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Abstract

The template-based method is one of the most successful approaches to al-
gebraic invariant synthesis. In this method, an algorithm designates a template
polynomial p over program variables, generates constraints for p = 0 to be an
invariant, and solves the generated constraints. However, this approach often
suffers from an increasing template size if the degree of a template polynomial
is too high.

We propose a technique to make template-based methods more efficient. Our
technique is based on the following finding: If p = 0 is an algebraic invariant,
then p can be decomposed into the sum of specific polynomials that we call gen-
eralized homogeneous polynomials, that are often smaller. This finding justifies
using only a smaller template that corresponds to a generalized homogeneous
polynomials.

Concretely, we state and prove our finding above formally. Then, we modify
the template-based algorithm proposed by Cachera et al. so that it generates
only generalized homogeneous polynomials. This modification is proved to be
sound. Furthermore, we also empirically demonstrate the merit of the restriction
to generalized homogeneous polynomials. Our implementation outperforms that
of Cachera et al. for programs that require a higher-degree template.

Keywords: static analysis, polynomial invariants, homogeneous polynomial

1. Introduction

We consider the following postcondition problem: Given a program c, dis-
cover a fact that holds at the end of c regardless of the initial state. This article
focuses on a postcondition written as an algebraic condition p1 = 0∧· · ·∧pn = 0,
where p1, . . . , pn are polynomials over program variables; this problem is a basis
for static verification of functional correctness.

One approach to this problem is invariant synthesis, in which we are to
compute a family of predicates Pl indexed by program locations l such that Pl
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1: x := x0; v := v0; t := t0;
2: while t− a ̸= 0 do
3: (x, v, t) := (x+ vdt , v − gdt , t+ dt);
4: end while
5:

Figure 1: Program cfall , which models a falling mass point. The symbols in the program
represent the following quantities: x is the position of the point, v is its speed, t is time,
x0 is the initial position, v0 is the initial speed, t0 is the initial value of the clock t, g is
the acceleration rate, and dt is the discretization interval. The simultaneous substitution in
the loop body numerically updates the values of x, v, and t. The values of x, v, and t are
numerical solutions of the differential equations dx

dt
= v and dv

dt
= −g.

holds whenever the execution of c reaches l. The invariant associated with the
end of c is a solution to the postcondition problem.

Because of its importance in static program verification, algebraic invari-
ant synthesis has been intensively studied [1, 2, 3, 4]. Among these proposed
techniques, one successful approach is the constraint-based method in which in-
variant synthesis is reduced to a constraint-solving problem. During constraint
generation, this method designates templates, which are polynomials over the
program variables with unknown parameters at the coefficient positions [1]. The
algorithm generates constraints that ensure that the templates are invariants,
and obtains the invariants by solving the constraints.1

Example 1. The program cfall in Figure 1 models the behavior of a mass point
with weight 1 and with a constant acceleration rate.2 For this program, the
postcondition −gt+ gt0 − v + v0 = 0 holds regardless of the initial state.

We describe how a template-based method computes the postcondition in
Example 1. The method described here differs from the one we explore in this
article; this explanation is intended to suggest the flavor of a template method.

A template-based method generates a template polynomial over the program
variables that represent a postcondition. For example, the template polynomial
of degree 2 is

p(x0, v0, t0, x, v, t, a, dt , g) := a1 + ax0x0 + av0v0 + · · ·+ adtgdtg,

where a1, ax0 , av0 , . . . , adtg are unknown parameters representing coefficients of
1, x0, v0, . . . , dtg, respectively. The procedure then generates constraints under
which p(x0, v0, . . . , g) = 0 is indeed a postcondition of cfall . The method pro-
posed by Sankaranarayanan et al. [1] based on the Gröbner basis [5] generates
the constraints as equations over the parameters; in this case, a solution to the
constraints gives −gt+ gt0 − v + v0 = 0, which indeed holds at the end of cfall .

1The constraint-based method by Cachera et al. [4], which is the basis of the current article,
uses a template also for other purposes. See Section 5 for details.

2Although the guard condition t − a ̸= 0 should be t − a < 0 in a real-world numerical
program, we use the current example for presentation purposes.
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One of the drawbacks of the template-based method is excessive growth of
the size of a template. Blindly generating a template of degree d for a degree
parameter d makes the algorithm less scalable for higher-degree postconditions.
For example, the program in Example 1 has a postcondition −gt2 + gt20 − 2tv+
2t0v0 + 2x − 2x0 = 0 at Line 4. This invariant requires a degree-3 template,
which has

(
9+3
3

)
= 220 monomials in this case.

We propose a hack to alleviate this drawback in the template-based methods.
Our method is inspired by a rule of thumb in physics called the principle of
quantity dimension: A physical law should not add two quantities with different
quantity dimensions [6]. If we accept this principle, then, at least for a physically
meaningful program such as cfall , its postcondition (and therefore a template)
should consist of monomials with the same quantity dimensions.

Indeed, the polynomial −gt+ gt0 − v + v0 calculated in Example 1 consists
only of quantities that represent velocities. The polynomial −gt2 + gt20 − 2tv +
2t0v0 + 2x− 2x0 above consists only of quantities corresponding to the length.
If we use L and T to represent quantity dimensions for lengths and times (the
notation in physics), the first and second polynomials consist only of monomials
with the quantity dimension LT−1 and L, respectively.

By leveraging the quantity dimension principle in the template synthesis
phase, we can reduce the size of a template. For example, we could use a
template that consists only of monomials for, say, velocity quantities

av0v0 + avv ++atgtg + adtgdtg + aagag

instead of the general degree-2 polynomial, which consists of 55 monomials.
The idea of the quantity dimension principle can be nicely captured by gen-

eralizing the notion of homogeneous polynomials. A polynomial is said to be
homogeneous if it consists of monomials of the same degree; for example, the
polynomial x3 + x2y + xy2 + y3 is a homogeneous polynomial of degree 3. We
generalize this notion of homogeneity so that (1) a degree is an expression cor-
responding to a quantity dimension (e.g., LT−1) and (2) each variable has its
own degree in degree computation.

Let us describe our idea using an example, deferring formal definitions. Sup-
pose we have the following degree assignment for each program variable:

Γ :=

{
x0 7→ L, t0 7→ T, g 7→ LT−2, t 7→ T, dt 7→ T,

x 7→ L, v 7→ LT−1, v0 7→ LT−1, a 7→ T

}
.

This degree assignment intuitively corresponds to the assignment of the quantity
dimension to each variable. With this degree assignment Γ, all of the monomials
in −gt+ gt0 − v+ v0 have the same degree; for example, the monomial −gt has
degree Γ(g)Γ(t) = (LT−2)T = LT−1. Hence, −gt+gt0−v+v0 is a homogeneous
polynomial in the generalized sense. We call such a polynomial a generalized
homogeneous (GH) polynomial. We call an algebraic postcondition with a GH
polynomial a generalized homogeneous algebraic (GHA) postcondition.

The main theoretical result of this article is a formalization of this idea. We
can prove that, if there is an algebraic postcondition p = 0 of a program c,
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then p is actually written as the sum of GH polynomials p = p1 + · · ·+ pn, and
pi = 0 are all GHA postconditions of c (Theorem 11). In this sense, there exist
enough GHA postconditions, and this fact justifies the use of a template that
corresponds to a GH polynomial in the template method. We also empirically
show that the algorithm by Cachera et al. [4] can be made more efficient using
this idea.

As we saw above, the definition of GH polynomials is parameterized over a
degree assignment Γ. The problem of finding an appropriate degree assignment
can be solved by applying the type inference algorithm for the dimension type
system proposed by Kennedy [7, 8]; Γ above is inferred using this algorithm.
The dimension type system was originally proposed for detecting a violation of
the quantity-dimension principle in a numerical program. Our work gives an
application of the dimension type system to postcondition synthesis.

Although the method is inspired by the principle of quantity dimensions,
it can be applied to a program that does not model a physical phenomenon
because we abstract the notion of a quantity dimension using that of generalized
homogeneity. All the programs used in our experiments (Section 6) are indeed
physically nonsensical programs.

To summarize, our main contributions are (1) theoretically, to prove that
there exist enough GHA postconditions, and (2) empirically, to demonstrate
that the notion of GH polynomials is indeed useful for efficient template-based
invariant synthesis by reducing the size of templates.

The rest of this article is organized as follows. Section 2 defines the notion
of generalized homogeneity. Section 3 introduces the target language, and de-
scribe degree-assignment inference algorithm. Section 4 states and proves the
main theorem. Section 5 gives a template-based invariant-synthesis algorithm.
Section 6 reports the experimental results. Section 7 discusses related work,
and Section 8 presents the conclusions.

This article is a revised and reorganized version of the authors’ previous
work [9]. The main difference from the previous version is that the main theorem
(Theorem 11) is proved with respect to the standard operational semantics; a
similar result was previously proved with respect to an abstract semantics. We
believe that the current result better justifies the claim of the existence of enough
GHA postconditions. In addition, as a result of this change, abstract semantics
is not needed when stating the theoretical results, and this significantly simplifies
the presentation.

2. Generalized Homogeneous Polynomials

Throughout the article, we use R, N, Z, and R[x1, . . . , xn] for the set of
all real numbers, nonnegative integers, integers, and polynomials in variables
x1, . . . , xn over R, respectively.

A polynomial p is said to be homogeneous of degree d if the degree of every
monomial in p is d [5]. As we mentioned in Section 1, we generalize this notion of
homogeneity to obtain a mathematical formulation of the consistency of quantity
dimensions.
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We first generalize the notion of the degree of a polynomial.

Definition 2. Let B be a set. We define a generalized degree (g-degree) over B
as an element of the free Abelian group generated by B. More concretely,
a generalized degree over B is an expression of the form bn1

1 · · · bnm
m where

b1, . . . , bm ∈ B and n1, . . . , nm ∈ Z (we allow m = 0, in which case the ex-
pression is denoted by 1). Two expressions are identified if they are equal up to
permutation and the laws of exponents. For example, b21b2, b2b

2
1, b1b2b1, b

2
2b

2
1b

−1
2 ,

and b21b2b
0
3 all denote the same g-degree. We call elements of B base degrees.

We denote the set of all generalized degrees by GDegB . The set GDegB is
equipped with multiplication defined by

(bn1
1 · · · bnm

m ) · (br11 · · · brmm ) := bn1+r1
1 · · · bnm+rm

m .

Then, 1 is the unit element of this multiplication, and the inverse is given by
(bn1

1 · · · bnm
m )−1 = b−n1

1 · · · b−nm
m . We often omit B in GDegB if it is clear from

the context.

The ordinary degree can be identified with the generalized degree over a
singleton set.

In the analogy of quantity dimensions, the set B corresponds to the base
quantity dimensions (e.g., L for lengths and T for times); the set GDegB cor-
responds to the derived quantity dimensions (e.g., LT−1 for velocities and LT−2

for acceleration rates.); multiplication expresses the relationship among quantity
dimensions (e.g., LT−1 · T = L for velocity× time = distance.)

Definition 3. A g-degree assignment is a finite map from a set of variables Var
to GDeg. For a g-degree assignment Γ and a monomial p = axd1

1 · · ·xdn
n , we

write gdegΓ(p) for Γ(x1)
d1 · · ·Γ(xn)

dn and call it the g-degree of p under Γ (or
simply g-degree of p if Γ is clear from the context).

For example, if Γ = { t 7→ T, v 7→ LT−1 }, then gdegΓ(2vt) = L. In terms
of the analogy with quantity dimensions, this means that the expression 2vt
represents a length.

Definition 4. We say p is a generalized homogeneous (GH) polynomial of g-
degree τ under Γ if p is the sum of monomials of g-degree τ under Γ. For a
polynomial p ̸= 0, we write gdegΓ(p) for its g-degree if p is a GH polynomial
under Γ; otherwise, gdegΓ(p) is undefined.

Remark 1. By definition, 0 is a GH polynomial of g-degree τ for an arbitrary τ .
Therefore we leave gdegΓ(0) undefined.

Example 5. The ordinary degree is obtained by letting B = { b } and Γ(xi) = b
for every variable xi. We have gdegΓ(p) = bd for any homogeneous polynomial
of degree d.

Example 6. Consider polynomials

p1 := −gt+ gt0 − v + v0,
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p2 := −gt2 + gt20 − 2tv + 2t0v0 + 2x− 2x0,

which have appeared in Section 1 as postconditions of cfall given in Figure 1.
They are both GH-polynomials under

Γ :=
{
g 7→ LT−2, t 7→ T, v 7→ LT−1, x 7→ L, x0 7→ L, v0 7→ LT−1, t0 7→ T

}
.

It is straightforward to check that p1 and p2 are GH polynomials of degree L
and LT−1, respectively, under Γ. For example, gdegΓ(−gt2) = Γ(g)Γ(t)2 =
(LT−2)T 2 = L, and gdegΓ(−2tv) = Γ(t)Γ(v) = T (LT−1) = L.

It is easy to see that any p ∈ R[x1, . . . , xn] can be uniquely written as the
finite sum of GH polynomials as pΓ,τ1+· · ·+pΓ,τm , where τ1, . . . , τm are pairwise
distinct; pΓ,τi is the sum of all monomials of g-degree τi occurring in p. We call
pΓ,τ the homogeneous component of p with g-degree τ under Γ, or simply a
homogeneous component of p. We omit Γ if it is clear from the context.

Example 7. Let Γ = { t 7→ T, v 7→ LT−1, x 7→ L } and p = x+ tv − v. Then p
is written as p = pL + pLT−1 , where pL = x+ tv and pLT−1 = −v.

Remark 2. The term “generalized homogeneity” appears in various areas; ac-
cording to Hankey et al. [10], a function f(x1, . . . , xn) is said to be general-
ized homogeneous if there are a1, . . . , an and af such that, for any positive λ,
f(λa1x1, . . . , λ

anxn) = λaf f(x1, . . . , xn). Our definition of GH polynomials ap-
pears to generalize theirs: if f is generalized homogeneous in their sense, then
we can use a g-degree assignment x1 7→ ba1 , . . . , xn 7→ ban so that f is homoge-
neous of degree baf . Barenblatt [6] points out that the essence of the quantity
dimension principle is generalized homogeneity.

3. A Type System for Generalized Homogeneity

This section introduces the target language and devise a type system that
guarantees generalized homogeneity of programs. This amounts to adapting
dimension type system proposed by Kennedy [7, 8] to our language.

3.1. Language and semantics

Syntax. The language we consider is a simple imperative language, in which all
expressions are polynomials. Its concrete syntax is as follows:

c ::= skip | x:=p | c1; c2 | if p = 0 then c1 else c2 | while p ▷◁ 0 do c.

Here, ▷◁ is either = or ̸=, and p ranges over polynomials over program variables.
We restrict the guard to a single-polynomial algebraic condition (i.e., p = 0) or
its negation.
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skip, σ → σ x:=p, σ → σ[x 7→ σ(p)]
c1, σ → σ′ c2, σ

′ → σ′′

c1; c2, σ → σ′′

σ(p) ▷◁ 0 c1, σ → σ′

if p ▷◁ 0 then c1 else c2, σ → σ′
σ(p) ̸▷◁ 0 c2, σ → σ′

if p ▷◁ 0 then c1 else c2, σ → σ′

σ(p) ̸▷◁ 0

while p ▷◁ 0 do c, σ → σ

σ(p) ▷◁ 0 c, σ → σ′

while p ▷◁ 0 do c, σ′ → σ′′

while p ▷◁ 0 do c, σ → σ′′

Figure 2: Standard Big-Step Operational Semantics.

Operational Semantics. A state, ranged over by σ, is a map from the set of
variables to R. We write c, σ → σ′ if the execution of a program c starting from
a state σ terminates with the final state σ′. This execution relation is formally
defined by the standard set of rules summarized in Figure 2 (detailed discussion
can be found in standard textbooks, such as [11]). It is easy to see that this
semantics is deterministic, that is, given c and σ, there exists at most one σ′

such that c, σ → σ′.
By using the execution relation, we can formally define a postcondition as

follows.

Definition 8. A postcondition of a program c is a set of states S such that, for
any state σ, if there exists a (necessarily unique) state σ′ such that c, σ → σ′,
then σ′ ∈ S. In particular, if p is a polynomial and S is the set of states under
which p = 0 holds, then we say that S (or “p = 0”) is an algebraic postcondition.

3.2. Type system

We introduce a type system that guarantees the generalized homogeneity
of programs. A type judgment has the form Γ ⊢ c, where Γ is a g-degree
assignment. Intuitively, this judgment means that the g-degrees assigned to
program variables by Γ are consistent with the usage of variables in c. We say
Γ is consistent with the program c if Γ ⊢ c holds.

Typing rules are listed in Figure 3. They are obtained by adapting the
dimension type system [7, 8] to our language. Checking the consistency amounts
to checking that all the expressions (which are polynomials) appearing in c is
generalized homogeneous under Γ, and both sides of each assignment have the
same g-degree (as in rule T-Assign). Rules T-If and T-While require that p
is generalized homogeneous, but its g-degree τ can be arbitrary (because τ does
not appear in the conclusion).

3.3. Automated inference of the g-degree assignment

Kennedy also proposed a constraint-based automated type inference algo-
rithm of his type system [7, 8]. We adapt his algorithm so that, given a command
c, it infers a g-degree assignment Γ such that Γ ⊢ c. The algorithm is in three
steps: (1) designating a template of the g-degree assignment, (2) generating
constraints over g-degrees, and (3) solving the constraints. In order to make the
current article self-contained, we explain each step below.
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Γ ⊢ skip (T-Skip)
Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ c1; c2
(T-Seq)

Γ(x) = gdegΓ(p)

Γ ⊢ x:=p
(T-Assign)

gdegΓ(p) = τ Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ if p = 0 then c1 else c2
(T-If)

gdegΓ(p) = τ Γ ⊢ c

Γ ⊢ while p ▷◁ 0 do c
(T-While)

Figure 3: Typing rules

Step 1: Designating a template of the g-degree assignment. Let x1, . . . , xn be the
list of the variables occurring in the given program c. Then, the algorithm first
designates a template g-degree assignment Γc := {x1 7→ αx1 , . . . , xn 7→ αxn }
where αx1 , . . . , αxn are fresh type variables. For example, given the program
cfall in Figure 1, the algorithm designates

Γcfall :=

{
g 7→ αg, t 7→ αt, dt 7→ αdt , v 7→ αv, x 7→ αx,

x0 7→ αx0 , v0 7→ αv0 , t0 7→ αt0 , a 7→ αa

}

where αg, αt, . . . are distinct type variables for the g-degrees of the variables
g, t, . . . that are to be inferred.

Step 2: Generating constraints over g-degrees. The algorithm then generates
the constraints over the g-degrees. We first define the set of constraints. Let
B be a set (of type variables) that contains all type variables introduced in the
previous step.

A g-degree constraint is an equation τ1 = τ2 where τ1, τ2 ∈ GDegB . We use
a metavariable θ for maps from B to GDegB . This map can be regarded as
a substitution of types (g-degrees) into type variables, and therefore naturally
extends to a map from GDegB to itself. We also define, for a given g-degree
assignment Γ, a g-degree assignment θ(Γ) by (θ(Γ))(x) = θ(Γ(x)). We say that
θ is a solution of a set of g-degree constraints C if it satisfies all the constraints in
C. For example, the map θ := {αv 7→ LT−1, αx 7→ L,αt 7→ T } is a solution of
the constraint set {αv = αxα

−1
t }, since both θ(αv) and θ(αxα

−1
t ) equal LT−1.

For a polynomial p = m1 + · · ·+mn, where m1, . . . ,mn are nonzero mono-
mials and n ≥ 1, we define3

gdeg′
Γ(p) := gdegΓ(m1),

3Strictly speaking, this definition is not well-defined, because it depends on the choice of
the representation of p. For example, if p = x + y, then the right-hand side of the definition
becomes (αx, {αx = αy }), but we could write the same polynomial as y + x, and if we chose
this representation, then we would get (αy , {αy = αx }). This ambiguity does not matter,
because all of gdegΓ(mi) are equated by any solution of the constraints.
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constrΓ(p) := { gdegΓ(mi) = gdegΓ(mi+1) | 1 ≤ i < n } .

For any solution θ of constrΓ(p), the polynomial p is generalized homogeneous
under θ(Γ), and its g-degree is given by gdegθ(Γ)(p) = θ(gdeg′

Γ(p)). We also

define gdeg′
Γ(0) to be a fresh type variable, and constrΓ(0) = ∅. This definition

reflects the fact that 0 can be regarded as a GH polynomial of an arbitrary g-
degree.

For example, let Γ := { v 7→ αv, g 7→ αg, x 7→ αx } and p := 2v2 + gx; then,
gdeg′

Γ(p) = α2
v and constrΓ(p) = {α2

v = αgαx }. This constraint set has
a solution θ := {αv 7→ LT−1, αg 7→ LT−2, αx 7→ L }, and for this θ we have
θ(Γ) = { v 7→ LT−1, g 7→ LT−2, x 7→ L }. The polynomial p is indeed general-
ized homogeneous under θ(Γ) since θ(Γ)(v2) = θ(Γ)(gx) = L2T−2.

The function PT for the constraint generation is defined as follows:

PT (Γ, skip) := ∅
PT (Γ, c1; c2) := PT (Γ, c1) ∪ PT (Γ, c2)

PT (Γ, x:=p) := {Γ(x) = gdeg′
Γ(p) } ∪ constrΓ(p)

PT (Γ, if p = 0 then c1 else c2) := constrΓ(p) ∪ PT (Γ, c1) ∪ PT (Γ, c2)

PT (Γ,while p ▷◁ 0 do c) := constrΓ(p) ∪ PT (Γ, c).

The constraint set PT (Γ, c) is defined so that any of its solutions θ satisfies
θ(Γ) ⊢ c. The definition essentially constructs the derivation tree of Γ ⊢ c
following the rules in Figure 3 and collects the constraints appearing in the
tree.

Example 9. PT (Γcfall , cfall) generates the constraints

{αx = αx0 , αv = αv0 , αt = αt0 } , {αt = αa } ,
{αx = αvαdt , αv = αgαdt , αt = αdt }

from Lines 1, 2, and 3, respectively. They ensure the generalized homogeneity
of polynomials appearing in the program. From Line 3, additional constraints

{αx = αx, αv = αv, αt = αt } ,

are generated to ensure that the g-degrees of both sides of the assignment are
identical. In this case, these constraints happen to be trivial, but if we wrote
x:=vdt + x instead of x:=x+ vdt , then αx = αvαdt would have been generated
instead of αx = αx.

Step 3: Solving the constraints. The algorithm then calculates a solution of
the generated constraints. The constraint-solving procedure is almost the same
as that by Kennedy [7, Section 5.2], which is based on Lankford’s unification
algorithm [12]. The procedure obtains a solution θ from the given constraint
set C by applying the following rewriting rules successively:

(∅, θ) → θ
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({α′kα⃗n⃗ = 1 } ∪ C, θ) → ({α′ 7→ α⃗−n⃗/k } (C), {α′ 7→ α⃗−n⃗/k } ◦ θ)
where k is the exponent with the least absolute value, and

k divides all the integers in n⃗

({α′kα⃗n⃗ = 1 } ∪ C, θ) → ({ωkα⃗n⃗mod k = 1 } ∪ θ′(C), θ′ ◦ θ)
where k is the exponent with the least absolute value,

there is an integer in n⃗ that is not divisible by k,

θ′ = {α′ 7→ ωα⃗−⌊n⃗/k⌋ }, and ω is a fresh type variable

({ 1 = 1 } ∪ C, θ) → (C, θ)

({ τ1 = τ2 } ∪ C, θ) → ({ τ1τ−1
2 = 1 } ∪ C, θ)

C → (C, ∅).

The idea of the procedure is to construct a solution by iteratively converting
a constraint α′kα⃗n⃗ = 1 to a simpler one. If k divides all the integers in n⃗ (i.e.,
the second case), the procedure simply takes k-th root of the equation to obtain
{α′ 7→ α⃗−n⃗/k }. Otherwise (i.e., the third case),4 the procedure (1) splits n⃗/k
to the quotient ⌊n⃗/k⌋ and the remainder n⃗mod k, (2) introduces a fresh type
variable ω representing α⃗−(n⃗mod k)/k, and (3) sets α′ in the solution to ωα⃗−⌊n⃗/k⌋

which represents α⃗−n⃗/k.
The minimality of |k| in the second and third rules guarantees the termina-

tion of the procedure; by choosing such k, the least absolute value of the nonzero
exponents decreases [7, Section 5.2].

After obtaining a solution with the procedure above, the inference algorithm
assigns different base degree to each surviving g-degree variable.

Example 10. Consider the following constraint set:{
αxα

−1
x0

= 1, αvα
−1
v0 = 1, αtα

−1
t0 = 1, αtα

−1
dt = 1,

αxα
−1
v α−1

dt = 1, αvα
−1
g α−1

dt = 1

}

which is equivalent to that of Example 9. After applying the second rule to
constraints αxα

−1
x0

= 1, αvα
−1
v0 = 1, αtα

−1
t0 = 1, and αtα

−1
dt = 1 in this order,

the procedure obtains({
αx0α

−1
v0 α

−1
dt = 1,

αv0α
−1
g α−1

dt = 1

}
,

{
αx 7→ αx0 , αv 7→ αv0 ,

αt 7→ αdt , αt0 7→ αdt

})

At the next step, suppose that the procedure picks up the constraint αx0α
−1
v0

α−1
dt =

1. By applying the second rule, the procedure generates({
αv0α

−1
g α−1

dt = 1
}
,

{
αx 7→ αv0αdt , αv 7→ αgαdt , αt 7→ αdt ,

αt0 7→ αdt , αx0 7→ αv0αdt

})

4We do not use this case in the rest of this article.
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Then, with the second and first rules, the procedure obtains the following solu-
tion: {

αx 7→ αgα
2
dt , αv 7→ αgαdt , αt 7→ αdt , αt0 7→ αdt ,

αx0 7→ αgα
2
dt , αv0 7→ αgαdt

}
.

By assigning the base degree A to αg and T to αdt , we obtain{
αx 7→ AT 2, αv 7→ AT,αt 7→ T, αt0 7→ T, αx0

7→ AT 2, αv0 7→ AT
}
.

Notice the set of base degrees is different from that we used in Example 6; in
this example, the g-degree for the acceleration rates (A) is used as a base degree,
whereas that for lengths (L) is used in Example 6. This happens because the
order of the constraints chosen in an execution of the inference algorithm is
nondeterministic. Our results in the rest of this article do not depend on a
specific choice of base degrees.

Limitation. A limitation of the current g-degree inference algorithm is that,
even if a constant symbol in a program is intended to be of a g-degree other
than 1, it has to be of g-degree 1 in the current type system. For example,
consider the assignment v := v−gdt−ρvdt , a variant of cfall which takes friction
between the mass point and air into account. If we replace g with 9.81 and ρ with
0.24, then the g-degrees of v and dt are inferred to be 1 due to the assignment
v := v − 9.8dt − 0.24vdt : The constraints for this assignment generated by the
inference algorithm is {αv = αdt , αdt = αvαdt , αv = αv }, whose only solution is
{αv 7→ 1, αdt 7→ 1 }. Such a g-degree assignment is not useful for the template-
size reduction; any polynomial is a GH polynomial under this assignment.

As a workaround, our current implementation that will be described in Sec-
tion 6 uses an extension that can assign a g-degree other than 1 to each occur-
rence of a constant symbol by treating a constant symbol as a variable. For
example, consider the following program sumpowerd.

x := X + 1; y := 0; s := 1
while x ̸= 0 do

if y = 0 then (x, y) := (x− 1, x) else (s, y) := (s+ yd, y − 1)
end while

The inference algorithm treats the underlined occurrence of 1 as a variable and
assigns T d to it; the other occurrences of 0 and 1 are given g-degree T . This
g-degree assignment indeed produces a smaller template.

4. GHA Postconditions Generate All Algebraic Postconditions

In this section, we prove the main result: well-typed programs have enough
GHA postconditions. This is formally stated as follows.

Theorem 11. If Γ ⊢ c and p = 0 is a postcondition of c (i.e. if c, σ → σ′ then
σ′(p) = 0 for all σ and σ′), then so are pτ = 0 for all τ .

11



We first prove several lemmas used in the proof of Theorem 11. Hereafter,
we assume that c contains at most k variables y1, . . . , yk, and is well-typed under

Γ = { y1 7→ τ1, . . . , yk 7→ τk }.

Let b1, . . . , bm be the list of base degrees appearing in Γ (m is the number of
base degrees).

First, we generalize the following fact about homogeneous polynomials: if
p ∈ R[x1, . . . , xn] is homogeneous of degree d, then p(λx) = λdp(x) for all λ ∈ R.
To state the lemma, we use the following notations.

Definition 12. Let τ = bn1
1 · · · bnm

m be a g-degree.

1. For λ ∈ Rm, we define λτ := λn1
1 · · ·λnm

m . Similarly, for a sequence of
variables x⃗ = (x1, . . . , xm), we define x⃗τ := xn1

1 · · ·xnm
m .

2. For a state σ, we define another state λ • σ by (λ • σ)(yi) = λτiσ(yi).

Lemma 13. If p is a GH polynomial with degree τ , then (λ • σ)(p) = λτσ(p).

Lemma 14. If c, σ → σ′ and λ ∈ (R \ { 0 })m, then c, λ • σ → λ • σ′.

Proof. By induction on the derivation of c, σ → σ′, using the fact that c contains
only GH polynomials. The assumption that every component of λ is nonzero is
needed to ensure that σ(p) ▷◁ 0 and (λ • σ)(p) ▷◁ 0 are equivalent.

Lemma 15. Let q be a polynomial in m variables. Suppose that q(λ) = 0 for
all λ ∈ (R \ { 0 })m. Then, we have q = 0 as a polynomial.

Proof. We prove this by induction on m. If m = 0, the statement is trivial.
Otherwise, let us write

q(x1, . . . , xm) =
∑
n

qn(x2, . . . , xm)xn
1

where qn(x2, . . . , xm) are polynomials in m− 1 variables. Fix any λ2, . . . , λm ∈
R \ { 0 }. Then q(x1, λ2, . . . , λm) =

∑
n qn(λ2, . . . , λm)xn

1 is a polynomial in
one variable, and by assumption any element of R \ { 0 } is its root. However,
a nonzero polynomial in one variable can have only finitely many roots, and
thus q(x1, λ2, . . . , λm) = 0 as polynomials. This means that all the coefficients
qn(λ2, . . . , λm) of xn

1 are zero for any λ2, . . . , λm ∈ R \ { 0 }, and then by the
induction hypothesis we conclude that qn = 0 for all n, that is, q = 0.

Proof of Theorem 11. Suppose p = 0 is a postcondition of c. Let σ and σ′

be states such that c, σ → σ′. We shall prove that σ′(pτ ) = 0 for all τ . Let
aτ = σ′(pτ ), and consider a polynomial q =

∑
τ aτ x⃗

τ , where x⃗ consists of m
variables. Then, by Lemma 15, it is sufficient to show that q(λ) = 0 for all
λ ∈ (R \ { 0 })m. By Lemma 14, we have c, λ • σ → λ • σ′. Then, by the
assumption that p = 0 is a postcondition of c, we obtain (λ • σ′)(p) = 0. Now
q(λ) = 0 follows from the sequence of equalities

(λ • σ′)(p) =
∑
τ

(λ • σ′)(pτ ) =
∑
τ

λτσ′(pτ ) =
∑
τ

λτaτ = q(λ).

We use Lemma 13 in the second equality.
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5. Template-based algorithm

This section applies our idea to template-based algorithm by Cachera et
al. [4].

5.1. Constraint generation algorithm

Cachera et al. proposed a sound template-based algorithm for the postcon-
dition problem. Their basic idea is to express a fixed point by constraints on
the parameters in a template in order to avoid fixed-point iteration. We shall
first recall their constraint-generation algorithm.

Definition 16. We hereafter assume a fixed set of parameters, ranged over by
a. A parameter represents an unknown value. A template is an expression of
the form a1p1 + · · · + anpn where a1, . . . , an are parameters and p1, . . . , pn are
polynomials. A GH template (of g-degree τ under Γ) is a template a1p1 + · · ·+
ampm where p1, . . . , pm are GH polynomials (of g-degree τ under Γ).

An equality constraint is an expression of the form ⟨G ≡ G′⟩, where G,G′

are (finite) sets of templates. A constraint set, ranged over by C, is a set of
equality constraints.

A valuation is a map from the set of parameters to R. We can extend a
valuation v as a map from templates to polynomials by v(a1p1+ · · ·+ampm) :=
v(a1)p1+· · ·+v(am)pm. A valuation v satisfies an equality constraint ⟨G ≡ G′⟩,
written v |= ⟨G ≡ G′⟩, if v(G) and v(G′) are equivalent as algebraic predicates,
that is, the following holds for any state σ:

σ(v(f)) = 0 for all f ∈ G ⇐⇒ σ(v(f)) = 0 for all f ∈ G′.

A solution of a constraint set C is a valuation that satisfies all constraints in C.
If v is a solution of C, we write v |= C.

The algorithm is parameterized over a remainder-like operation Rem. This
is an operation that takes a template f and a polynomial p, and returns a
template of the form f − pg, where g is some template. We write Rem(G, p),
where G is a set of templates, for {Rem(f, p) | f ∈ G }. A typical example is
Rempar defined below, which is the remainder operation Cachera et al. used in
their algorithm.

Definition 17. We define Rempar(f, p) = f − pg where g is the most general
template of degree deg(f) − deg(p),5 and all the coefficients of g are fresh
parameters.

For example, Rempar(x2, x+ 1) = x2 − (a1x+ a2)(x+ 1), because a1x+ a2
is the most general template of degree deg(x2)− deg(x+ 1) = 1.

The constraint-generation algorithm is given as a transformation on pairs
of the form (G,C) where G is a set of templates, and C is a constraint set.

5Here, deg represents the ordinary degree, not a g-degree.
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Intuitively, (G,C) represents a predicate expressed by the conjuction
∧

f∈G(f =
0), where parameters occurring in G are some real numbers subject to the
constraints in C. The algorithm is defined byJskipK♯cRem(G,C) = (G,C)Jx:=pK♯cRem(G,C) = (G[x := p], C)Jc1; c2K♯cRem(G,C) = Jc1K♯cRem(Jc2K♯cRem(G,C))Jif p = 0 then c1 else c2K♯cRem(G,C) = (p ·G2 ∪Rem(G1, p), C1 ∪ C2)Jwhile p ▷◁ 0 do c1K♯cRem(G,C) = (G,C1 ∪ {⟨G ≡ G1⟩}),

where (Gi, Ci) := JciK♯cRem(G,C) in the last two cases.
This algorithm receives a postcondition (G,C) and computes a precondition

of c; at the same time it also accumulates the generated constraints to C. A
constraint ⟨G ≡ G1⟩ is added when a while statement is encountered. This
constraint expresses the requirement that G itself becomes a loop invariant. In
this way, the algorithm avoids computing the greatest fixed-point.

The algorithm above is the one proposed by Cachera et al., except that it
is parameterized by Rem; the original algorithm is obtained by instantiating
Rem with Rempar.

Soundness of this algorithm can be formulated as in the theorem below.
Intuitively, this theorem states that if (G,C) = JcK♯cRem(G′, C ′), then the Hoare
triple {(G,C)}c{(G′, C ′)} is valid, where (G,C) and (G′, C ′) are regarded as
predicates in the manner explained above.

Theorem 18. Suppose c, σ → σ′, and let (G,C) = JcK♯cRem(G′, C ′). Moreover,
suppose that v |= C, and σ satisfies σ(v(f)) = 0 for all f ∈ G. Then, σ′(v(f ′)) =
0 for all f ′ ∈ G′.

Proof. By induction on the derivation of c, σ → σ′, using C ′ ⊆ C (which is easy
to verify). If c is a loop, use the fact that “v(f) = 0 for all f ∈ G” is a loop
invariant.

The highlight of the algorithm is the definition of Jif p = 0 then c1 else

c2K♯cRem. In order to explain this definition, we prove this case. Let us assume
v |= C1 ∪ C2, and σ(v(f)) = 0 for all f ∈ p · G2 ∪Rem(G1, p). There are two
cases: σ(p) = 0, and σ(p) ̸= 0.

If σ(p) = 0, then c1 is executed, and therefore c1, σ → σ′. We have σ(v(f)) =
0 for all f ∈ Rem(G1, p). By definition of a remainder operation, for each
f ′ ∈ G1 there exists g such that f ′ − pg ∈ Rem(G1, p). Therefore σ(v(f ′)) −
σ(v(pg)) = 0, but by assumption σ(v(p)) = σ(p) = 0 (the first equality holds
because p does not contain parameters), and hence σ(v(f ′)) = 0. Therefore
σ(v(f ′)) = 0 for all f ′ ∈ G1. Then, by the induction hypothesis (and C ⊆ C1),
we obtain σ(v(f)) = 0 for all f ∈ G.

If σ(p) ̸= 0, then c2 is executed, and therefore c2, σ → σ′. We have σ(v(f)) =
0 for all f ∈ p ·G2, and thus σ(v(pf ′)) = 0 for all f ′ ∈ G2. By the assumption
we have σ(v(p)) ̸= 0, and hence σ(v(f ′)) = 0 for all f ′ ∈ G2. The rest of the
proof is similar to the previous case.
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Algorithm 1 Inference of algebraic postconditions.
1: procedure InvInf(c, d)
2: g ← the most general template of degree d

3: (G,C)← JcK♯cRempar ({ g } , ∅)
4: return v(g) where v is a solution of C ∪ { ⟨G ≡ { 0 }⟩ }
5: end procedure

Remark 3. The soundness would still hold even if we omitted the multiplier p
and defined

Jif p = 0 then c1 else c2K♯cRem(G) = (G2 ∪Rem(G1, p), C1 ∪ C2).

However, this makes the precondition less precise.

5.2. Cachera et al.’s template-based algorithm

The algorithm proposed by Cachera et al. is shown in Algorithm 1. It solves
the postcondition problem using the constraint-generating subprocedure intro-
duced above, with Rem being instantiated by Rempar (Definition 17). This
algorithm receives a program c and a degree d, and returns a postcondition that
can be expressed as an algebraic condition of degree at most d. The algorithm
first generates the most general template g of degree d for the postcondition,
and applies JcK♯cRempar to g. For the returned set of polynomials G and the con-
straint set C, the algorithm computes a solution of C ∪⟨G ≡ { 0 }⟩; the equality
constraint ⟨G ≡ { 0 }⟩ forces the computed precondition G to be valid for all
initial state.

This algorithm is proved to be sound: If p ∈ InvInf(c, d), then p = 0 holds
at the end of c for any initial states [4]. This is a consequence of Theorem 18 and
the fact that all templates in G returned by the constraint-generation algorithm
(which expresses a precondition) are forced to be zero by the constraint ⟨G ≡
{ 0 }⟩.

Completeness is not discussed by Cachera et al. In fact, it does not hold,
because the template generation algorithm ignores loop guards. For example,
consider c = while x ̸= 0 do skip, and p = x. It is easy to check that p = 0
is a postcondition of c. Let us calculate constraints generated from c. BecauseJskipK♯cRem is an identity function, we have

JcK♯cRem(G, ∅) = (G, { ⟨G ≡ G⟩ }).

Therefore JcK♯cRem(G, ∅) returns a constraint set

{ ⟨G ≡ G⟩, ⟨G ≡ { 0 }⟩ } ,

where G = { g } for a template g. Its only solution is the valuation that assigns
zero to all parameters. Therefore the template-based algorithm cannot produce
nontrivial postconditions of c. Notice that this argument does not depend on
the specific choice of Rem or g, and therefore the template-based algorithm is
not complete regardless of the choices of a remainder operation and an initial
template.
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Algorithm 2 Inference of algebraic postconditions (homogeneous version).

1: procedure InvInfH(c, d, Γ, τ)
2: g ← the most general template of g-degree τ and degree d

3: (G,C)← JcK♯c
Rem

parH
Γ

({ g } , ∅)

4: return v(g) where v is a solution of C ∪ { ⟨G ≡ { 0 }⟩ }
5: end procedure

Remark 4. The algorithm requires a solver for the constraints of the form
⟨G ≡ G′⟩. A typical sufficient (but not necessary) condition for v to be its solu-
tion is that v(G) and v(G′) generate the same ideal: if G = { f1, . . . , fm } , G′ =
{ g1, . . . , gn }, then there exist polynomials pij , qij such that v(fi) =

∑
j pijv(gj)

and v(gj) =
∑

i qijv(fi). To avoid high-cost computation, Cachera et al. pro-
posed heuristics to solve an equality constraint.

Example 19. We explain how InvInf(cfall , 3) works. The algorithm generates
a degree-3 template f(x, v, t, x0, v0, t0, a, dt , g) over {x, v, t, x0, v0, t0, a, dt , g }.
The algorithm then generates the following constraints by using JcfallK♯cRempar :

⟨{ f(x0, v0, t0, x0, v0, t0, a, dt , g) } ≡ { 0 }⟩,
⟨{ f(x, v, t, x0, v0, t0, a, dt , g) } ≡

{ f(x+ vdt , v − gdt , t+ dt , x0, v0, t0, a, dt , g) }⟩.

By solving these constraints, and by substituting the solution to f , we obtain
postconditions such as −gt+gt0−v+v0 and −gt2+gt20−2tv+2t0v0+2x−2x0,
depending on the choice of solutions.

5.3. Restriction to GH templates

We can restrict Cachera et al.’s algorithm to GH templates. To this end, we
need to define a remainder operation that respects generalized homogeneity.

Definition 20. The remainder operation RemparH
Γ (f, p) returns f − pg where

g is the most general GH template of g-degree gdeg(f)gdeg(p)−1, and with
degree deg(f)− deg(p), and all the coefficients of g are fresh parameters.

By instantiating Rem with RemparH
Γ (and by restricting the initial template

to GH one), we obtain Algorithm 2, which is a variant of Algorithm 1.
The algorithm InvInfH takes the input τ that specifies the g-degree of the

postcondition. We have not obtained a theoretical result for τ to be passed
to InvInfH so that it generates a good postcondition. However, during the
experiments in Section 6, we found that the following strategy often works: Pass
the g-degree of the monomial of interest. For example, if we are interested in a
property related to x, then pass Γ(x) (i.e., L) to InvInfH for the postcondition
−gt2 + gt20 − 2tv + 2t0v0 + 2x − 2x0 = 0. How to help a user to find such
“monomial of her interest” is left as an interesting future direction.
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6. Experiment

We implemented Algorithm 2 and conducted experiments. Our implemen-
tation Fastinddim takes a program c, a maximum degree d of the template g in
the algorithm, and a monomial w. It conducts type inference of c to generate
Γ and calls InvInfH(c, d,Γ,gdegΓ(w)). The type inference algorithm is imple-
mented with OCaml; the other parts (e.g., a solver for equality constraints) are
implemented with Mathematica.

To demonstrate the merit of our approach, we applied this implementation
to the benchmark used in the experiment by Cachera et al. [4] and compared
our result with that of their implementation, which is called Fastind. The
entire experiment was conducted on a MacBook Air 13-inch Mid 2013 model
with a 1.7 GHz Intel Core i7 (with two cores, each of which has 256 KB of L2
cache) and 8 GB of RAM (1600 MHz DDR3). The modules written in OCaml
were compiled with ocamlopt. The version of OCaml is 4.02.1. The version of
Mathematica is 10.0.1.0. We refer the reader to [13, 4, 3] for detailed descriptions
of each program in the benchmark. Each program contains a nested loop with
a conditional branch (e.g., dijkstra), a sequential composition of loops (e.g.,
divbin), and nonlinear expressions (e.g., petter(n).) We generated a nonlinear
postcondition in each program.

Table 1 shows the result. The column deg shows the degree of the generated
polynomial, tsol shows the time spent by the constraint solver (ms), #m shows
the number of monomials in the generated template, tinf shows the time spent
by the dimension-type inference algorithm (ms), and tinf + tsol shows the sum
of tinf and tsol . By comparing #m for Fastind with that of Fastinddim, we
can observe the effect of the use of GH polynomials on the template sizes.
Comparison of tsol for Fastind with that of Fastinddim suggests the effect on
the constraint reduction phase; comparison of tsol for Fastind with tinf + tsol
for Fastinddim suggests the overhead incurred by g-degree inference.

Discussion. The size of the templates, measured as the number of monomials
(#m), was reduced in 13 out of 20 programs by using GH polynomials. The
value of tsol decreased for these 13 programs; it is almost the same for the
other programs. #m did not decrease for the other seven programs because
the extension of the type inference procedure mentioned at the end of Section 3
introduced useless auxiliary variables. We expect that such variables can be
eliminated by using a more elaborate program analysis.

By comparing tsol for Fastind and tinf + tsol for Fastinddim , we can observe
that the inference of the g-degree assignment sometimes incurs an overhead for
the entire execution time if the template generated by Fastind is sufficiently
small; therefore, Fastind is already efficient. However, this overhead is compen-
sated in the programs for which Fastind requires more computation time.

To summarize, our current approach is especially effective for a program for
which (1) the existing algorithm is less efficient owing to the large size of the
template and (2) a nontrivial g-degree assignment can be inferred. We expect
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Name Fastind Fastinddim
deg tsol #m tinf tsol tinf + tsol #m

dijkstra 2 9.29 21 0.456 8.83 9.29 21
divbin 2 0.674 21 0.388 0.362 0.750 8
freire1 2 0.267 10 0.252 0.258 0.510 10
freire2 3 2.51 35 0.463 2.60 3.06 35
cohencu 3 1.74 35 0.434 0.668 1.10 20
fermat 2 0.669 21 0.583 0.669 1.25 21
wensley 2 104 21 0.436 28.5 28.9 9
euclidex 2 1.85 45 1.55 1.39 2.94 36
lcm 2 0.811 28 0.513 0.538 1.05 21
prod4 3 31.6 84 0.149 2.78 2.93 35
knuth 3 137 220 4.59 136 141 220
mannadiv 2 0.749 21 0.515 0.700 1.22 18
petter1 2 0.132 6 0.200 0.132 0.332 6
petter2 3 0.520 20 0.226 0.278 0.504 6
petter3 4 1.56 35 0.226 0.279 0.505 7
petter4 5 7.15 56 0.240 0.441 0.681 8
petter5 6 17.2 84 0.228 0.326 0.554 9
petter10 11 485 364 0.225 0.354 0.579 14
sumpower1 3 2.20 35 0.489 2.31 2.80 35
sumpower5 7 670 330 0.469 89.1 89.6 140

Table 1: Experimental result.

that our approach will be effective for a wider range of programs if we find a
more competent g-degree inference algorithm.

7. Related work

The template-based algebraic invariant synthesis proposed to date [1, 4] has
focused on reducing the problem to constraint solving and solving the generated
constraints efficiently; strategies for generating a template have not been the
main issue. A popular strategy for template synthesis is to iteratively increase
the degree of a template. This strategy suffers from an increase in the size of a
template in the iterations when the degree is high.

Our claim is that a prior analysis of a program can effectively reduce the
size of a template; we used the dimension type system for this purpose in this
article inspired by the principle of quantity dimensions in the area of physics.
Of course, there is a tradeoff between the cost of the analysis and its effect on
the template-size reduction; our experiments suggest that the cost of dimension
type inference is reasonable.

Semialgebraic invariants (i.e., invariants written using inequalities on poly-
nomials) are often useful for program verification. The template-based approach
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is also popular in semialgebraic invariant synthesis. One popular strategy in
template-based semialgebraic invariant synthesis is to reduce this problem to
one of semidefinite programming, for which many efficient solvers are widely
available.

As of this writing, it is an open problem whether our idea regarding GH poly-
nomials also applies to semialgebraic invariant synthesis; for physically mean-
ingful programs, at least, we guess that it is reasonable to use GH polynomials
because of the success of the quantity dimension principle in the area of physics.
A possible approach to this problem would be to investigate the relationship
between GH polynomials and Stengle’s Postivstellensatz [14], which is the theo-
retical foundation of the semidefinite-programming approach mentioned above.
There is a homogeneous version of the Stengle’s Positivstellensatz [15, Theo-
rem II.2]; because the notion of homogeneity considered there is equivalent to
generalized homogeneity introduced in this article, we conjecture that this theo-
rem provides a theoretical foundation of an approach to semialgebraic invariant
synthesis using GH polynomials.

Although the application of the quantity dimension principle to program
verification is novel, this principle has been a handy tool for discovering hidden
knowledge about a physical system. A well-known example in the field of hydro-
dynamics is the motion of a fluid in a pipe [6]. One fundamental result in this
regard is that of Buckingham [16], who stated that any physically meaningful
relationship among n quantities can be rewritten as one among n − r indepen-
dent dimensionless quantities, where r is the number of the quantities of the
base dimension. Investigating the implications of this theorem in the context of
our work is an important direction for future work.

The structure of R[x1, . . . , xn] resulting from the notion of the generalized
degrees is an instance of graded rings from ring theory. Concretely, R is said
to be graded over an Abelian group G if R is decomposed into the direct sum
of a family of additive subgroups {Rg | g ∈ G } and these subgroups satisfy
Rg ·Rh ⊆ Rgh for all g, h ∈ G. Then, an element x ∈ R is said to be homogeneous
of degree g if x ∈ Rg. We leave an investigation of how our method can be viewed
in this abstract setting as future work.

8. Conclusion

We presented a technique to reduce the size of a template used in template-
based invariant-synthesis algorithms. Our technique is based on the finding
that, if an algebraic postcondition of a program c exists, then it is the sum
of GHA postcondition of c; hence, we can reduce the size of a template by
synthesizing only GH polynomials. We presented the theoretical development
as a modification of the framework proposed by Cachera et al. and empirically
confirmed the effect of our approach using the benchmark used by Cachera et al.
Although we used the framework of Cachera et al. as a baseline, we believe that
we can apply our idea to the other template-based methods [17, 18, 1, 3, 2, 4, 19].

Our motivation behind the current work is safety verification of hybrid sys-
tems, in which the template method is a popular strategy. For example, Gulwani
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et al. [20] proposed a method of reducing the safety condition of a hybrid sys-
tem to constraints on the parameters of a template by using Lie derivatives. We
expect our idea to be useful for expediting these verification procedures.

In this regard, Suenaga et al. [21, 22, 23] have proposed a framework called
nonstandard static analysis, in which one models the continuous behavior of a
system as an imperative or a stream-processing program using an infinitesimal
value. An advantage of modeling in this framework is that we can apply program
verification tools without an extension for dealing with continuous dynamics.
However, their approach requires highly nonlinear invariants for verification.
This makes it difficult to apply existing tools, which do not handle nonlinear
expressions well. We expect that the current technique will address this difficulty
with their framework.

We are also interested in applying our idea to decision procedures and sat-
isfiability modulo theories (SMT) solvers. Support of nonlinear predicates is an
emerging trend in many SMT solvers (e.g., Z3 [24]). Dai et al. [25] proposed
an algorithm for generating a semialgebraic Craig interpolant using semidefinite
programming [25]. Application of our approach to these method is an interesting
direction for future work.
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