
Noname manuscript No.
(will be inserted by the editor)

Automated Verification of Functional Correctness of
Race-Free GPU Programs

Kensuke Kojima · Akifumi Imanishi ·
Atsushi Igarashi

Received: date / Accepted: date

Abstract We study an automated verification method for functional correctness
of parallel programs running on graphics processing units (GPUs). Our method
is based on Kojima and Igarashi’s Hoare logic for GPU programs. Our algorithm
generates verification conditions (VCs) from a program annotated by specifica-
tions and loop invariants, and pass them to off-the-shelf SMT solvers. It is often
impossible, however, to solve naively generated VCs in reasonable time. A main
difficulty stems from quantifiers over threads due to the parallel nature of GPU
programs. To overcome this difficulty, we additionally apply several transforma-
tions to simplify VCs before calling SMT solvers.

Our implementation successfully verifies correctness of several GPU programs,
including matrix multiplication optimized by using shared memory. In contrast to
many existing verification tools for GPU programs, our verifier succeeds in ver-
ifying fully parameterized programs: parameters such as the number of threads
and the sizes of matrices are all symbolic. We empirically confirm that our sim-
plification heuristics is highly effective for improving efficiency of the verification
procedure.

Keywords Program Verification · GPGPU · SMT · Symbolic Execution

1 Introduction

General-purpose computation on graphics processing units (GPGPU) is a tech-
nique to utilize GPUs, which consist of many cores running in parallel, to ac-
celerate applications not necessarily related to graphics processing. GPGPU is
one of the important techniques in high-performance computing, and has a wide
range of applications [26]. However, it is hard and error-prone to hand-tune GPU

K. Kojima · A. Imanishi · A. Igarashi
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, JAPAN

K. Kojima
Tel.: +81-75-753-5968
Fax: +81-75-753-4954
E-mail: kozima@fos.kuis.kyoto-u.ac.jp

2 Kensuke Kojima et al.

programs for efficiency because the programmer has to consider cache, memory
latency, memory access pattern, and data synchronization.

In this article, we study an automated deductive verification technique for
functional correctness of GPU programs. We follow the standard method: our
algorithm first generates verification conditions (VCs) from a program annotated
with specification and loop invariants and then passes the generated VCs to off-the-
shelf SMT solvers to check their validity. We empirically show that our technique
can be applied to actual GPU programs, such as matrix multiplication programs
optimized by using shared memory. Because shared memory optimization is a
technique that is widely used when writing GPU programs, we believe that it is
an encouraging result that we could verify a typical example of such programs.

We separate the verification problem into two parts: verifying race-freedom
of general programs, and verifying functional correctness of race-free programs.
We focus on the latter, relying on race detection techniques that have been stud-
ied elsewhere [21,2]. Race-freedom allows us to assume an arbitrary scheduling of
threads without changing the behavior of a program. In particular, we can safely
assume that all threads are executed in complete lockstep (that is, all threads exe-
cute the same instruction at the same time). Kojima and Igarashi [13,14] observed
that such an assumption makes it possible to analyze GPU programs in a man-
ner similar to sequential ones and developed Hoare logic for GPGPU programs
executed in lockstep. We adapt their logic for VC generation.

Even under the race-freedom assumption, however, the generated VCs are often
too complex for SMT solvers to solve in a reasonable amount of time. VCs tend to
involve many quantifiers over threads and nonlinear expressions. Quantifiers over
threads arise from assignment statements. When an assignment is executed on a
GPU, it modifies more than one element of an array at a time. This means that the
VC corresponding to an assignment should read “if there exists a thread writing
into this index, . . . , and otherwise,” In addition, the termination condition of
a loop (“there is no thread satisfying the guard”) also involves a quantifier over
threads. Nonlinear expressions often appears in GPGPU programs as computation
of offsets of arrays in a complicated way. This makes the verification problem
harder because nonlinear integer arithmetic is undecidable in general. To overcome
this difficulty, we devise several transformations to simplify VCs. Some of the
simplification methods are standard (e.g., quantifier elimination) but others are
specific to the current problem.

We implement a verifier for (a subset of) CUDA C, conduct experiments, and
show that our method successfully verifies realistic GPU programs. Specifically,
the correctness of optimized matrix multiplication programs using shared memory
is verified, without instantiating parameters such as sizes of matrices and thread
blocks. We also empirically confirm that our simplification heuristics is indeed
highly effective to improve the verification process.

Contributions. Our main contributions are: (1) a VC generation algorithm for
(race-free) GPU programs; (2) several simplification procedures to help SMT
solvers discharge VCs; (3) implementation of a verifier based on (1) and (2); and
(4) experiments to show that our verification method can indeed be applied to re-
alistic GPU programs. Our approach can successfully handle fully parameterized
programs, that is, we do not need to fix parameters such as the number of threads

Automated Verification of Functional Correctness of Race-Free GPU Programs 3

and sizes of arrays, unlike much of the existing work (for example, GPUVerify [2]
requires the user to specify the number of threads).

This article extends the previous work of the authors [15] with another simpli-
fication method (Section 4.4) and additional experiments.

Organization. The rest of the article is organized as follows. Section 2 explains
the execution model of GPU programs on which our verification method is based.
Section 3 describes our VC generation algorithm. Section 4 introduces several
methods to simplify generated VCs. Section 5 reports our implementation and
experimental results. Section 6 discusses related work, and finally we summarize
the article and discuss future directions in Section 7.

2 Execution model of GPU programs

Compute Unified Device Architecture (CUDA) is a development environment pro-
vided by NVIDIA [27] for GPGPU. It includes a programming language CUDA
C, which is an extension of C for GPGPU. A CUDA C program consists of host
code, which is executed on a CPU, and device code, which is executed on a GPU.
Host code is mostly the same as usual C code, except that it can invoke a func-
tion defined in device code. Such a function is called a kernel function (or simply
kernel). The device code is also similar to usual C code, but it includes several
special constants and functions specific to GPU, such as thread identifiers and syn-
chronization primitives. The kernel function is executed on GPUs by the specified
number of threads in parallel. The number of threads is specified in host code and
does not change during the execution of a kernel function. When all the threads
finish the execution, the result becomes available to host code. In this article we
focus on the verification of kernel functions invoked by host code (it is allowed in
CUDA C to call a kernel function from another kernel function, but we do not
consider such a function call).

As mentioned in Section 1, we assume each instruction is executed in com-
plete lockstep by all threads during the execution of device code. When the con-
trol branches during the execution, both branches are executed sequentially with
threads irrelevant to branches being disabled. After both branches are completed,
all the threads are enabled again. We say a thread is inactive if it is disabled,
and active otherwise. This execution model is simplified from the so-called SIMT
execution model, an execution model of CUDA C [27], in which threads form hi-
erarchically organized groups and only threads that belong to the smallest group
(called warp) are executed in lockstep. However, for race-free programs, there are
not significant differences (except barrier divergence, which is an error caused by
threads executing barrier synchronization at different program points).

Let us consider the kernel given in Figure 1, which we call ArrayCopy, and use it
as a running example. This program copies the contents of a shared array (pointed
to by) a to another shared array (pointed to by) b, both of length len. N is the
number of threads, and tid is a thread identifier, which ranges from 0 to N−1. The
first two lines specify a precondition and a postcondition, and the two lines above
the loop declare loop invariants used for verification of the specification. These
specifications will be used later but we ignore them for the moment because they
are not used during the execution.

4 Kensuke Kojima et al.

/*@ requires len == m * N;
ensures \forall int j; 0 <= j < len ==> b[j] == a[j]; */

void ArrayCopy (int *a, int *b, int len) {
int i = tid;
/*@ loop invariant i == N * loop_count + tid;

loop invariant \forall int j; 0 <= j < N * loop_count ==> b[j] == a[j]; */
while (i < len) {

b[i] = a[i];
i = i + N;

}
}

Fig. 1 Running Example: ArrayCopy

If len is 6 and N is 4, the execution takes place as follows.1 The local variable i

is initialized to tid, so its initial value equals t at thread t (0 ≤ t < 4). In the first
iteration of the loop body, the first four elements are copied from a to b, and the
value of i at thread t becomes t+ 4. Then, the guard i < len is satisfied by only
threads 0 and 1; therefore, threads 2 and 3 become inactive and the loop body
is iterated again. Because active threads are only 0 and 1, the fourth and fifth
elements of a are copied, and the values of i at threads 0, 1, 2, and 3 becomes 8,
9, 6, and 7, respectively. Now, no threads satisfy the guard, so the loop is exited
and the program terminates with the expected result.

There are two typical constructs that are not included in the example: condi-
tional (if-then-else) statements and barrier synchronization. If a conditional state-
ment is encountered, both branches are executed serially. During the execution
of then branch, the threads in which the condition is true are enabled, and other
threads are enabled during the execution of else branch. It is not specified which
of the branches are executed first, but the order of execution does not affect the
result if the program is race-free (in our presentation in Section 3, we assume then
branch is executed first). A barrier synchronization has no special meaning in our
simplified execution model, in which the complete lockstep execution is assumed.
However, we can treat it as an assertion that all threads are enabled at that point.
Synchronization failure can be detected by regarding barrier synchronization as
this type of assertion.

3 Verification Condition Generation

In this section, we describe how VCs are generated from a program annotated
with specifications. We present verification generation as symbolic execution [12]
of the axiomatic semantics of SIMT programs by Kojima and Igarashi [13,14]. We
do not review the previous work here but believe that the description below is
detailed and self-contained enough, with the concrete execution model described
in the last section in mind.

1 We choose these initial values to explain what happens when the control branches. These
initial values do not satisfy the precondition on the first line, so the asserted invariant is not
preserved during execution.

Automated Verification of Functional Correctness of Race-Free GPU Programs 5

3.1 Specifications

In general, an input to a VC generation algorithm is a program with annotations.
There are three kinds of annotations: preconditions, postconditions, and loop invari-

ants (or simply invariants), as in Figure 1. Preconditions and postconditions are
conditions that should be satisfied by the initial and final state of the program, re-
spectively. Loop invariants are associated for every loop construct appearing in the
program, and specify conditions that should always be satisfied at the beginning
and end of each iteration. Loop invariants are used by symbolic execution algo-
rithm to handle the loop constructs. These three kinds of annotations are given as
logical formulas on program variables, but in addition they may refer to auxiliary
variables, called specification variables, which do not appear in the program.

As an example, let us take a look at the specification of ArrayCopy in Figure 1.
The first line declares a precondition that the length of arrays is a multiple of the
number of threads. A variable m, whose declaration is omitted, is a specification
variable. We also assume implicitly that a and b do not overlap, and have length (at
least) len. The second line declares the postcondition asserting that the contents
of a are indeed copied into b. The loop contains two declarations of loop invariants.
In the invariant we allow a specification variable loop count, which stands for how
many times the loop body has been executed. This variable is not present in CUDA
C, but we have introduced it for convenience. It allows us to express the value of
variables explicitly in an invariant. The first invariant specifies the value of the
variable i on each iteration, and the second asserts that at the beginning of l-th
iteration (counting from 0) the first N · l elements of a have been already copied
to b.

3.2 Symbolic Execution

We use a technique called symbolic execution to generate a VC. Symbolic execution
translates a program into a set of logical formulas Γ that encodes the execution of
the program. In particular, Γ contains information about possible final states of the
program. Therefore, in order to verify the correctness of the program, it is sufficient
to check that the generated set Γ implies the postconditions. This implication
condition is the output of the VC generation algorithm. Several additional formulas
are also generated (and such formulas are also called VCs) during the symbolic
execution. They are to ensure that the provided loop invariants are indeed true
at the beginning and the end of each iteration. In this manner, the verification
problem is systematically translated to the validity checking problem, which can
be passed to off-the-shelf SMT solvers.

3.3 Details of the VC Generation Algorithm

We explain the details of our VC generation algorithm using the example ArrayCopy
in Figure 1. Constructs that do not appear in this example are explained at the
end of the section.

First, generate specification variables i0 and len0, which represent the initial
values of i and len, respectively, and a0 and b0, which represent the contents of

6 Kensuke Kojima et al.

arrays pointed to by a and b, respectively. Here, i0, a0, and b0 has the type of
maps from int to int, and len0 has type int. Since a0 and b0 represent arrays,
they are naturally represented as maps. The reason that i0 also has a map type
is that it corresponds to a local variable whose value varies among threads. So,
expression i0(t) stands for the value of i at thread t. We also need m which is a
specification variable of type int. The precondition in the first line is translated
into the formula len0 = m ·N , so we assume this equation holds. In the next line
the value of i is updated to tid in all threads. In general every time we encounter
an assignment we introduce a new variable that represents the value of the variable
being assigned after this assignment. In the case of i = tid we introduce a new
variable i1 of the same type as i0, and assume ∀t.0 ≤ t < N → i1(t) = t, that is, its
value on thread t equals t. For later use, let us denote by Γentry the list consisting
of the two constraints we have introduced so far:

Γentry
def
= len0 = m ·N,∀t.0 ≤ t < N → i1(t) = t.

So, Γentry represents possible states of the program at the beginning of the loop.
Since two invariants are declared in this loop, we have to check that they are true
at the entry, so we generate two conditions to be verified:

Γentry ⊢ ∀t.0 ≤ t < N → i1(t) = N · 0 + t, (T1)

Γentry ⊢ ∀j.0 ≤ j < N · 0 → b0(j) = a0(j). (T2)

Below we call a condition of the form Γ ⊢ φ a task, and φ the goal. Tasks (T1)
and (T2) assert that the first and second invariants are true at the loop entry,
respectively. The right-hand sides of these tasks are obtained from loop invariants
by simply replacing loop count with 0, the initial value of the loop counter.

Next, we have to encode the execution of the loop, but in general it is impossible
to know how many times the loop body is executed. Rather than iterating the loop,
we directly generate a constraint that abstracts the final state of the loop, relying
on the invariants supplied by the programmer [10]. Also we have to verify that
the supplied invariants are indeed preserved by iterating the loop. To do this we
first introduce a new variable for each program variable being modified in the loop
body. In the case of our example, variables being modified are b and i, so we
generate fresh b1 and i2. We also introduce l corresponding to the loop counter.
Let Γloop be the following list of formulas:

Γloop
def
= Γentry, 0 ≤ l, ∀t.0 ≤ t < N → i2(t) = N · l+ t,

∀j.0 ≤ j < N · l → b1(j) = a0(j).

Γloop consists of three additional constraints. The first one, 0 ≤ l, says that the
loop counter is not negative. The second and third ones correspond to invariants,
and they assert that invariants are true for variables b1, i2, and l we just have
introduced. Note that in Γloop it is not yet specified whether the loop is already
exited or not.

Consider the case the loop is continued. Then, there is at least one thread that
satisfies the loop guard i < len, which is expressed: ∃t.0 ≤ t < N ∧ i2(t) < len0.
Since the loop body contains assignments to b and i, we generate new variables b2
and i3 and add constraints expressing that these variables are the result of execut-
ing these assignments. Writing down such constraints is a little more involved than

Automated Verification of Functional Correctness of Race-Free GPU Programs 7

before, because these assignments are inside the loop body, and therefore there may
be several threads that are inactive (actually in this example such a situation never
happens, but to describe how VCs are generated in a general case, let us proceed as
if we do not know this fact). We use the notation assign(b2, i2 < len0, b1, i2, a0(i2))
for such a constraint.2 This intuitively means that b2 is the result of executing
b[i] = a[i] with the values of b and i being b1 and i2 respectively, and active
threads t being precisely those that satisfy i2(t) < len0. The first argument is the
new value of the variable being assigned, the second specifies which threads are
active, the third is the original value of the variable being assigned, the fourth is
the index being written (in general, this is an n-tuple if the array being assigned is
n-dimensional, and the 0-tuple · if the variable is scalar), and the last is the value
of the right-hand side of the assignment. It can be written out as

∀n. (∃t.0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = n ∧ b2(n) = a0(i2(t))) ∨
((∀t.¬(0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = n)) ∧ b2(n) = b1(n)) ,

(1)

but the concrete definition does not matter here. For general cases, readers are
referred to Kojima and Igarashi [13,14]. Putting these constraints together we
obtain Γiter defined as follows:

Γiter
def
= Γloop, ∃t.0 ≤ t < N ∧ i2(t) < len0,

assign(b2, i2 < len0, b1, i2, a0(i2)), assign(i3, i2 < len0, i2, ·, i2 +N).

Using Γiter we can write the tasks corresponding to the invariant preservation as
follows:

Γiter ⊢ ∀t.0 ≤ t < N → i3(t) = N · (l+ 1) + t, (T3)

Γiter ⊢ ∀j.0 ≤ j < N · (l+ 1) → b2(j) = a0(j). (T4)

The right-hand sides of these tasks are obtained by replacing loop count, b, and
i in the invariants with their values after the iteration, namely l + 1, b2, and i3,
respectively.

Finally we consider the case loop is exited, in which case the loop guard is false
in all threads. Therefore we put

Γexit
def
= Γloop,∀t.0 ≤ t < N → ¬(i2(t) < len0).

Since there are no more statements to be executed, it only remains to verify that
the postcondition holds under this constraint. So the final task is as follows:

Γexit ⊢ ∀j.0 ≤ j < len0 → b1(j) = a0(j). (T5)

To summarize, we generate tasks (T1–T5) as VCs for our example program.
(T1) and (T2) ensure that the invariants hold when the loop is entered, (T3) and
(T4) ensure that the invariants are preserved by executing the loop body, and (T5)
ensures that the postcondition is satisfied when the program terminates.

Finally let us mention two more constructs: conditional statements and bar-
rier synchronization. As mentioned before, a conditional statement is executed

2 Some of the terms appearing in this expression are not well-typed. We could write
assign(b2, (λt.i2(t) < len0), b1, (λt.i2(t)), (λt.a0(i2(t)))), but for brevity we abbreviate it as
above.

8 Kensuke Kojima et al.

sequentially with switching active threads. When a statement if b thenP elseQ is
encountered, we first process P , and then Q (because we assume race-freedom, the
order does not matter). When processing P we have to bear in mind that active
threads are restricted to those at which b evaluates to true, and similarly for Q.
Barrier synchronization is, since we assume the execution is complete lockstep,
considered as an assertion that all threads are active at that program point. We
can generate an extra task Γ ⊢ ∀t.0 ≤ t < N → µ(t), where µ(t) is a formula ex-
pressing that thread t is currently active, to verify that the synchronization does
not fail. For example, if there were synchronization at the end of the loop body in
ArrayCopy, µ(t) would be i2(t) < len0.

4 Simplifying Verification Conditions

Unfortunately, SMT solvers often fail to discharge VCs generated by the algorithm
described in the previous section. In this section, we describe several schemes to
simplify VCs used in our verifier implementation. The rewriting schemes intro-
duced in this section are, except for the ones explicitly mentioned, sound and
complete in the sense that the VC obtained by applying them is valid if and only
if the original VC is valid. This is because they always replace a formula with
equivalent one.

The main difficulty stems from universal quantifiers, which are typically in-
troduced by assignment statements and loop invariants. When these universally
quantified formulas are put on the left-hand side of the tasks, the solvers have to
instantiate them with appropriate terms, but it is often difficult to find them. To
overcome this difficulty, in Sections 4.1 and 4.2 we introduce two strategies, which
we call ElimAssign and Rewrite, that find appropriate instances of these quantified
variables and rewrite VCs using these instances.

Another difficulty stems from multiplication over integers that often arises from
indices of arrays. This makes VCs harder to discharge automatically, since non-
linear integer arithmetic is undecidable (even without quantifiers). The transfor-
mations MergeQuant and SimpAffine, described in Section 4.3 and 4.4, respectively,
simplify formulas involving quantifiers and/or nonlinear formulas in a certain form.

A standard approach to the first problem would be to annotate a quantifier
with triggers [8, Section 5.1], which is an expression involving quantified variables,
to give SMT solvers hints. Triggers are used to decide to which expression those
variables are instantiated. For example, if a trigger f(x) is associated to a quanti-
fied formula ∀x.φ(x) which is a antecedents of the current task, and f(t) appears
somewhere in the task, then the variable x is instantiated with t, and thus φ(t)
is added as a new antecedents of the task. It is natural to conjecture that we can
help SMT solvers by providing triggers.

However, as far as we have tried, it is not sufficient to simply provide triggers to
quantifiers. This is because MergeQuant and SimpAffine, which reduce the degree of
nonlinearity, often works only after ElimAssign and Rewrite are applied, and hence
they have to be performed before the other two transformations. Because all of
our transformations are performed before calling off-the-shelf SMT solvers, it is
not straightforward to replace them with triggers.

Automated Verification of Functional Correctness of Race-Free GPU Programs 9

4.1 Eliminating assign

We first introduce a transformation which we call ElimAssign. During VC genera-
tion, we introduce a new assumption involving assign for each assignment state-
ment. As we have seen in (1), assign is universally quantified and therefore has to
be instantiated by appropriate terms. The main objective of ElimAssign is to find
all necessary instances automatically, and rewrite the VC using such instances (as
a result, assign may be removed from the task). Since (1) is introduced to specify
the value of b2, we instantiate (1) by every term u such that b2(u) appears in
VCs. By enumerating such u’s (including those inside quantifiers) we would find
all instances for n that are necessary to prove VCs.

There are two cases to consider: assignments to local variables and shared
variables. As an example of the local case, let us consider i3 appearing in (T3).
Its value is specified by assign(i3, i2 < len0, i2, ·, i2 + N) in Γiter, which implies:
(a) if t is a thread ID that is active (that is, i2(t) < len0), then the value of
i3 at t is i2(t) + N , and (b) otherwise the value of i3 at t is i2(t). In case (a),
i3(t) = N · (l + 1) + t is equivalent to i2(t) + N = N · (l + 1) + t, and in case (b)
it is equivalent to i2(t) = N · (l+ 1) + t. Therefore by doing case splitting, we can
rewrite the right-hand side of (T3) into:

∀t.(0 ≤ t < N → i2(t) < len0 → i2(t) +N = N · (l+ 1) + t) ∧
(0 ≤ t < N → ¬(i2(t) < len0) → i2(t) = N · (l+ 1) + t).

The first and the second conjuncts correspond to cases (a) and (b), respectively.

For the case of shared variables, consider b2 in task (T4). Similarly to the
previous case, for each j either (a) there exists a thread t such that i2(t) < len0,
i2(t) = j, and b2(j) = a0(i2(t)), or (b) there is no such thread t, and b2(j) = b1(j).
We obtain the following formula by rewriting the right-hand side of (T4):

∀j.(0 ≤ j < N · (l+ 1) →
∀t.0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = j → a0(i2(t)) = a0(j)) ∧

(0 ≤ j < N · (l+ 1) →
(∀t.¬(0 ≤ t < N ∧ i2(t) < len0 ∧ i2(t) = j)) → b1(j) = a0(j)).

(2)

Following this strategy we can rewrite the VC so that the first argument of
assign does not appear in the resulting VC, thus SMT solvers do not have to search
for instances of assign any more.

4.2 Applying Equalities in Antecedents

Invariants often involve a quantified and guarded equality that specifies the values
of program variables, as we can see in ArrayCopy. We illustrate how to rewrite a
formula using such an equality, and why such a rewriting is helpful in simplifying
VCs. The method described below applies to both goals and assumptions.

Consider b1 in the task (T5). Using the invariant ∀j.0 ≤ j < N · l → b1(j) =
a0(j), we can rewrite b1(j) into a0(j), but only under the assumption that 0 ≤

10 Kensuke Kojima et al.

j < N · l. Taking this condition into account, we can see that the goal ∀j.0 ≤ j <

len0 → b1(j) = a0(j) can be changed to:

∀j.0 ≤ j < len0 → (0 ≤ j < N · l ∧ a0(j) = a0(j)) ∨
(¬(0 ≤ j < N · l) ∧ b1(j) = a0(j)).

(3)

After this transformation, we can use several simplifications to transform the
task into an easier one that can be solved automatically. Let us demonstrate how
this can be done. We have both ∀t.0 ≤ t < N → ¬(i2(t) < len0) and ∀t.0 ≤ t <

N → i2(t) = N · l+ t in Γexit; therefore, rewriting i2(t) in the same way as above,
we can see that it follows from Γexit that

∀t.0 ≤ t < N → ¬
(
(0 ≤ t < N → N · l+ t < len0) ∧

(¬(0 ≤ t < N) → i2(t) < len0)
)
.

By using laws of propositional logic we can simplify this as ∀t.0 ≤ t < N →
¬(N · l+ t < len0), and by eliminating the quantifier we obtain len0 ≤ N · l. From
this, (3) is easily derived by SMT solvers.

Similarly, (2) can be simplified as follows: the first conjunct is easily proved;
in the second conjunct we can replace i2(t) with N · l+ t, and then eliminate ∀t to
obtain

∀j.0 ≤ j < N · (l+ 1) → ¬(0 ≤ j −N · l < N ∧ j < len0) → b1(j) = a0(j).

In general, we first search for an assumption of the form

∀x1.γ1 → ∀x2.γ2 → . . .→ ∀xm.γm → f(s1, . . . , sn) = s′ (4)

where f is a function symbol. For each such assumption, find another formula
(either one of the assumptions or the goal) in which f occurs. Such a formula can
be written as ψ[φ(f(t1, . . . , tn))], where every variable occurrence of t1, . . . , tn is
free in φ(f(t1, . . . , tn)). Then by rewriting f we obtain:

ψ[
(
∃x1 . . . xm.γ1 ∧ · · · ∧ γm ∧ s1 = t1 ∧ · · · ∧ sn = tn ∧ φ(s′)

)
∨

(∀x1 . . . xm.¬ (γ1 ∧ · · · ∧ γm ∧ s1 = t1 ∧ · · · ∧ sn = tn)) ∧ φ(f(t1, . . . , tn))].
(5)

Intuitively, this can be read as follows. If there are x1, . . . , xn that satisfy γ1, . . . , γn
and si = ti for every i, then by (4) we can replace φ(f(t1, . . . , tn)) with φ(s′)
(the first disjunct). If there are no such x1, . . . , xn, then we leave φ(f(t1, . . . , tn))
unchanged (the second disjunct).

If this rewriting is unconditionally repeated until these is no expression that can
be rewritten, then the procedure does not necessarily terminate. This is because
f may appear in γi or φ in (5), aside from the explicitly written occurrence at the
end of this formula. In practice, we could limit the number of repetition to avoid
divergence, but we are not aware of an appropriate limit at the time of writing.
We are aware of an example that indeed causes this situation, but none of the
programs shown in Section 5 causes this situation during the experiments.

Automated Verification of Functional Correctness of Race-Free GPU Programs 11

/*@ requires len == m * N;
ensures \forall int j; 0 <= j < len ==> b[j] == a[j]; */

void ArrayCopyMultBlocks (int *a, int *b, int len) {
i = bid * bsize + tid;
/*@ loop invariant i == N * loop_count + bid * bsize + tid;

loop invariant
\forall int j; 0 <= j < N * loop_count ==> b[j] == a[j]; */

while (i < len) {
b[i] = a[i];
i = i + N;

}
}

Fig. 2 A variant of the running example: ArrayCopyMultipleBlocks

4.3 Merging Quantifiers

Aside from standard transformations on formulas such as quantifier elimination,
we introduce a procedure MergeQuant that replaces two quantifiers with a single
one. Typical example is the following: if x and y range over integers, ∀x.0 ≤ x <

a → ∀y.0 ≤ y < b → φ(x + ay) (or equivalently, ∀x.0 ≤ x ≤ a − 1 → ∀y.0 ≤ y ≤
b− 1 → φ(x+ ay)) is equivalent to 0 < a → ∀z.0 ≤ z < ab → φ(z) (the antecedent
0 < a is necessary because otherwise if both a and b are negative the former is
trivially true while the latter would not). This pattern often arises from indices of
an array.

Let us illustrate how this helps simplify a VC. This transformation typically
applies when a thread hierarchy and/or two-dimensional arrays are involved. Con-
sider the program in Figure 2. Here we assume that threads are grouped into blocks,
as in actual CUDA C or OpenCL programs. Each block consists of an equal num-
ber of threads. In the program above, bsize is the number of threads contained
in one block, and bid is the identifier for a block, called block ID. When bid is
evaluated on a certain thread, the result is the block ID of the block to which the
thread belongs. N is, as before, the number of threads, and now equals the product
of bsize and the number of blocks.

Let us consider the termination condition of the loop:

∀t.0 ≤ t < T → ∀b.0 ≤ b < B → ¬(N · l+ b · T + t < len)

where T denotes the number of threads per block, and B the number of blocks (we
replaced i with N · l+b ·T+t using the first invariant). By merging two quantifiers,
we obtain

0 < T → ∀z.0 ≤ z < T ·B → ¬(N · l+ z < len).

The quantification over z is now easily eliminated, and we obtain 0 < T → T ·B ≤
0 ∨ len ≤ N · l.

Up to now we have assumed that the quantifiers that can be merged have the
form ∀x.0 ≤ x < a → . . . , but in general this is not the case. Other simplification
procedures (quantifier elimination, in our implementation) may convert formulas
to their normal forms. After that, the guard 0 ≤ x < a may be modified, split, or
moved to other places. This significantly makes the general algorithm complicated.
Because guards do not necessarily follow quantifiers, it is not straightforward to
find a pair of quantifiers that can be merged as described above.

12 Kensuke Kojima et al.

Our strategy in the general case is the following. (I) For every quantified sub-
formula ∀x.φ(x), find a such that ∀x.φ(x) is equivalent to ∀x.0 ≤ x < a → φ(x).
We call such a a bound of x. (II) For each subformula ∀x.∀y.φ(x, y), where x and
y have bounds a and b, respectively, find ψ(z) such that φ(x, y) is equivalent to
ψ(x + ay) (or ψ(y + bx)). Then we can replace ∀x.∀y.φ(x, y) with an equivalent
formula 0 < a → ∀z.0 ≤ z < ab → ψ(z), as desired. For the existential case, use ∧
instead of →. There may be multiple (actually infinitely many) bounds, and only
some of them can be used as a in step (II). We collect as many bounds as possible
in step (I), and try step (II) for every bound a of x we found. Below we simply
write φ rather than φ(x) if no confusion arises.

For step (I), note that if ¬(0 ≤ x) implies φ and ¬(x < a) implies φ, then ∀x.φ
if and only if ∀x.0 ≤ x < a→ φ. Similarly, if φ implies both 0 ≤ x and x < a, then
∃x.φ if and only if ∃x.0 ≤ x < a∧φ. Therefore we can split the problem as follows:
for the universal case, (i) check that ¬(0 ≤ x) implies φ, and (ii) find a such that
¬(x < a) implies φ; for the existential case, (i) check that φ implies 0 ≤ x, and (ii)
find a such that φ implies x < a. Because both of them can be solved similarly, we
shall focus on (ii).

Let us say that a is a ∀-bound (∃-bound) of x in φ if ¬(x < a) implies φ (φ
implies x < a, respectively). Then we are to find ∀- and ∃-bounds of x in a given
φ. The procedure is given recursively. If φ is atomic, then the problem is easy,
although there are tedious case distinctions. For example, ∀-bound of x ≥ t is t,3

∀-bound of x < t does not exist, and ∃-bound of x ≤ t is t+1. If φ is atomic but not
an inequality, then we consider there are no bounds. If φ is φ1∧φ2, then ∀-bounds
of φ is the intersection of those of φ1 and φ2 (this may miss some bounds, but
we confine ourselves to this approximation), and ∃-bounds are the union of those
of φ1 and φ2. The ∀- and ∃-bounds of ¬φ are ∃- and ∀-bounds of φ, respectively.
Bounds of ∀y.φ are those of φ. We omit ∨, →, and ∃ since they are derived from
other connectives by the laws of classical logic.

Step (II) is done by verifying that all atomic formulas depends only on x+ ay.
First, consider s(x, y) < t(x, y) where s and t are polynomials in x, y. There is a
simple sufficient condition: if there exists a polynomial u(z) such that t(x, y) −
s(x, y) = u(x+ ay), then s(x, y) < t(x, y) is equivalent to 0 < u(x+ ay). Therefore
it is sufficient to check that t(x, y) − s(x, y) can be written as a polynomial of
x + ay, which is not difficult. Indeed, a polynomial p(x, y) can be written in the
form u(x+ ay) if and only if p(x, y) = p(x+ ay, 0), and in this case u is given by
u(z) = p(z, 0) (apply this fact to the case p(x, y) = t(x, y)−s(x, y)). If s and t are not
polynomials, or a predicate other than inequalities is used, then we check whether
all arguments of the predicate or function symbols can be written as u(x+ ay).

4.4 Simplifying Affine Expressions

We devise another simplification strategy for nonlinear formulas, which we call
SimpAffine. For example, if all variables range over integers,

0 ≤ x < a ∧ 0 ≤ x′ < a ∧ x+ ay = x′ + ay′ → x = x′ (6)

3 In this case t + 1, t + 2, . . . are also ∀-bounds, but we do not take them into account.
Practically, considering only t seems sufficient in many cases.

Automated Verification of Functional Correctness of Race-Free GPU Programs 13

is valid, but proving this formula is not easy for SMT solvers, as far as we have
tried. SimpAffine transforms this formula into

0 ≤ x < a ∧ 0 ≤ x′ < a ∧ x = x′ ∧ y = y′ → x = x′, (7)

which is easily proved by SMT solvers. Similar patterns frequently arise from the
computation of indices of arrays during the verification, and therefore a simplifi-
cation method for this kind of formulas is useful.

SimpAffine first finds bounds of variables, similarly to step (I) of MergeQuant.
Then, using the information of bounds, it tries to simplify each atomic formula
t ▷◁ t′, where ▷◁ is either =, <, >, ≤, or ≥. Given an atomic formula t ▷◁ t′, first it is
checked whether t and t′ have a nontrivial common factor. If they have a common
factor u, then t ▷◁ t′ can be simplified using

t = t′ ⇐⇒ t/u = t′/u ∨ u = 0,

t ≤ t′ ⇐⇒ (t/u ≤ t′/u ∧ 0 ≤ u) ∨ (t/u ≥ t′/u ∧ 0 ≥ u),

and similar variants for other three predicates. If t and t′ do not have a common
factor, then the algorithm checks whether this formula has one of the following
forms (up to equivalence):

1. at+ x ▷◁ at′ + x′,
2. at− x ▷◁ at′ − x′, or
3. at± x ▷◁ at′,

where a is a bound of both x and x′. The first form can be simplified using

at+ x = at′ + x′ ⇐⇒ t = t′ ∧ x = x′,

at+ x ≤ at′ + x′ ⇐⇒ t < t′ ∨ (t = t′ ∧ x ≤ x′),

at+ x < at′ + x′ ⇐⇒ t < t′ ∨ (t = t′ ∧ x < x′),

and similarly for ≥ and >. The formula (7) is obtained from (6) by applying the
first relation. The second form can be reduced to the first form: at+ x′ ▷◁ at′ + x.
The third one can be handled by substituting x′ = 0 into the first case, and using
at − x ▷◁ at′ ⇐⇒ at ▷◁ at′ + x. However, in several cases we can write the result
more explicitly as

at+ x ≤ at′ ⇐⇒ t < t′ ∨ (t = t′ ∧ x = 0)

at+ x < at′ ⇐⇒ t < t′,

at+ x ≥ at′ ⇐⇒ t ≥ t′

which are simpler.
SimpAffine affectsMergeQuant because, if a formula containing ax+y is rewritten

into a formula containing isolated occurrences of x and y, then the MergeQuant do
not work for the resulting formula (since it requires these variables to occur only in
the form ax+ y). Similarly, MergeQuant affects SimpAffine, because if ∀xy.(. . . ax+
y ▷◁ ax′ + y′ . . .) is modified as ∀z.(. . . z ▷◁ ax′ + y′ . . .), then SimpAffine does not
apply to the second formula.

Therefore, the order the two simplifications are applied affects the result of
verification. Because we need both of them in our experiments (details are dis-
cussed in Section 5), we use both of them and generate two separate tasks. The

14 Kensuke Kojima et al.

original task is valid if at least one of the two tasks is proved (and in this case,
both of them are in fact valid, although SMT solvers are not necessarily able to
prove both of them).

4.5 Additional Heuristics

It is sometimes the case that the simplified goal is not still provable by SMT
solvers, but the following transformations help proving the task (they are sound
but not complete, i.e. they may replace a valid goal with an invalid one).

– If an equality f(s1, . . . , sn) = f(t1, . . . , tn) occurs in a positive position, then
we may replace it with s1 = t1 ∧ · · · ∧ sn = tn.

– A subformula occurring in a positive (negative) position of a task may be
replaced by False (True, respectively). We try this for a subformula of the form
f(t1, . . . , tn) = t where f corresponds to a program variable.

It is likely that SMT solvers can perform these rewriting, but application of these
schemes prior to calling SMT solvers increased the number of tasks that can be
solved by SMT solvers, as far as we have tried. It appears that the simplification
methods works better if these schemes are applied, and therefore including them
in the implementation can improve performance.

5 Implementation and Experiment

5.1 Implementation

We have implemented the method described above and conducted an experiment
on several kernels. Our implementation takes source code annotated with spec-
ifications (pre- and post-conditions and loop invariants) as an input and checks
whether the specification is satisfied. The input language is a subset of CUDA C,
but we slightly modified the syntax so that we can use an existing C parser without
modification. This is just to simplify the implementation. A subset of ANSI/ISO
C Specification Language (ACSL) 4 can be used to describe specifications.

The verifier first generates VCs as described in Section 3, and performs the sim-
plification in Section 4 roughly in the following order: (1) ElimAssign (Section 4.1);
(2) rewriting (Section 4.2); (3) MergeQuant (Section 4.3) and/or SimpAffine (Sec-
tion 4.4). The last step returns two alternative tasks for each task, one of which
is obtained by applying both of MergeQuant and SimpAffine in this order, and the
other is obtained by applying only SimpAffine. If these two tasks are identical, to
avoid the redundancy only one task is returned.

In addition to these operations, we also use standard simplification methods
such as quantifier elimination. After simplifying the tasks, several SMT solvers are
called on each task, and run in parallel. Each task is considered completed when
one of the solvers successfully proves it. If there are tasks that none of the solvers
can prove, then the heuristics in Section 4.5 are applied, and then SMT solvers
are called again. This step is repeated at most 10 times. If there is still a task that
remains unsolved after 10 repetitions, the verification fails.

4 https://frama-c.com/acsl.html

Automated Verification of Functional Correctness of Race-Free GPU Programs 15

The front-end is written in OCaml. We use Cil [25] to parse the input, and the
syntax tree is converted into tasks using Why3 [4] API. Simplification of formulas is
implemented as a transformation on data structures of Why3, and SMT solvers are
called through Why3 API functions. We use Alt-Ergo, CVC3, CVC4, E Theorem
Prover, and Z3 as back-ends.5 Although Why3 provides a programming language
WhyML, currently we use Why3 only for manipulating formulas and calling SMT
solvers.

The source code of our tool called Vericuda and the benchmark programs used
in our experiment is available via https://github.com/SoftwareFoundationGroupAtKyotoU/
Vericuda.

5.2 Experiments

Using our implementation, we have verified the functional correctness of the fol-
lowing programs.

scp Copies an array contents to another array, but shifting by one element to the
right (the last element of the input array is copied to the first position of the
output array). A similar program appears as a running example in [3], and also
provided as an example of VerCors Toolset.6

rotate Rotates an array in place by one element to the right. This is essentially
the same as rotate in [1].

vectorAdd Receives three arrays, and outputs the sum of the first two (as vectors)
into the third array. The algorithm is similar to ArrayCopy.

matrixMul Computes the multiplication of two matrices and output the result into
another two-dimensional array. Each thread computes one element of the out-
put matrix. This program uses a common optimization technique with shared
memory. This is taken from NVIDIA CUDA Samples [27] and slightly modified
without changing the essential part of the algorithm.

matrixMul2 Similar to matrixMul, but each thread computes two elements of the
output matrix, so that it improves matrixMul by hiding memory latency. The
postcondition for this program is not written in the most natural form, because
in our current implementation the postcondition is written in a form which is
better handled by SMT solvers.

matrixMul4 Similar to matrixMul2, but each thread processes four elements.
diffusion1d Implements a single iteration of a stencil computation (diffusion

equation in one dimension) optimized by using shared memory. Each thread
computes one element of the output array.

We did not concretize any of the parameters in programs, such as the number
of threads and blocks, length of vectors, and size of matrices. Throughout the
experiments, we set time limit to 1 second through Why3 API for each solver call
(some of the solvers seem to run for one more second than the given time limit;
we do not know the reason for this). We also set memory limit to 4000MB, but
it seems that it is almost impossible to exhaust this amount of memory in a few

5 alt-ergo.lri.fr, www.cs.nyu.edu/acsys/cvc3, cvc4.cs.nyu.edu, www.eprover.org, z3.
codeplex.com.

6 https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki/
Scp-examplepvl

16 Kensuke Kojima et al.

seconds. Experiments are conducted on a machine with two Intel Xeon processors
E5-2670 (with eight cores, 2.6 GHz) and 128GB of main memory. The OCaml
modules are compiled using ocamlopt version 4.03.0.

The result is summarized in Table 1. This table shows the performance of
our method with and without the simplification introduced in Section 4 (shown
in the second column). For the case where no simplification is applied, we have
provided triggers that would help solvers finding an instance used in ElimAssign

and rewriting (such as b2(n) in (1) and i2(t) in ∀t.0 ≤ t < N → i2(t) = N · l + t).
Most of the tasks consist of two subtasks, only one of which has to be proved,
and others are not divided into subtasks. The size of a VC is defined by the sum
of the size of all formulas in it, and the size of a formula is the number of nodes
in its abstract syntax tree. The number of tasks changes when the simplification
is enabled. Usually the number increases because simplification may split a task
into smaller ones, but it also decreases because a task is removed from VC if it is
reduced to a trivial one.

Our implementation, with the simplification, successfully verified realistic GPU
kernels, whereas it could not verify any of the programs without simplification. We
also ran SMT solvers with one hour of time limit on each task before simplification,
and confirmed that the numbers of proved tasks did not change. These results show
that our simplification strategy is indeed effective. As mentioned in Section 4.4,
our implementation tries two strategies of simplification: one of them (which we
call S1) applies MergeQuant and SimpAffine in this order, and the other (which we
call S2) applies only SimpAffine. We observed that both of S1 and S2 are needed to
verify all the sample programs we examined in the experiments. We confirmed that
(1) vectorAdd can be verified by using S1, but cannot if only S2 is used, whereas
(2) matrixMul2 can be verified by using S2, but cannot if only S1 is used.

The result also suggests a limitation of our current implementation. As we
can see from the VC generation time and size of several programs, our method
occasionally generates quite large VC, which is time- and memory-consuming to
generate. The size of VC is sensitive to two factors: the number of assignments
contains in the program, and the number of occurrences of program variables in the
postcondition (they apply to matrixMul4 and diffusion1d, respectively). In both
cases, the increase of VC size appears to be caused mainly by iterated applications
of ElimAssign which, in the worst case, almost doubles the size of the formula every
time. We expect that the generation time can be reduced by further optimization,
because during ElimAssign many redundant formulas are generated, and removed
afterwards (indeed, in the case of diffusion1d, the output of ElimAssign has size
approximately 1.06× 107, which is nearly 60 times larger than the final VC).

6 Related Work

Functional correctness of GPU programs. Some of the existing tools support func-
tional correctness verification by assertion checking or equivalence checking. PUG [19]
and GKLEE [21] support assertion checking (as well as detecting other defects such
as data races), but they cannot verify fully parameterized programs. Both of them
require the user to specify the number of threads, and they duplicate each in-
struction by the specified number of threads to simulate lockstep behavior as a
sequential program. PUGpara [20] supports equivalence checking of two param-

Automated Verification of Functional Correctness of Race-Free GPU Programs 17

Table 1 The number of proved/generated tasks, time spent for VC generation and SMT
solving (sec), and size of VC, with and without VC simplification. LOC excludes blank lines
and annotations. VC generation and SMT solving time is the average of ten executions. Result
for matrixMul4 without simplification was 23 for eight out of ten executions, and 24 for the
other two.

program simplify result VC gen. SMT solving VC size

scp Y 1/1 0.0616 0.2598 2524
(6 LOC) N 1/2 0.0033 5.0072 2663
rotate Y 1/1 0.0729 0.2794 2603
(7 LOC) N 1/3 0.0051 14.2263 4179
vectorAdd Y 5/5 0.2305 0.8304 13291
(9 LOC) N 3/7 0.0093 26.3784 9879
matrixMul Y 17/17 1.4402 2.7105 62531
(29 LOC) N 15/17 0.0532 13.0309 38137
matrixMul2 Y 34/34 15.0716 8.4726 160146
(34 LOC) N 18/21 0.0739 18.1891 56623
matrixMul4 Y 158/158 1762.7441 36.5927 999572
(42 LOC) N {23,24}/29 0.1202 41.7131 103435

diffusion1d Y 62/62 10928.0448 23.1609 176202
(20 LOC) N 1/4 0.0097 14.3308 6511

eterized programs. They report results on equivalence checking of unoptimized
and optimized kernels; equivalence checking of a parameterized matrix-transpose
program resulted in timeout, so they had to concretize some of the variables.

Deductive approaches to functional correctness. Regarding deductive verification of
GPU programs, two approaches have been proposed. Kojima and Igarashi adapted
the standard Hoare Logic to GPU programs [13,14]. Our work is based on theirs,
although we do not use their inference rules as they are. Blom, Huisman and
Mihelčić applied permission-based separation logic to GPU programs [3]. Their
logic is implemented in the VerCors tool set,7 and mechanization of their logic
in proof assistant Coq is also studied [1]. Their approach can reason about race-
freedom, in addition to functional correctness, by making use of the notion of
permission, but it requires more annotations than ours.

Automated race checking. Race checking is one of the subject intensively studied
in verification of GPU programs, and many tools have been developed so far [19,
7,20,22,23,2]. Although they use SMT solvers, their encoding methods for race-
checking are different from ours in several ways. In particular, it is not necessary
to consider all threads at a time, but only two threads suffice. This is because
if there is a race, then there has to be a pair of threads that are to perform
conflicting read/write (this is an important observation for optimization which, to
our knowledge, first mentioned in [19] and detailed discussion on this technique is
given in [2]). Therefore they model the behavior of a pair of threads (whose thread
identifiers are parameterized), rather than all threads.

Reasoning about arrays. There is a technique to eliminate existential quantification
over arrays, which is applied to the verification of C program involving arrays [16].

7 Several examples are found at https://fmt.ewi.utwente.nl/redmine/projects/
vercors-verifier/wiki/Examples.

18 Kensuke Kojima et al.

Although we did not consider quantifier elimination over arrays explicitly, the effect
of ElimAssign is similar to the quantifier elimination: if a variable a representing
an intermediate value of some array and a does not appear in the postcondition,
then we can regard a as an existentially quantified variable. Because ElimAssign

removes a from the VC, it could be seen as a quantifier-elimination procedure.
Further investigation on relationship to their idea and possibility of adapting it to
our setting is left for future work.

7 Conclusion

We have presented an automated verification method of race-free GPGPU pro-
grams. Our method is based on symbolic execution and (manual) loop abstraction.
In addition to the VC generation method, we have proposed several simplification
methods that can help SMT solvers prove generated VCs. We have empirically
confirmed that our method successfully verifies several realistic kernels without
concretizing parameters and that the simplification method is effective for im-
proving efficiency of the verification procedure. We expect that it is a feasible
approach to the verification of functional correctness to check race-freedom by us-
ing the existing tools first, and then verifying functional correctness by using our
method.

Another possible approach to the verification problem is to translate a GPU
program (and its specification) into a sequential program, and then apply exist-
ing tools. It would not be difficult to write a translation, because in our setting
GPU programs are treated mostly as sequential program, except for assignments.
Because an assignment in a GPU program corresponds to multiple assignments
in a sequential program, it has to be translated into a loop over threads or other
construct that operates on multiple indices. An advantage of this approach is that
we do not need to implement a verification condition generator (translation from
a program to formulas). However, we would still need simplification techniques
similar to the ones presented in Section 4, because the translation does not change
the nonlinearity of the VCs, from which one of the main difficulty arises. Detailed
investigation of this approach is left for future work.

Automatically inferring loop invariants is one of the interesting and important
problems left for future work. Various methods to generate invariants have been
proposed in the literature [24,17,11,6]. Although they mainly target sequential
programs, we expect that they can be adapted to GPU programs. To our knowl-
edge, there is no previous work on applying these invariant generation methods to
GPU programs (GPUVerify [2] uses Houdini algorithm [9] to find invariants, and
PUG [19] uses predefined set of syntactic rules that can automatically derive an
invariant if the program fragment matches a common pattern).

As addressed in Section 4, better manipulation of nonlinear formulas is also
important. One of the possible direction to further extend the current state of the
research would be to investigate the relationship to decidable nonlinear extensions
of linear arithmetic [5,18]. Although we do not expect that all the VCs are ex-
pressed in such theories, it would be interesting if these theories and their decision
procedures bring us a new insight into the manipulation of nonlinear VCs.

Improving the strategy of simplification on VCs is also vital for scalability
of our verification method. As we have discussed in Section 5, our simplification

Automated Verification of Functional Correctness of Race-Free GPU Programs 19

method sometimes produces extremely large VCs, or even fails to generate VCs
in a reasonable amount of time. Also, there seems to be room for optimization
in the ElimAssign procedure. We expect that optimizing this part greatly reduces
the amount of time spent for verification, because ElimAssign is one of the most
time-consuming part of our verification method.

Specifically, there are several cases where SimpAffine does not work directly, but
it does work after applying a certain type of modification (roughly the converse of
MergeQuant). For example, consider the following formula (this formula is related
to the verification of matrixMul2 in our experiments).

∀x.0 ≤ x < 2ab→
(∃y.0 ≤ y < b ∧ 2ay ≤ x < 2ay + a) ∨ (∃y.0 ≤ y < b ∧ 2ay + a ≤ x < 2ay + 2a).

Although it cannot be simplified by SimpAffine, if we rewrite it by decomposing
variable x into two parts, we obtain

∀x1, x2.0 ≤ x1 < 2b ∧ 0 ≤ x2 < a→
(∃y.0 ≤ y < b ∧ 2ay ≤ ax1 + x2 < 2ay + a) ∨
(∃y.0 ≤ y < b ∧ 2ay + a ≤ ax1 + x2 < 2ay + 2a).

Then, assuming a, b > 0, SimpAffine can rewrite 2ay ≤ ax1 + x2 and ax1 + x2 <

2ay + a into 2y ≤ x1 and x1 < 2y + 1, respectively, and thus the first disjunct
becomes ∃y.0 ≤ y < b ∧ 2y ≤ x1 < 2y + 1. By rewriting the second disjunct
similarly, we obtain a linear formula equivalent to the original one:

∀x1, x2.0 ≤ x1 < 2b ∧ 0 ≤ x2 < a→
(∃y.0 ≤ y < b ∧ 2y ≤ x1 < 2y + 1) ∨ (∃y.0 ≤ y < b ∧ 2y + 1 ≤ x1 < 2y + 2).

At the time of writing, we do not have a concrete algorithm to decompose a quanti-
fier as above. The current implementation requires users to write a specification to
which SimpAffine works. We are currently working on automatically decomposing
quantifiers before applying SimpAffine.

References

1. Asakura, I., Masuhara, H., Aotani, T.: Proof of soundness of concurrent separation logic
for GPGPU in Coq. Journal of Information Processing 24(1), 132–140 (2016)

2. Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P., Wickerson,
J.: The design and implementation of a verification technique for GPU kernels. ACM
Trans. Program. Lang. Syst. 37(3), 10:1–10:49 (2015). DOI 10.1145/2743017. URL http:
//doi.acm.org/10.1145/2743017

3. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU programs.
Science of Computer Programming 95(3), 376–388 (2014)

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd of
Provers. In: Boogie 2011: 1st Intl. Workshop on Intermediate Verification Languages,
pp. 53–64. Wroclaw, Poland (2011). URL https://hal.inria.fr/hal-00790310

5. Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibility.
In: V. Sassone (ed.) Proc. of FOSSACS 2005, Springer LNCS, vol. 3441, pp. 425–439.
Springer (2005). DOI 10.1007/978-3-540-31982-5 27. URL http://dx.doi.org/10.1007/
978-3-540-31982-5_27

20 Kensuke Kojima et al.

6. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invariants for
imperative programs: A farewell to Gröbner bases. Science of Computer Programs 93,
89–109 (2014). DOI 10.1016/j.scico.2014.02.028. URL http://dx.doi.org/10.1016/j.
scico.2014.02.028

7. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic testing of OpenCL code. In:
K. Eder, J.a. Lourenço, O. Shehory (eds.) Proc. of Hardware and Software: Verifica-
tion and Testing, Springer LNCS, vol. 7261, pp. 203–218. Springer Verlag (2012). DOI
10.1007/978-3-642-34188-5 18

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3), 365–473 (2005). DOI 10.1145/1066100.1066102. URL http://doi.acm.org/
10.1145/1066100.1066102

9. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: J.N.
Oliveira, P. Zave (eds.) Proc. of International Symposium of Formal Methods Europe
(FME 2001), Springer LNCS, vol. 2021, pp. 500–517. Springer (2001). DOI 10.1007/
3-540-45251-6 29. URL http://dx.doi.org/10.1007/3-540-45251-6_29

10. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact verification
conditions. In: Proc. of ACM POPL, POPL ’01, pp. 193–205. ACM, New York, NY, USA
(2001). DOI 10.1145/360204.360220. URL http://doi.acm.org/10.1145/360204.360220

11. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for learn-
ing invariants. In: A. Biere, R. Bloem (eds.) Proc. of 26th International Conference
on Computer Aided Verification (CAV 2014), Springer LNCS, vol. 8559, pp. 69–87.
Springer (2014). DOI 10.1007/978-3-319-08867-9 5. URL http://dx.doi.org/10.1007/
978-3-319-08867-9_5

12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). DOI 10.1145/360248.360252. URL http://doi.acm.org/10.1145/360248.360252

13. Kojima, K., Igarashi, A.: A Hoare Logic for SIMT programs. In: C. chieh Shan (ed.) Proc.
of Asian Symposium on Programming Languages and Systems (APLAS 2013), Springer
LNCS, vol. 8301, pp. 58–73 (2013)

14. Kojima, K., Igarashi, A.: A Hoare logic for GPU kernels. ACM Transactions on Compu-
tational Logic (2016). To appear. A revised and extended version of [13].

15. Kojima, K., Imanishi, A., Igarashi, A.: Automated verification of functional correctness of
race-free GPU programs. In: S. Blazy, M. Chechik (eds.) Verified Software. Theories, Tools,
and Experiments - 8th International Conference, VSTTE 2016, Toronto, ON, Canada, July
17-18, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 9971, pp.
90–106 (2016). DOI 10.1007/978-3-319-48869-1 7. URL http://dx.doi.org/10.1007/
978-3-319-48869-1_7

16. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional verification of
procedural programs using Horn clauses over integers and arrays. In: R. Kaivola, T. Wahl
(eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015., pp. 89–96. IEEE (2015)

17. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a theorem
prover. In: M. Chechik, M. Wirsing (eds.) Fundamental Approaches to Software Engineer-
ing, Springer LNCS, vol. 5503, pp. 470–485. Springer Berlin Heidelberg (2009). DOI 10.
1007/978-3-642-00593-0 33. URL http://dx.doi.org/10.1007/978-3-642-00593-0_33

18. Lechner, A., Ouaknine, J., Worrell, J.: On the complexity of linear arithmetic with di-
visibility. In: Proc. of 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, (LICS 2015), pp. 667–676. IEEE (2015). DOI 10.1109/LICS.2015.67. URL
http://dx.doi.org/10.1109/LICS.2015.67

19. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:
Proc. of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’10), pp. 187–196. ACM (2010). DOI 10.1145/1882291.1882320

20. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs. In: IPDPS
Workshop on Multicore and GPU Programming Models, Languages and Compilers Wok-
shop, pp. 2450–2459. IEEE (2012)

21. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: concolic
verification and test generation for GPUs. In: J. Ramanujam, P. Sadayappan (eds.) Proc.
of ACM PPoPP, pp. 215–224. ACM (2012). DOI 10.1145/2145816.2145844. URL http:
//doi.acm.org/10.1145/2145816.2145844

22. Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equivalencing for
symbolic analysis of races in CUDA programs. In: Proc. of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC’12). IEEE Computer
Society Press (2012)

Automated Verification of Functional Correctness of Race-Free GPU Programs 21

23. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU programs. In:
T. Damkroger, J. Dongarra (eds.) Proc. of Intl. Conf. for High Performance Computing,
Networking, Storage and Analysis (SC 2014), pp. 179–190. IEEE (2014). DOI 10.1109/
SC.2014.20. URL http://dx.doi.org/10.1109/SC.2014.20

24. McMillan, K.: Quantified invariant generation using an interpolating saturation prover.
In: C. Ramakrishnan, J. Rehof (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, Springer LNCS, vol. 4963, pp. 413–427. Springer Berlin Heidel-
berg (2008). DOI 10.1007/978-3-540-78800-3 31. URL http://dx.doi.org/10.1007/
978-3-540-78800-3_31

25. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language and tools
for analysis and transformation of C programs. In: Proc. of 11th Intl. Conf. on Compiler
Construction (CC 2002), Springer LNCS, vol. 2304, pp. 213–228 (2002). DOI 10.1007/
3-540-45937-5 16. URL http://dx.doi.org/10.1007/3-540-45937-5_16

26. Nguyen, H.: GPU Gems 3, first edn. Addison-Wesley Professional (2007). http:
//developer.nvidia.com/object/gpu-gems-3.html

27. NVIDIA: NVIDIA CUDA C Programming Guide (2014). URL http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html

