lemma 9, it suffices
to show that

(σ Jm && z K ∩ σ JeK) ∩ σ′ JeK = ((σ′[z 7→ σ′ JeK]) Jm && z K) ∩ σ′ JeK .
From σ JeK = σ JzK this reduces to

(σ JmK ∩ σ JeK) ∩ σ′ JeK = σ JmK ∩ σ′ JeK .

This follows from the assumption of regularity and Lemma 2. This completes
the proof of (1).

Next we prove (2). Suppose σ |= ψ∧none(m && e) and let σ0 = σ[z 7→ σ JeK].
Then by definition of ψ we have σ0 |= wlp(m && z , P, ϕ). Moreover, σ0 JzK = σ JeK
and σ |= none(m && e) imply that σ0 Jm && z K = ∅, therefore P, σ0 Jm && z K , σ0 ⇓
σ0. Hence σ0 |= ϕ, and ϕ does not contain z, so σ |= ϕ as required.

Finally we prove (3). Suppose σ |= wlp(m,P, ϕ), and let σ0 = σ[z 7→ σ JeK].
Then clearly σ0 |= e = z. We will prove σ0 |= wlp(m && z , P, ϕ). To do this
suppose P, σ0 Jm && z K , σ0 ⇓ σ′

0. Then, since σ0 Jm && z K = σ JmK ∩ σ JeK, by
Lemma 9 we have P, σ JmK , σ0 ⇓ σ′

0. Since wlp(m,P, ϕ) does not depend on z
and σ satisfies this formula, so does σ0. Therefore σ

′
0 |= ϕ.

