
A

A Hoare Logic for GPU Kernels

KENSUKE KOJIMA, Kyoto University and CREST, JST
ATSUSHI IGARASHI, Kyoto University and CREST, JST

We study a Hoare Logic to reason about GPU kernels, which are parallel programs executed on GPUs.
During execution of GPU kernels, multiple threads execute in lockstep, that is, execute the same instruction
at a time. When control branches both branches are executed sequentially but during the execution of each
branch only those threads that take it are enabled; after the control converges, all threads are enabled
and execute in lockstep again. In this article we first consider a semantics in which all threads execute
in lockstep (this semantics simplifies the actual execution model of GPUs), and adapt Hoare Logic to this
setting by adding an extra component representing the set of enabled threads to the usual Hoare triples.
It turns out that soundness and relative completeness do not hold for all programs; a difficulty arises from
the fact that one thread can invalidate the loop termination condition of another thread through shared
memory. We overcome this difficulty by identifying an appropriate class of programs for which soundness
and relative completeness hold. Additionally we discuss thread interleaving, which is present in the actual
execution of GPUs but not in the lockstep semantics considered above. We show that if a program is race-
free, then the lockstep and interleaving semantics produce the same result. This implies that our logic is
sound and relatively complete for race-free programs even if the thread interleaving is taken into account.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Logics of programs

General Terms: Theory, Verification

Additional Key Words and Phrases: GPU, Hoare Logic

ACM Reference Format:
Kensuke Kojima and Atsushi Igarashi. 2014. A Hoare Logic for GPU Kernels. ACM Trans. Comput. Logic V,
N, Article A (January YYYY), 47 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
General-purpose computing on graphics processing units (GPGPU) has recently be-
come widely available even to end-users, enabling them to utilize computational power
of GPUs for solving problems other than graphics processing. Application areas include
physics simulation, signal and image processing, etc. [Owens et al. 2007]. However,
writing and optimizing GPU kernels, which are parallel programs executed on GPUs,
is still a hard task and error-prone. For example, in programming in CUDA, a parallel
computing platform and programming model on GPU [NVIDIA 2014], we have to care
about synchronization and data races so that many threads cooperate correctly. More-
over, to obtain the best performance, we usually have to take into account low-level
mechanisms, to optimize memory access pattern, increase occupancy, etc.

This is a revised and extended version of Kojima and Igarashi [2013]. Author’s addresses: K. Kojima and
A. Igarashi, Department of Communications and Computer Engineering, Graduate School of Informatics,
Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 K. Kojima and A. Igarashi

Much effort has recently been made to develop automated verification tools for GPU
kernels [Betts et al. 2012; Collingbourne et al. 2013; Collingbourne et al. 2011; 2012;
Li and Gopalakrishnan 2010; 2012; Li et al. 2012b; Li et al. 2012a; Chiang et al. 2013;
Bardsley et al. 2014]. These tools try to automate detection of synchronization errors,
data races, and inefficiency, as well as checking functional correctness and generat-
ing test cases. They, although automation is a great advantage, tend to suffer false
positives/negatives because of approximation, as well as combinatorial explosion.

Another approach to formal verification is deductive verification, in which correct-
ness of a program is verified by formally proving (using a fixed set of deduction rules)
that it is indeed correct. Relative completeness of the inference rules guarantee that all
correct programs can be proved to be correct, although much effort is often required to
complete the correctness proof. Deductive approaches have been implemented as tools
that can be applied to real-world programs (Why31, for example). However, in the con-
text of GPU programming, this approach is not extensively studied yet (at the time of
writing, we are only aware of the work based on permission-based separation logic by
Blom et al. [2014] and Asakura et al. [2016]).

In this work, we study a deductive verification method for GPU programs. We focus
on the SIMT execution model (described in Section 1.1), and demonstrate that Hoare
Logic, one of the traditional approaches to deductive verification, can be applied to
GPU kernels with only a few modifications. Although SIMT is a terminology employed
by CUDA, this does not mean that our theory is specialized to CUDA. In particular, it
applies to OpenCL as well.

Generally speaking, reasoning about parallel programs requires much more sophis-
ticated techniques than those for sequential ones, because parallel threads can inter-
fere with each other through shared resources [Apt et al. 2009]. Although existing
techniques could be applied to GPU kernels, we take advantage of the so-called lock-
step semantics of SIMT to obtain simpler inference rules. In fact, our inference rules
are similar to the usual Hoare Logic, and soundness and relative completeness hold
under a very mild restriction regarding the loop guards: a thread does not invalidate
other threads’ loop guards through shared memory. Any program can be easily trans-
formed into one conforming to this restriction.

This article is an extended version of the authors’ previous work [Kojima and
Igarashi 2013], which introduces Hoare Logic for GPU kernels, and proves its sound-
ness and relative completeness for a large class of GPU kernels. In this article, we also
consider interleaved thread execution and prove that it does not affect the result of
execution if the program is race-free.

In the rest of this section we describe how SIMT works and how we can extend Hoare
Logic to the SIMT setting.

1.1. An Overview of the SIMT Execution Model
SIMT (Single Instruction Multiple Threads) is a parallel execution model of GPUs em-
ployed by CUDA [NVIDIA 2014]. A CUDA program is written in CUDA C, an extension
of the C language, and run on GPUs with multiple (typically thousands of) threads as
specified in the SIMT execution model. In the SIMT execution model, launched threads
are divided into groups called warps. Each warp consists of a fixed (currently 32) num-
ber of threads, and threads belonging to the same warp all execute the same instruc-
tion at a time. Therefore the execution of threads in a single warp never interleaves.
This way of execution is often called lockstep.

When a conditional branch is encountered during the lockstep execution, and the
decisions on which branch to be taken vary among threads within a single warp, then

1http://why3.lri.fr/

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:3

that warp executes both branches sequentially. During the execution of each branch,
only those threads that take it are enabled. After all branches are completed, all
threads in the warp are enabled and executed in lockstep again.

Thus, in SIMT, some statements may actually be executed by only some of the
threads, depending on the branching. We say that a thread is active if it is currently
enabled, and inactive otherwise. A mask is a piece of data (typically a bit mask, but
below we often represent a mask as a set) that describes which thread is active. The
state of a mask may change during execution and the result of executing a statement
may depend on a mask.

For example, let us consider the following program.

k = tid; while (k < n) { c[k] = a[k] + b[k]; k = k + ntid; }

Here we assume that k is a thread local variable, a, b, and c are shared arrays of
length n, and ntid is a constant whose value is the number of threads. The constant
tid represents the thread identifier, ranging from 0 to ntid - 1. Let us suppose that
this program is launched with 4 threads forming a single warp, and n equals 6. In
the first iteration, the condition k < n holds in all threads, so the mask is {0, 1, 2, 3},
and all threads execute the loop body. In the second iteration, however, the values
of k in threads 0, 1, 2, 3 are 4, 5, 6, 7 respectively, so the condition k < n does not
hold in threads 2 and 3. Therefore, these threads are deactivated, and the loop body
is executed with mask {0, 1}. After that all threads exit the loop, and the program
terminates. The final value of c is the sum of a and b.

Although the way SIMT executes threads looks similar to SIMD (Single Instruction
Multiple Data) in that a single instruction operates on multiple data, they are different
in that parallel operations on vectors are explicitly specified in SIMD while it is not the
case for SIMT. Indeed, when programming in CUDA C we only specify the behavior of
a single scalar thread, like a usual sequential program written C or C++.

1.2. Extending Hoare Logic
Next we consider a Hoare Logic for GPU kernels. The programs we are going to rea-
son about are a single GPU kernel, like the example above. In our formalization, we
mainly consider a simplified execution model in which all threads execute the same
instruction at a time (in other words, SIMT execution with only one warp). We call this
manner of execution complete lockstep.

Actually, we can employ most of the inference rules from the ordinary Hoare Logic
without significant changes, although the form of Hoare triples has to be changed. As
explained above, the effect of the lockstep execution of a statement depends on the
mask. Since the usual Hoare triple {φ}P {ψ} does not contain the information about
a mask, it cannot fully specify a program. Therefore we augment the usual Hoare
triple with another piece of information, and consider a Hoare quadruple of the form
{φ}m⇒ P {ψ}, where m denotes a mask. Intuitively this quadruple means that “if an
initial state satisfies φ, and we execute a program P with a mask denoted by m, then
after termination the state satisfies ψ.”

However, a difficulty arises from while loops. We found that, in some corner cases,
it is difficult to reason about while loops correctly. Although it would be possible to
modify the inference rule so that we can handle all programs soundly, we decided to
keep simplicity by making a certain assumption on the programs we deal with. As a
result we consider a certain class of programs and obtain soundness and relative com-
pleteness for this class of programs. We consider only loops such that, during their
execution, a thread never invalidates the loop termination condition of another thread
through shared memory. We call such loops monotonic. This is not a serious restric-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 K. Kojima and A. Igarashi

tion because any loop can be transformed into a monotonic one without changing the
behavior (with respect to our operational semantics).

Interestingly, our operational semantics and Hoare Logic are quite similar to the
ordinary one for sequential programs, despite the parallel nature of GPU programs. It
seems that this is a result of the fact that threads work basically independently during
the execution of GPU kernels. Although CUDA provides synchronization primitives,
their use is allowed only under a certain condition (which will be treated in Section 5).

1.3. Thread Interleaving
The extension of Hoare Logic above is sound and relatively complete for the semantics
in which threads are executed in complete lockstep, but this is not exactly how GPU
kernels are actually executed (we assumed that there is only one warp consisting of all
launched threads). This means that our Hoare Logic and its soundness and relative
completeness do not immediately apply to actual GPU kernels.

However, even if the actual thread execution is interleaved, if we restrict our at-
tention to race-free programs, the result would not depend on the choice of execution
semantics, and therefore it would be sound to assume that programs are executed
in complete lockstep. So, under the assumption of race-freedom, our method can be
applied without modification to actual GPU kernels. This assumption would be rea-
sonable because, as far as we know, many GPU kernels are intended to be race-free.

To investigate this direction, we consider another semantics, which we call interleav-
ing semantics (following Collingbourne et al. [2013]), in which execution of threads is
interleaved. The execution in this semantics can be regarded as the SIMT execution
in which every warp consists of only one thread, whereas the lockstep execution is
the SIMT execution with only one warp. Intuitively, lockstep and interleaving seman-
tics are under-approximation and over-approximation of the actual SIMT execution,
respectively. Interleaving semantics does not necessarily produce the same result as
the lockstep semantics, but it is possible to show that if a program is race-free, then
both lockstep and interleaving semantics produce the same result (Collingbourne et al.
[2013] proves a similar result, but our formalization and proof are more formal than
theirs; see Section 8 for more detailed comparisons). As a consequence, our Hoare Logic
is sound and relatively complete for race-free programs with respect to the interleaving
semantics. This means that our Hoare Logic can be used to reason about actual GPU
kernels provided that the kernel is race-free.

1.4. Organization of the Article
The rest of the article is organized as follows. In Section 2 we introduce the lockstep
semantics by extending the usual while-language. Section 3 describes our Hoare Logic.
Section 4 introduces the notion of monotonic loops, and prove soundness and relative
completeness of our Hoare Logic for programs whose loops are monotonic. In Section 5,
we introduce interleaving semantics and discuss soundness and relative completeness
of our Hoare Logic with respect to this semantics. Section 6 is devoted to the proof of
the equivalence between lockstep and interleaving semantics for race-free programs.
In Section 7 we discuss a few possible variants and extensions of our system. Section 8
mentions related work and Section 9 concludes the article. Some of the detailed proofs
are collected in Appendices.

2. LOCKSTEP SEMANTICS
In this section we formalize the complete lockstep execution. Our formalization is
based on Habermaier and Knapp [2012], but there are some differences. First, we omit
break, function calls, and return. Second, we include arrays, which are almost always
used in CUDA programs, and barrier synchronization.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:5

2.1. Formal Syntax
We assume countable, disjoint sets of variables LV n and SV n for each nonnegative
integer n. Elements of LV n and SV n are thread local and shared variables of arrays of
dimension n respectively (when n = 0 they are considered as scalars). We also fix the
set of n-ary operations Opn for each n. We assume that the standard arithmetic and
logical operations such as +, <, && and ! are included in the language.

Well-formed expressions e and programs P are defined as follows:

e ::= tid | ntid | xn[ē] | fn(ē)
P ::= xn[ē] := e | skip | sync | P ; P ′ | if e thenP elseP ′ | while e doP

where xn and fn range over LV n ∪ SV n and Opn, respectively, and ē stands for the
sequence e1, . . . , en.

Expressions include special constants tid, thread identifier, and ntid, the number
of threads.2 If a variable x is of dimension 0, we write x instead of x[].
xn[e1, ... , en] := e is an assignment, which is performed by all active threads in par-

allel. skip is a statement that has no effect. sync is a barrier synchronization, typically
used to avoid data races in CUDA. Although in the semantics being defined in this sec-
tion barrier synchronization does not play an important role, it will be essential when
discussing thread interleaving in Section 5. The remaining constructs are the same as
the usual while-language. Note that we do not have boolean expressions, so we use in-
teger expressions for conditions of if- and while-statements, and regard any nonzero
value as true.

2.2. Operational Semantics
Next we define a formal semantics for the language introduced above. For simplicity,
arrays are represented simply by total maps from tuples of integers to integers, so we
do not care about array bounds, and negative indices are also allowed. Our operational
semantics basically follows the standard evaluation rules, but one of the main differ-
ences is that it is nondeterministic because multiple threads may try to write into the
same shared variable simultaneously.

Below we fix a positive integer N which specifies the number of threads and, there-
fore, is the interpretation of the constant ntid. We also assume for each n-ary operation
fn, a map from Zn to Z (also denoted by fn) is assigned. We denote the set of threads
{0, 1, . . . , N − 1} by T.

Definition 2.1. A state σ consists of a map σ(x) : T → Zn → Z for each x ∈ LV n, and
σ(y) : Zn → Z for each y ∈ SV n.

Given a state σ, we naturally interpret σ(x) as the value of x.
The denotation of an expression e under a state σ is a map σ JeK : T → Z defined by:

σ JtidK (i) = i σ JntidK (i) = N

σ Jx[e1, ... , en]K (i) = {
σ(x)(i)(σ Je1K (i), . . . , σ JenK (i)) if x is local
σ(x)(σ Je1K (i), . . . , σ JenK (i)) if x is shared

σ Jf (e1, ... , en)K (i) = f(σ Je1K (i), . . . , σ JenK (i))
NOTATION 2.2. For a state σ, we define σ[x 7→ a] to be the state σ′ such that: σ′(x) = a

and σ′(y) = σ(y) for each y ̸= x.

2The name of this constant is taken from a special register in PTX [NVIDIA 2015]. In our formalization this
is the same as the number of threads, although this is not always the case for PTX.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 K. Kojima and A. Igarashi

skip, µ, σ ⇓ σ (E-SKIP) µ = T or µ = ∅
sync, µ, σ ⇓ σ (E-SYNC)

x is local σ′(y) = σ(y) for each variable y ̸= x
σ′(x)(i) = σ(x)(i) for each i /∈ µ

σ′(x)(i) = σ(x)(i) [σ JēK (i) 7→ σ JeK (i)] for each i ∈ µ

x[ē] := e, µ, σ ⇓ σ′ (E-LASSIGN)

x is shared σ′(y) = σ(y) for each variable y ̸= x

for all n̄,
{

if ∀i ∈ µ.σ JēK (i) ̸= n̄, then σ′(x)(n̄) = σ(x)(n̄)
otherwise, ∃i ∈ µ.σ JēK (i) = n̄ and σ′(x)(n̄) = σ JeK (i)

x[ē] := e, µ, σ ⇓ σ′ (E-SASSIGN)

P, µ, σ ⇓ σ′ Q,µ, σ′ ⇓ σ′′

P ; Q , µ, σ ⇓ σ′′ (E-SEQ)

P, µ ∩ σ JeK , σ ⇓ σ′ Q,µ \ σ JeK , σ′ ⇓ σ′′

if e thenP elseQ , µ, σ ⇓ σ′′ (E-IF)

µ ∩ σ JeK ̸= ∅ P, µ ∩ σ JeK , σ ⇓ σ′ while e doP , µ ∩ σ JeK , σ′ ⇓ σ′′

while e doP , µ, σ ⇓ σ′′ (E-WHILETRUE)

µ ∩ σ JeK = ∅
while e doP , µ, σ ⇓ σ (E-WHILEFALSE)

Fig. 1. Lockstep semantics of GPU kernels.

When an expression is used as a predicate (e.g. the condition part of an if-
statement), we regard σ JeK as a set of threads satisfying the condition e, that is, the
set { i ∈ T | σ JeK (i) ̸= 0 }. We also use the notation σ JeK to denote this set, when no
confusion arises.

The execution of a program is defined as a relation of the form

P, µ, σ ⇓ σ′,

where P is a program, µ ⊆ T, and σ, σ′ are states. This relation means that “if P is
executed with mask µ and initial state σ, and if P terminates, then the resulting state
is σ′.”

Evaluation rules are listed in Figure 1. A barrier synchronization succeeds only if
all threads are active or no thread is active, hence the set of active threads should be
either T or ∅ in the rule E-SYNC. A synchronization does not change the state. The rule
E-IF means that both branches are executed one after the other but under different
masks: the mask µ ∩ σ JeK for P is the set of threads where e holds and the other is its
(relative) complement (in µ).

Nondeterministic behavior can arise from E-SASSIGN; there can be more than one
choice of σ′, in case of a data race. More precisely, by a data race here we mean a
situation that there exist two (or more) distinct active threads i and j where the index
ē takes the same value on i and j, while e does not (formally, σ JēK (i) = σ JēK (j) and
σ JeK (i) ̸= σ JeK (j)). In such a case, following Habermaier and Knapp [Habermaier and
Knapp 2012], we allow to choose either σ JeK (i) or σ JeK (j), and set its value to x[ē].

3. REASONING ABOUT GPU KERNELS
In this section we describe how to extend Hoare Logic to the language formalized in
the previous section.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:7

3.1. Assertion Language
Our assertion language is based on first-order logic with function variables. We assume
as many n-ary variables as we want for each nonnegative integer n. Formally, the
syntax is as follows:

terms t ::= c | fn(t1, ..., tn) | xn(t1, ..., tn)
formulas φ ::= pn(t1, ..., tn) | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | ¬φ | ∀x.φ | ∃x.φ

Here c ranges over constant symbols, and fn, xn, and pn range over n-ary function
symbols, variables, and predicate symbols, respectively.

We assume our assertion language contains N (the number of threads) as a constant
symbol, and each operation f ∈ Opn as an n-ary function symbol. Extra constants and
function symbols are allowed. We also assume that standard predicates on integers
such as ≤ are included.

We associate a unique variable to each program variable. A variable that is not
associated to any program variable is called a specification variable. We denote the
variable corresponding to a program variable x again by x. Each x ∈ SV n is n-ary,
and each x ∈ LV n is (n + 1)-ary. This is because a local variable’s value varies among
threads: a local variable has to receive a thread identifier as one extra argument to
determine its value. We assume that the first argument of a local variable always
represents a thread identifier.

An assertion is just a formula of the first-order logic. We briefly describe how to
interpret it. First, we fix a model M of our first-order signature, with domain Z, such
that the interpretation of ntid is N that we fixed above, and the interpretation of each
fn ∈ Opn also equals the function used to define the denotation of an expression. An
assignment is a map which assigns to (both program and specification) variables of
arity n a map Zn → Z. The satisfaction relation ρ |= φ for each assignment ρ and a
formula φ is defined as usual.

Precisely speaking we have to distinguish program states from assignments, but for
brevity we often regard assignments as program states (by restricting their domain to
the set of program variables) if no confusion arises. We often write P, µ, σ ⇓ σ′ when σ
and σ′ are assignments, whose precise meaning is the following: it holds that P, µ, |σ| ⇓
|σ′| (where |σ| denotes σ restricted to the program variables and similarly for |σ′|) and
that σ and σ′ agree on specification variables. We also use the notation σ JeK for the
set { i ∈ T | σ JeK (i) ̸= 0 } when σ is an assignment and e is a term that may contain
specification variables.

Definition 3.1. A Hoare quadruple is of the form {φ}m ⇒ P {ψ}, where P is a pro-
gram, m is an expression built from fresh variables, and φ and ψ are formulas. Note
that no variable occurring in m occurs in P .

Definition 3.2. A Hoare quadruple {φ}m ⇒ P {ψ} is valid if, for every assignment
σ satisfying φ and every σ′ such that P, σ JmK , σ ⇓ σ′, it holds that σ′ |= ψ.

Definition 3.3. For an expression e and a term t, we define a term e@t as follows:
tid@t = t ntid@t = N

(x[e1, ... , en])@t =

{
x(t, e1@t, . . . , en@t) if x is local
x(e1@t, . . . , en@t) if x is shared

(f (e1, ... , en))@t = f(e1@t, . . . , en@t)

The intended meaning of e@t is the value of e at thread t.

NOTATION 3.4. We occasionally use T in place of m when m is an expression which
is nonzero in all threads (1, for example).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 K. Kojima and A. Igarashi

{φ}m⇒ skip {φ} (H-SKIP)
{all(m) ∨ none(m) → φ}m⇒ sync {φ} (H-SYNC)

|= φ′ → φ {φ}m⇒ P {ψ} |= ψ → ψ′

{φ′}m⇒ P {ψ′} (H-CONSEQ)

{φ}m⇒ P {ψ} {ψ}m⇒ Q {χ}
{φ}m⇒ P ; Q {χ} (H-SEQ)

{∀x′.assign(x′,m, x, ē, e) → φ[x′/x]}m⇒ x[ē] := e {φ} (H-ASSIGN)
{φ ∧ e = z}m && z ⇒ P {ψ} {ψ}m && ! z ⇒ Q {χ}

{φ}m⇒ if e thenP elseQ {χ} (H-IF)

{φ ∧ e = z}m && z ⇒ P {φ}
{φ}m⇒ while e doP {φ ∧ none(m && e)} (H-WHILE)

Fig. 2. Inference rules.

Definition 3.5. We use the following abbreviations.

— all(e) := (∀i.0 ≤ i < N → e@i ̸= 0)
— none(e) := (∀i.0 ≤ i < N → e@i = 0)
— i ∈ m := (m@i ̸= 0)
— ∀i ∈ m.φ := (∀i.0 ≤ i < N → m@i ̸= 0 → φ). Similarly for ∃ and other variants.
— If x is a shared variable, assign(x′,m, x, ē, e) is defined to be

∀n̄. ((∀i ∈ m.ē@i ̸= n̄) ∧ x′(n̄) = x(n̄)) ∨ (∃i ∈ m.ē@i = n̄ ∧ x′(n̄) = e@i) ,

and if x is local,

∀n̄, i. (i /∈ m ∨ ē@i ̸= n̄→ x′(i, n̄) = x(i, n̄)) ∧
(i ∈ m ∧ ē@i = n̄→ x′(i, n̄) = e@i) .

The definition of assign above would require some explanation. Intuitively,
assign(x′,m, x, ē, e) is true when x′ is (one of) the result(s) of executing x[ē] := e with
mask m. If x is shared this is the case if for each index n̄, either

— no thread modifies x(n̄) and x′(n̄) equals the the original value x(n̄), or
— some (possibly multiple) threads try to modify x(n̄), and x′(n̄) equals a value written

by one of these threads.

The description is complicated because of possible data races. The case when x is local
is similar, but the situation is simpler because there is no data race.

We can state the meaning of assign formally as follows:

LEMMA 3.6. x[ē] := e, σ JmK , σ ⇓ σ′ holds if and only if there exists an assignment a
such that σ′ = σ[x 7→ a], and σ[x′ 7→ a] |= assign(x′,m, x, ē, e).

3.2. Inference Rules
Inference rules are listed in Figure 2. We write ⊢ {φ}m ⇒ P {ψ} if the quadruple
{φ}m ⇒ P {ψ} is provable from the rules in Figure 2. The variables x′ in H-ASSIGN
and z in H-IF and H-WHILE are fresh variables of an appropriate arity. The expression
e = z appearing in H-IF and H-WHILE is shorthand for ∀i ∈ T.e@i = z@i.

Rules H-CONSEQ, H-SKIP and H-SEQ are standard. H-ASSIGN looks different from
the standard assignment rule of Hoare Logic, but in view of Lemma 3.6 this would be
natural (see also Remark 3.7 below). H-SYNC is also understood in a similar way.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:9

Rules H-IF and H-WHILE are more interesting. Since an if statement executes both
then- and else-branches sequentially, the precondition of the second premise is ψ (the
postcondition of the first), not φ. In both rules, we have to remember the initial value
of e into a fresh variable z (see Remark 3.8 below). Since the threads in which the
condition is false do not execute the body, the mask part of the premises has to be
m && z (or m && ! z).

Remark 3.7. At first sight the rule H-ASSIGN looks different from the ordinary
Hoare logic, but the ordinary rule for assignment

{φ[e/x]}x := e{φ}

is equivalent to

{∀x′.x′ = e→ φ[x′/x]}x := e{φ}
which has the same form as H-ASSIGN.

Remark 3.8. We introduce a fresh variable z in rules H-IF and H-WHILE. To see
that this is indeed necessary, suppose the rule were of the following form (although
this is actually ill-formed because the mask part may contain variables that are not
fresh).

{φ}m && e ⇒ P {ψ} {ψ}m && ! e ⇒ Q {χ}
{φ}m⇒ if e thenP elseQ {χ}

Let x and y be shared variables and e = (x > 0), P = (x := 0; y := 1), and Q = skip.
Then the following is valid:

{x@0 > 0}T ⇒ if e thenP elseQ {y@0 = 1} .

To prove this by using the above rule, we try to prove

{x@0 > 0} x > 0 ⇒ P {y@0 = 1}

but this is impossible because the verification condition would be

x@0 > 0 → ∀x′.assign(x′, x > 0, x, ·, 0) → ∀y′.assign(y′, x ′ > 0, y, ·, 1) → y′@0 = 1

which is not true: x@0 > 0 implies x′@0 = 0, but we can prove y′@0 = 1 only if x′@0 > 0.
The problem is that, when executing y := 1, the actual mask is represented by x > 0,

whereas in the above verification condition it is incorrectly replaced by x ′ > 0. This does
not happen in the actual rule H-IF because, instead of directly evaluating e, the value
of e at the point just before branching is referenced through a fresh variable z.

PROPOSITION 3.9. Our Hoare Logic admits the disjunction and conjunction rules:

{φ1}m⇒ P {ψ1} {φ2}m⇒ P {ψ2}
{φ1 ∧ φ2}m⇒ P {ψ1 ∧ ψ2}

{φ1}m⇒ P {ψ1} {φ2}m⇒ P {ψ2}
{φ1 ∨ φ2}m⇒ P {ψ1 ∨ ψ2}

PROOF. By induction on the derivations of {φi}m⇒ P {ψi}. Consider the following
cases separately: (1) the case when one of the derivations ends with H-CONSEQ, and
(2) the case when both of them end with the same rule (uniquely determined by P)
other than H-CONSEQ. The proofs are straightforward in both cases.

3.3. Examples
3.3.1. Vector addition. Let us consider the program having appeared in Section 1.1.

When this program is called withN threads, each thread iwrites a[k] + b[k] into c[k]
for k = i,N + i, 2N + i, . . . until k exceeds the length n of the arrays. Therefore after

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 K. Kojima and A. Igarashi

this program terminates, the value of c should be the sum of a and b. More precisely,
letting P be the program in Section 1.1, the following holds:

{}T ⇒ P {∀i.0 ≤ i < n→ c(i) = a(i) + b(i)} .

Note that in the postcondition we have to write c(i), not c@i, because c is a shared
variable and i is the index specified in the program (and similarly for a and b). We can
prove this quadruple using the following loop invariant:

∀i ∈ T.∃l.k@i = lN + i ∧ ∀l′.0 ≤ l′ < l → c(l′N + i) = a(l′N + i) + b(l′N + i).

This formula asserts that at the beginning and the end of each iteration, the value of
k at thread i is of the form lN + i, and all elements at indices i,N + i, . . . , (l − 1)N + i
have been processed correctly. Here l is actually the number of iterations that thread i
has performed.

3.3.2. Array sum. For simplicity we assume the number N of threads is a power of 2,
and a is an array of length n = 2N . Consider the following program P :

s = n / 2;
while (s > 0) {
if (tid < s) a[tid] = a[tid] + a[tid + s];
s = s / 2;
sync;

}

After executing this program the value of a[0] is the sum of all values in the original
array a. Intuitively, this program implements the following algorithm. In each itera-
tion, we split a given array into two arrays of an equal length (s in the program), say
a1 and a2. Then, compute the sum a1 + a2, and store the result into a1. Continue this
process until the length of the array becomes 1. The final value of 0-th element is the
answer.

The following is an invariant:

∃l ≥ 0.
(
∀i ∈ T.s@i = 2l/2

)
∧ 2l/2 ≤ N ∧ ∀j.

(
0 ≤ j < 2l → a(j) =

∑
k a0(j + 2lk)

)
.

Here a0 denotes the initial value of a, and the variable k in
∑

k a0(j + 2lk) ranges over
all nonnegative integers such that j + 2lk < n. The expression 2l/2 is interpreted to be
0 when l = 0. We can verify that{

n = 2N = 2t+1 ∧ a = a0
}
T ⇒ P

{
a(0) =

∑n−1
m=0 a0(m)

}
.

4. SOUNDNESS AND RELATIVE COMPLETENESS
We are going to prove soundness and relative completeness. Unfortunately, however,
they do not hold for all programs. We first describe how soundness fails and introduce
the notion of monotonic loops, being based on this observation. After that we prove
soundness and relative completeness for programs containing only monotonic loops.

4.1. Monotonic Loops
As a counterexample for the soundness, let us consider the program

e = x[tid] == tid, P = while e do (x[0] := 1; x[1] := 1),

where x is a shared variable and the assertion

φ = (∃i ∈ T.x(i) = i).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:11

It can be verified that φ is an invariant:

{φ ∧ z = e} z ⇒ x[0] := 1; x[1] := 1 {φ} ,

and therefore we can prove {φ}T ⇒ P {φ ∧ none(e)} . However, this is not a valid
quadruple. Suppose that the initial value of x is x[0] = x[1] = 0. Starting from such a
state, it is easy to see that P terminates with some state, say σ′. If the quadruple above
is valid, it means that σ′ satisfies φ∧none(e). However, this formula is inconsistent, so
this is a contradiction. It follows that the rule H-WHILE is not sound for this example.

The problem is that initially the condition e is false at thread 1, but after the body is
executed by thread 0, it becomes true at thread 1. In general, a difficulty arises when

— thread i has already exited the loop,
— another active thread j modifies some shared variable, and
— as a result the condition e becomes true at thread i.

Actually, this is the only obstacle to proving soundness and relative completeness. We
will restrict our attention to programs that do not cause this situation.

First we define the notion of a stable expression under a given program. We say that
e is stable under P , if the value of e at thread i does not change by executing P with i
being disabled. More precisely:

Definition 4.1. Let P be a program and e an expression. We say that e is stable
under P if for all µ, σ and σ′ such that P, µ, σ ⇓ σ′, it holds that σ JeK (i) = σ′ JeK (i) for
all i /∈ µ.

If e is stable under P , the above difficulty would not arise during the execution of the
loop while e doP . Formally this is stated as follows:

LEMMA 4.2. Suppose e is stable under P . Then for all µ, σ and σ′ such that P, µ ∩
σ JeK , σ ⇓ σ′, it holds that µ ∩ σ′ JeK ⊆ µ ∩ σ JeK.

Definition 4.3. Let us say a loop while e doP is monotonic if e is stable under P . A
program with monotonic loops is a program whose loops are all monotonic.

The following lemma gives a reasonable sufficient condition for the monotonicity.

LEMMA 4.4. Let P be a program and e an expression. Suppose that any shared vari-
able occurring in e does not occur on the left-hand side of any assignment in P . Then e
is stable under P .

PROOF. It suffices to show that if P, µ, σ ⇓ σ′ then

— σ(x)(i) = σ′(x)(i) for all local x and i /∈ µ, and
— σ(x) = σ′(x) for all shared x not occurring on the left-hand side of any assignment in
P .

This is done by induction on the derivation of P, µ, σ ⇓ σ′.

LEMMA 4.5. Let P be a program, and assume that for any subprogram of the form
while e doQ , e and Q satisfy the condition of Lemma 4.4. Then P is a program with
monotonic loops.

Below we consider programs with monotonic loops. However, this is not actually
a problem because it is possible to transform a loop into a monotonic one, which
is equivalent to the original one (in the sense that if they are executed under the
same state with the same mask, then the set of resulting states are also the same).
To do this, given a program, replace its subprograms of the form while e doP with

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 K. Kojima and A. Igarashi

z := e; while z do (P ; z := e), where z is a fresh local variable. The program obtained by
this transformation satisfies the condition of Lemma 4.5.

4.2. Soundness and Relative Completeness
After restricting our attention to monotonic loops, we can prove the soundness by ver-
ifying that each rule preserves validity. H-WHILE can be checked by induction on the
number of iterations (more precisely, the height of the derivation tree of the execution
relation ⇓). For details, see Appendix B.

THEOREM 4.6 (SOUNDNESS). If P is a program with monotonic loops and {φ}m⇒
P {ψ} is derivable from the rules in Figure 2, then it is valid.

Next we consider relative completeness. The statement and proof strategy are
mostly standard, except that masks are involved in the weakest preconditions.

Definition 4.7 (Weakest Liberal Precondition). The weakest liberal precondition
wlp(m,P, φ) is defined as follows:

wlp(m,P, φ) = { σ | ∀σ′.P, σ(m), σ ⇓ σ′ =⇒ σ′ |= φ } .
We use wlp(m,P, φ) to denote a formula defining this set.

To prove the relative completeness, it suffices to show that (1) the weakest lib-
eral precondition is definable in the assertion language, and (2) it holds that ⊢
{wlp(m,P, φ)}m ⇒ P {φ}. Definability can be checked in a standard way [Winskel
1993]. The second claim can be proved by induction on P . When P is a while-statement,
we can use the formula ∃z.e = z∧wlp(m && z , P, φ) as an invariant. For details, see Ap-
pendix C.

THEOREM 4.8 (RELATIVE COMPLETENESS). If P is a program with monotonic
loops and {φ}m⇒ P {ψ} is valid, then it is derivable.

5. INTERLEAVING SEMANTICS
The first part of this section introduces another semantics which we call interleaving
semantics, in which execution of threads interleaves. After that in the second part we
formalize race-freedom, and formally state the soundness and relative completeness of
our Hoare Logic with respect to the interleaving semantics. We defer its proof to Sec-
tion 6 because it is rather long and technical. The basic idea of our formulation of the
interleaving semantics is similar to the semantics considered in the literature [Haber-
maier and Knapp 2012; Collingbourne et al. 2013].

5.1. Definition of Interleaving Semantics
To define interleaving semantics, we slightly extend the program syntax. We add a
new construct endif and an annotation (which we call a label) to each endif, if- and
while-statement. endif will appear during interleaved execution, but is not supposed
to be written by programmers. Labels play an essential role in the semantics to handle
sync correctly.

The precise syntax is as follows:

P ::= xn[ē] := e | skip | sync | P ; P ′ | ifl e thenP elseP ′ | whilel e doP | endifl

A label l ranges over a fixed set L. We assume that the set of labels L is infinite and to-
tally ordered, and the same label does not appear more than once in a single program.

In our interleaving semantics, we have to keep track of the control flow of the execu-
tion of each thread so that we can treat sync correctly. According to NVIDIA CUDA C
programming guide [NVIDIA 2014],

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:13

syncthreads() is allowed in conditional code but only if the conditional
evaluates identically across the entire thread block, otherwise the code exe-
cution is likely to hang or produce unintended side effects.

This means that if all threads reach a sync but under different control flows (syncs in
different places or sync inside a loop with different numbers of iterations), then the
execution may fail to proceed correctly. Therefore we should design an execution rule
for sync so that the synchronization succeeds only if all threads are in the same control
flow. In the case of lockstep semantics, it was sufficient to check that the mask is either
T or ∅, but this solution is not available in the interleaving semantics.

To this end we introduce an extra component, which we call stack, into a configu-
ration of a thread. A stack is the history of branches that a thread has taken. Each
element of a stack is a pair (l, k) of a label and a positive integer. If l appears in the
stack of a thread configuration, then that thread is executing a statement with label
l. When l is a label of an if-statement, k determines which of the two branches the
thread is executing: k = 1 if the thread is executing then-part, and k = 2 otherwise.
If l is a label of a while-statement, then (l, k) in the stack means that the thread is
executing the k-th iteration of the loop.

Definition 5.1 (I-configuration).

— A stack is a list of pairs (l, k) ∈ L× (N \ {0}).
— A thread configuration is a pair (P, s) where P is a program or a symbol ✓, and s is a

stack.
— An I-configuration, a configuration of interleaving semantics, is of the form (Pi, si)i, σ.

Here (Pi, si)i is a family of thread configurations indexed by the set of threads T and
σ is a state.

NOTATION 5.2. For a predicate Φ(i) on threads (typically of the form i ∈ µ), we
denote by (Pi, si | Φ(i)) the family of thread configurations whose i-component is (Pi, si)

if Φ(i) is true, and (✓, ε) otherwise. A variant with multiple clauses
(
Pi, si | Φ1(i)
Qi, ti | Φ2(i)

)
is

used in a similar meaning.

The evaluation rules are listed in Figures 3 and 4. Figure 3 defines the execution
of a single thread, and Figure 4 defines the interleaving execution. P̄ stands for a
(possibly empty) list of programs. When P̄ is empty, P ; P̄ is understood as P , and the
empty list is identified with ✓ if it appears alone. In the rules we implicitly identify
programs up to associativity of sequential composition (that is, we identify (P1; P2); P3

with P1; (P2; P3)). The same convention is often used in the rest of this article.
In the assignment rules we used the notation σ[x, i, n̄ 7→ v] to denote the state σ′

such that σ′(x)(i)(n̄) = v and other values are the same as σ.
The operations + and \ used in rules T-WHILETRUE and T-WHILEFALSE are de-

fined as follows:

s+ l =

{
s′ · (l, k + 1) if s = s′ · (l, k)
s · (l, 1) otherwise,

s \ l =
{
s′ if s = s′ · (l, k)
s otherwise.

The rules for if, while and sync modify the stacks. T-IFTRUE and T-IFFALSE push
(l, 1) and (l, 2), respectively, on the stack and T-ENDIF pops the element (l, k) out of the
stack (if the labels in the statement and the stack agree). T-WHILETRUE increments

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 K. Kojima and A. Igarashi

skip; P̄ , s, σ
i−→ P̄ , s, σ (T-SKIP)

x is local σ′ = σ [x, i, σ JēK (i) 7→ σ JeK (i)]
x[ē] := e; P̄ , s, σ

i−→ P̄ , s, σ′
(T-LASSIGN)

x is shared σ′ = σ [x, σ JēK (i) 7→ σ JeK (i)]
x[ē] := e; P̄ , s, σ

i−→ P̄ , s, σ′
(T-SASSIGN)

σ JeK (i) ̸= 0

ifl e thenP1 elseP2; P̄ , s, σ
i−→ P1; endif

l ; P̄ , s · (l, 1), σ
(T-IFTRUE)

σ JeK (i) = 0

ifl e thenP1 elseP2; P̄ , s, σ
i−→ P2; endif

l ; P̄ , s · (l, 2), σ
(T-IFFALSE)

endifl ; P̄ , s · (l, k), σ i−→ P̄ , s, σ (T-ENDIF)
σ JeK (i) ̸= 0

whilel e doP ; P̄ , s, σ
i−→ P ; whilel e doP ; P̄ , s+ l, σ

(T-WHILETRUE)

σ JeK (i) = 0

whilel e doP ; P̄ , s, σ
i−→ P̄ , s \ l, σ

(T-WHILEFALSE)

Fig. 3. Thread execution of GPU kernels.

Pi, si, σ
i−→ P ′, s′, σ′

(Pi, si)i, σ →I (Pi, si)i [i 7→ (P ′, s′)] , σ′ (I-THREAD)

∀i, j.si = sj

(sync; P̄i , si)i, σ →I (P̄i , si)i, σ
(I-SYNC)

Fig. 4. Interleaving semantics of GPU kernels.

the second component (the number of iterations) of the stack and T-WHILEFALSE re-
moves (l, k) if it is the top element of the stack.

In I-THREAD, (Pi, si)i [i 7→ (P ′, s′)] denotes the family of thread configurations whose
i-component is replaced by (P ′, s′). The rule I-SYNC checks whether the stacks of all
threads agree, that is, all threads are in the same control flow.

5.2. Race-Freedom and Equivalence
To define race-freedom, we first define a read set, which describes which part of the
shared memory is accessed when an expression is evaluated. The read set is repre-
sented by a set of pairs of the form ⟨x, n̄⟩, where x is a shared variable and n̄ is a
sequence of integers of appropriate length (the dimension of x).

Below, by abuse of notation, when ℓ = ⟨x, n̄⟩ we write σ(ℓ) for σ(x)(n̄).

Definition 5.3 (Read Set, Write Set). We define the function Rd for expressions as
follows:

Rd(tid, σ, i) = Rd(ntid, σ, i) = ∅

Rd(x[ē], σ, i) =

{
{⟨x, σ JēK (i)⟩} ∪ Rd(ē, σ, i) if x is shared
Rd(ē, σ, i) if x is local

Rd(f (ē), σ, i) = Rd(ē, σ, i)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:15

Rd(ē, σ, i) =
∪
e∈ē

Rd(e, σ, i).

For programs, we define:

Rd(x[ē] := e, σ, i) = Rd(ē, σ, i) ∪ Rd(e, σ, i)

Rd(skip, σ, i) = Rd(sync, σ, i) = Rd(endifl , σ, i) = Rd(✓, σ, i) = ∅
Rd(ifl e thenP elseP ′, σ, i) = Rd(e, σ, i)

Rd(whilel e doP , σ, i) = Rd(e, σ, i)

For an assignment to a shared variable x, we define Wr as

Wr(x[ē] := e, σ, i) = (⟨x, σ JēK (i)⟩, σ JeK (i)).
Definition 5.4 (Race-freedom).

(1) An I-configuration (Pi, si)i, σ is said to be racy if there exist two distinct threads i
and j such that either
(a) the first statement of Pi is an assignment to a shared variable, Wr(Pi, σ, i) =

(l, v), σ(l) ̸= v, and l ∈ Rd(Pj , σ, j), or
(b) the first statements of Pi and Pj are both assignments to the same shared

variable, Wr(Pi, σ, i) = (ℓi, vi), Wr(Pj , σ, j) = (ℓj , vj), ℓi = ℓj and vi ̸= vj .
(2) An I-configuration is said to be race-free if it cannot reach a racy I-configuration.

Note that we do not consider writes by multiple threads as a race if the values being
written are the same. This is because this kind of races (sometimes called benign races)
are common in practice, and considered tolerable [Betts et al. 2012].

We can prove that the race-freedom defined above implies the equivalence of inter-
leaving and lockstep semantics. The proof will be given in Section 6.

THEOREM 5.5. Let P be a program and µ a mask and suppose that (P, ε | i ∈ µ), σ
is race-free. Then, P, µ, σ ⇓ σ′ if and only if (P, ε | i ∈ µ), σ →∗

I (✓, ε)i, σ′.

From this theorem, together with the results of Section 4, soundness and relative
completeness with respect to the interleaving semantics follow.

COROLLARY 5.6. Let P be a program with monotonic loops and suppose that
{φ}m ⇒ P {ψ} is derivable. Let σ be a state such that the I-configuration (P, ε | i ∈
σ JmK), σ is race-free, satisfies σ |= φ, and (P, ε | i ∈ σ JmK), σ →∗

I (✓, ε)i, σ′. Then it
holds that σ′ |= ψ.

COROLLARY 5.7. Let P be a program with monotonic loops such that (P, ε | i ∈
σ JmK), σ is race-free for all σ such that σ |= φ. Then, {φ}m ⇒ P {ψ} is derivable if for
all σ and σ′ such that σ |= φ and (P, ε | i ∈ σ JmK), σ →∗

I (✓, ε)i, σ′ it holds that σ′ |= ψ.

6. PROOF OF EQUIVALENCE
This section is devoted to showing that the lockstep and interleaving semantics are
equivalent for race-free programs (Theorem 5.5). As the proof is rather long, we will
outline the proof before going into the details.

We first introduce a derivation search procedure for the lockstep semantics in Sec-
tion 6.1. This is a procedure to construct a derivation of P, µ, σ ⇓ σ′ for some (initially
unknown) σ′ step by step. Soundness and completeness of this procedure are proved:
a derivation produced by this procedure is always valid and any valid derivation can
be produced by this procedure. This procedure can be regarded as a small-step version
of the lockstep semantics. A small-step semantics is more convenient when comparing

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 K. Kojima and A. Igarashi

lockstep and interleaving semantics, as the latter is defined as a small-step semantics
(a similar approach has been considered by Gunter and Rémy [1993] to state and prove
the absence of runtime type errors when the language has a big-step semantics).

In Section 6.2 we define a translation from a partial derivation into an I-
configuration and prove that this gives a simulation: each step of the derivation search
corresponds to an execution of the interleaving semantics (possibly in multiple steps).
This fact implies a half of Theorem 5.5. Let us remember the statement of the theorem:
under the assumption of race-freedom it holds that

P, µ, σ ⇓ σ′ ⇐⇒ (P, ε | i ∈ µ), σ →∗
I (✓, ε)i, σ′. (1)

The left-to-right direction follows from the simulation and the completeness of the
derivation search. Additionally, it is easily checked that if there is an infinite sequence
of derivation search, then there exists an infinite interleaving execution sequence, too.

In Section 6.3 we prove that a race-free I-configuration is deterministic, that is, if
an I-configuration C is race-free and there exists a finite sequence C →∗

I C′ which is
maximal (that is, there exists no C′′ such that C′ →I C′′), then every maximal sequence
starting from C is also finite and ends with C′. This means that, to prove the right-
to-left direction of (1), it suffices to show that the lockstep execution terminates with
some state. This is because if the lockstep execution terminates with some σ′′ (that is,
P, µ, σ ⇓ σ′′), then by simulation it holds that (P, ε | i ∈ µ), σ →∗

I (✓, ε)i, σ′′, but from
determinacy the resulting state is unique, hence σ′ = σ′′.

In Section 6.4 we prove that if the derivation search barrier-diverges (i.e., fails at
a barrier synchronization), then there exists an interleaving execution sequence that
does not terminate successfully (i.e., does not end with a configuration of the form
(✓, ε)i, σ′′). The proof is rather involved; the problem is that even if the lockstep ex-
ecution gets stuck at a barrier, it does not mean that the interleaving execution also
gets stuck at the same point, since we could choose a thread that is not synchronizing
and execute it. The proof will be sketched at the beginning of Section 6.4. This result
implies the right-to-left direction of (1) as follows. As mentioned above, by determinacy
it suffices to show that

(P, ε | i ∈ µ), σ →∗
I (✓, ε)i, σ′ =⇒ ∃σ′′.P, µ, σ ⇓ σ′′.

Assume the negation of the right-hand side. Then the derivation search does not ter-
minate or barrier-diverges. In the first case, there is an infinite sequence of the inter-
leaving execution, but this contradicts determinacy. In the second case, the result of
Section 6.4 implies that the interleaving execution does not successfully terminate, but
this also contradicts determinacy. Therefore the lockstep execution has to terminate.

Although the proof of Theorem 5.5 is already outlined above, a more formal proof of
it is given in Section 6.5. The proof does not directly refer to the details of Sections 6.3
and 6.4; only Lemmas 6.16, 6.20, and 6.21 are used. If the reader is not interested in
the proofs of these lemmas, the details of these two sections may be skipped.

6.1. Partial Derivation and Derivation Search
We first define partial judgments and partial derivations. We assume an infinite set
of state variables, ranged over by X. A state variable is used in a partial judgment or
derivation as a placeholder which will eventually be replaced with the result of the
execution of a statement that is not completed yet.

Definition 6.1 (Partial judgments). We define partial judgments as follows:
J ::= P, µ, σ ⇓ Σ | P, µ,X ⇓ X; Σ ::= σ | X.

A partial judgment allows state variables to appear in place of concrete states but, if
the final state is concrete, then the initial state has to be concrete, too.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:17

Definition 6.2 (Partial derivation). Partial derivations are inductively defined by
the rules below. We denote by P(J) the set of partial derivations with conclusion J .
We also assume that D1 and D2 below do not contain the same state variable except
for Σ′ occurring in their conclusions.

(1) J ∈ P(J);
(2) If D1 ∈ P(P1, µ, σ ⇓ Σ′) and D2 ∈ P(P2, µ,Σ

′ ⇓ Σ), then
D1 D2

P1; P2, µ, σ ⇓ Σ
∈ P(P1; P2, µ, σ ⇓ Σ);

(3) If D1 ∈ P(P1, µ ∩ σ JeK , σ ⇓ Σ′) and D2 ∈ P(P2, µ \ σ JeK ,Σ′ ⇓ Σ), then
D1 D2

ifl e thenP1 elseP2, µ, σ ⇓ Σ
∈ P(ifl e thenP1 elseP2, µ, σ ⇓ Σ);

(4) If µ∩σ JeK ̸= ∅, D1 ∈ P(P, µ∩σ JeK , σ ⇓ Σ′), and D2 ∈ P(whilel e doP , µ∩σ JeK ,Σ′ ⇓
Σ), then

D1 D2

whilel e doP , µ, σ ⇓ Σ
∈ P(whilel e doP , µ, σ ⇓ Σ).

We say that a derivation D is total if it contains no state variables. Occasionally a
partial derivation that is not total is said to be nontotal.

Remark 6.3. As is easily seen by case analysis, P(P, µ,X ⇓ X ′) has actually only
one element P, µ,X ⇓ X ′.

Remark 6.4. The names of state variables appearing in a partial derivation are
essentially irrelevant, so we implicitly rename state variables so that unrelated occur-
rences of variables have distinct names.

More precisely, relevant occurrences of a state variable is defined as follows. Let D
be a partial derivation and X a state variable. We define the relevance of occurrences
of X in D as the least equivalence relation such that, for all subderivations of D of the
form

....
P1, µ1, σ1 ⇓ X P2, µ2, X ⇓ X ′

J

or D′

....
P2, µ2, σ2 ⇓ X
P, µ, σ ⇓ X

the two occurrences of X explicitly indicated are relevant.
It is always possible to rename state variables to eliminate irrelevant occurrences of

the same variable. Below, unless otherwise specified, we assume that partial deriva-
tions have no irrelevant occurrences of the same variable.

Next we define a derivation search procedure. To describe the rules it is conve-
nient to use an evaluation context (in particular, when writing rules S-ATOM and
S-WHILEFALSE introduced below).

Definition 6.5 (Evaluation context). An evaluation context, ranged over by E, is de-
fined by the following syntax.

E ::= []

∣∣∣∣ E P, µ,X ′ ⇓ X
J

∣∣∣∣ D E
J

Here D denotes an arbitrary total derivation.

Application of evaluation contexts is defined as usual.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 K. Kojima and A. Igarashi

P is either sync, skip, or an assignment P, µ, σ ⇓ σ′

E[P, µ, σ ⇓ X] −→ E[P, µ, σ ⇓ X]{σ′/X} (S-ATOM)

E [P1; P2, µ, σ ⇓ X] −→ E

[
P1, µ, σ ⇓ X ′ P2, µ,X

′ ⇓ X
P1; P2, µ, σ ⇓ X

]
(S-SEQ)

E
[
ifl e thenP1 elseP2, µ, σ ⇓ X

]
−→

E

[
P1, µ ∩ σ JeK , σ ⇓ X ′ P2, µ \ σ JeK , X ′ ⇓ X

ifl e thenP1 elseP2, µ, σ ⇓ X

]
(S-IF)

µ ∩ σ JeK ̸= ∅
E
[
whilel e doP , µ, σ ⇓ X

]
−→

E

[
P, µ ∩ σ JeK , σ ⇓ X ′ whilel e doP , µ ∩ σ JeK , X ′ ⇓ X

whilel e doP , µ, σ ⇓ X

] (S-WHILETRUE)

µ ∩ σ JeK = ∅
E
[
whilel e doP , µ, σ ⇓ X

]
−→ E

[
whilel e doP , µ, σ ⇓ X

]
{σ/X}

(S-WHILEFALSE)

Fig. 5. Derivation search procedure

The derivation search procedure is formally described as a binary relation −→ on
partial derivations. The rules are listed in Figure 5, where X ′ is assumed to be a fresh
variable. In S-ATOM and S-WHILEFALSE, we have to substitute σ′ into all occurrences
of X in the whole partial derivation, because the variable X is a placeholder which is
to be replaced by the resulting state when the execution of P terminates.

The derivation search procedure defined above is sound and complete in the follow-
ing sense.

PROPOSITION 6.6 (SOUNDNESS). If P, µ, σ ⇓ X −→∗ D and D is a total derivation,
then D is a valid derivation with respect to the rules in Figure 1.

PROPOSITION 6.7 (COMPLETENESS). If D0 is a derivation of P, µ, σ ⇓ σ′ con-
structed from rules in Figure 1, then P, µ, σ ⇓ X −→∗ D0.

For the proofs of these propositions, see Appendices D and E.

6.2. Simulating the Derivation Search Procedure
Having defined the derivation search procedure, we wish to prove that each step of
this procedure can be simulated by the interleaving execution. To do this we construct
a translation from partial derivations into I-configurations, denoted by | · |, and show
that this translation is a simulation between lockstep and interleaving semantics.

Unfortunately, however, the desired result is not quite true. For example, consider
the program x := x + 1 where x is a shared variable. Then in the lockstep semantics
this program increments the value of x by 1, but in the interleaving semantics it in-
crements x by the number of active threads. Therefore we have to work under some
assumption that excludes this situation. (Another possible approach is to split the ex-
ecution rule of assignment into two phases [Habermaier and Knapp 2012]. The first
phase calculates the index of the array and the value to be stored, and actual write
operation is performed at the second phase.)

Definition 6.8.

(1) Let A = x[ē] := e be an assignment to a shared variable x. An instance of the
rule E-SASSIGN with conclusion A,µ, σ ⇓ σ′ is said to be interleavable if there
exists an enumeration i1, . . . , im of µ and a sequence of states σ1, . . . , σm−1 such
that A, ε, σk−1

ik−→ ✓, ε, σk for each 1 ≤ k ≤ m, where σ0 = σ and σm = σ′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:19

(2) A partial derivation D is said to be locally interleavable if every instance of
E-SASSIGN appearing in D is interleavable.

We will discuss that a sufficient condition for local interleavability is race-freedom
in Section 6.3.

We first have to define a translation |·| from partial derivations into I-configurations.
Below we use the following auxiliary operation:

l + s =

{
(l, k + 1) · s′ if s = (l, k) · s′
(l, 1) · s otherwise.

We first define |E| as a transformation of families of thread-configurations for each
evaluation context E. Throughout the definition, D is a total derivation and (Ri, ti) =
|E|(Qi, si)i.

|[]| (Qi, si)i = (Qi, si)i∣∣∣∣E P2, µ,X
′ ⇓ X

P1; P2, µ, σ ⇓ X

∣∣∣∣ (Qi, si)i = (Ri ; P2, ti | i ∈ µ)∣∣∣∣ D E
P1; P2, µ, σ ⇓ X

∣∣∣∣ (Qi, si)i = (Ri, ti | i ∈ µ)∣∣∣∣ E P2, µ \ σ JeK , X ′ ⇓ X
ifl e thenP1 elseP2, µ, σ ⇓ X

∣∣∣∣ (Qi, si)i =

(
Ri ; endif

l , (l, 1) · ti | i ∈ µ ∩ σ JeK
P2; endif

l , (l, 2) | i ∈ µ \ σ JeK
)

∣∣∣∣ D E

ifl e thenP1 elseP2, µ, σ ⇓ X

∣∣∣∣ (Qi, si)i =
(
Ri ; endif

l , (l, 2) · ti | i ∈ µ \ σ JeK)∣∣∣∣E whilel e doP , µ ∩ σ JeK , X ′ ⇓ X
whilel e doP , µ, σ ⇓ X

∣∣∣∣ (Qi, si)i =
(
Ri ; while

l e doP , l + ti | i ∈ µ ∩ σ JeK)∣∣∣∣ D E

whilel e doP , µ, σ ⇓ X

∣∣∣∣ (Qi, si)i = (Ri, l + ti | i ∈ µ ∩ σ JeK and Ri ̸= ✓)

|E| is basically an operation that appends the continuation denoted by E. Note that in
the last case l is not added to the stack of thread i if Ri = ✓, that is, the thread has
already exited the loop.

We define the transformation from a partial derivation into an I-configuration by:
|E [P, µ, σ ⇓ X]| = |E|(P, ε | i ∈ µ), σ for a nontotal derivation;∣∣∣∣∣

....
P, µ, σ ⇓ σ′

∣∣∣∣∣ = (✓, ε)i, σ′ for a total derivation.

PROPOSITION 6.9. If D −→ D′ and D′ is locally interleavable, then |D| →∗
I |D′|.

Moreover, if D is of the form E[P, µ, σ ⇓ X] where P is not a sequencing and µ ̸= ∅, then
|D| →+

I |D′|.
PROOF. By induction on E. For details, see Appendix F.

6.3. Race-Freedom and Determinacy
In this section we prove that race-freedom implies determinacy and local interleav-
ability.

We first prove determinacy. To do this we make use of several notions from abstract
rewriting system.

Definition 6.10 (Diamond Property). Let A be a set and → a binary relation on it.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 K. Kojima and A. Igarashi

(1) We say (A,→) has the diamond property if for all a, b, c ∈ A such that a→ b, a→ c,
and b ̸= c, there exists d ∈ A such that b→ d and c→ d.

(2) An element a ∈ A is said to have the diamond property if → restricted to the set of
all elements of A reachable from a has the diamond property.

The above definition of the diamond property is slightly different from the usual one, in
that we assume b ̸= c. This assumption is redundant when the relation → is reflexive,
which is often the case, but here we need the assumption b ̸= c because the relation we
have in mind is →I , which is not reflexive.

Definition 6.11 (Determinacy). Let A be a set and → a binary relation on it. An
element a ∈ A is said to be

— normal if there exists no b ∈ A such that a→ b;
— a normal form of b ∈ A if a is normal and b→∗ a;
— strongly normalizing if there exists no infinite sequence a = a0 → a1 → a2 → . . . ;
— weakly normalizing if it has a normal form;
— deterministic if (1) it is strongly normalizing and has unique normal form or (2) it is

not weakly normalizing.

LEMMA 6.12. Let A be a set and → a binary relation on it, and suppose a ∈ A has
the diamond property. For any pair of elements b, c ∈ A such that a →∗ b and a →∗ c,
there exists d ∈ A such that b→∗ d and c→∗ d.

PROOF. By induction on a→∗ b and a→∗ c.

LEMMA 6.13. Let A be a set and → a binary relation on it. If a ∈ A has the diamond
property and is weakly normalizing, then a is strongly normalizing.

PROOF. It suffices to show that if a→ b and b is strongly normalizing, then a is also
strongly normalizing, provided that → has the diamond property. Suppose that b is
strongly normalizing but a is not, and take an infinite sequence a = a0 → a1 → a2
We are going to construct an infinite sequence b = b0 → b1 → b2 . . . inductively, so
that ai → bi for each i. Suppose we have already constructed such a sequence up to bi.
From the assumption we have ai → bi and ai → ai+1. Moreover, bi ̸= ai+1, because bi is
strongly normalizing (since it is reachable from b which is strongly normalizing) while
ai+1 is not. Therefore from the diamond property there exists bi+1 such that bi → bi+1

and ai+1 → bi+1, as required.

The following is an immediate consequence of the lemmas above.

COROLLARY 6.14. Let A be a set and → a binary relation on it. If a ∈ A has the
diamond property, then a is deterministic.

We can apply this corollary to show that race-freedom implies determinacy.

LEMMA 6.15. Let e be an expression, σ and σ′ states such that σ(ℓ) = σ′(ℓ) for all
ℓ ∈ Rd(e, σ, i), and σ(x)(i) = σ′(x)(i) for any local variable x. Then σ JeK (i) = σ′ JeK (i).

PROOF. By induction on e.

LEMMA 6.16. A race-free I-configuration has the diamond property. In particular, it
is deterministic.

PROOF. If an I-configuration has two distinct transitions, then both of them have
to be derived by I-THREAD. Since i−→ is by definition deterministic for each i, it suf-
fices to show that for distinct i and j if (Pi, si)i, σ is race-free and Pi, si, σ

i−→ P ′
i , s

′
i, σ

′

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:21

and Pj , sj , σ
j−→ P ′

j , s
′
j , σ

′′ then there exists σ′′′ such that Pi, si, σ
′′ i−→ P ′

i , s
′
i, σ

′′′ and

Pj , sj , σ
′ j−→ P ′

j , s
′
j , σ

′′′.
This is verified by case analysis on thread execution rules in Figure 3. If both threads

i and j use rules that do not modify the state, the conclusion is obvious. So suppose
that at least one of the two threads uses an assignment rule. Without loss of generality
we assume thread i uses either T-LASSIGN or T-SASSIGN, and σ′ = σ[ℓ 7→ v] (here,
ℓ takes the form ⟨x, i, n̄⟩ if x is local). From race-freedom and Lemma 6.15 it follows
that σ′ JeK (j) = σ JeK (j) for any expression e that is going to be evaluated by thread
j. Therefore, if the head of Pj is not an assignment, then Pj , sj , σ

′ j−→ P ′
j , s

′
j , σ

′ as
required. If Pj is also an assignment, we have σ′′ = σ[ℓ′ 7→ v′] for some ℓ′ and v′.
For these ℓ′ and v′ we have Pj , sj , σ

′ j−→ P ′
j , s

′
j , σ

′[ℓ′ 7→ v′], so it suffices to show that
σ′[ℓ′ 7→ v′] = σ′′[ℓ 7→ v], that is, σ[ℓ 7→ v][ℓ′ 7→ v′] = σ[ℓ′ 7→ v′][ℓ 7→ v] but this follows from
race-freedom.

Next we will show that any D ∈ P(P, µ, σ ⇓ X) is locally interleavable if the I-
configuration (P, ε | i ∈ µ), σ (which corresponds to P, µ, σ ⇓ X) is race-free. We actually
prove a stronger assertion that every judgment of the form A,µ, σ ⇓ σ′, where A is an
assignment to a shared variable, is race-free in the following sense.

Definition 6.17 (Race-free assignment). Consider an assignment to a shared vari-
able A = x[ē] := e. For brevity let us write Ri, ℓi, and vi for Rd(A, σ, i), ⟨x, σ JēK (i)⟩, and
σ JeK (i), respectively. Then (A,µ, σ) is said to be race-free if, for any i, j ∈ µ,

(1) if ℓi = ℓj then vi = vj , and
(2) if i ̸= j and vi ̸= σ(ℓi) then ℓi /∈ Rj .

Remark 6.18. The above definition of race-freedom is consistent with Definition 5.4
in the following sense: (A,µ, σ) is race-free in the sense of Definition 6.17 if and only if
(A, ε | i ∈ µ), σ is not racy in the sense of Definition 5.4.

We first show that a race-free assignment is interleavable. More precisely:

LEMMA 6.19. Consider an assignment to a shared variable A = x[ē] := e, and sup-
pose that (A,µ, σ) is race-free. Then, σ′ for which A,µ, σ ⇓ σ′ is valid is unique, and this
judgment is interleavable.

PROOF. We useRi, ℓi, and vi in the same meaning as Definition 6.17. Let {i1, . . . , im}
be an arbitrary enumeration of µ.

We first check uniqueness, so let us suppose A,µ, σ ⇓ σ′ and show that σ′(ℓ) is
uniquely determined for each ℓ. If ℓ ̸= ℓij for every j then σ′(ℓ) necessarily equals
σ(ℓ), hence is unique. Otherwise, σ(ℓ) = vij for some j with ℓ = ℓij . From race-freedom,
if ℓij = ℓik then vij = vik , hence σ′(ℓ) is indeed unique.

Let us define

σk = σ[ℓi1 7→ vi1] . . . [ℓik 7→ vik]

for 0 ≤ k ≤ m. It is easy to check that A,µ, σ ⇓ σm. To prove the interleavability it
is sufficient to show that A, ε, σk−1

ik−→ ✓, ε, σk for 1 ≤ k ≤ m. By T-SASSIGN rule we
have

A, ε, σk−1
ik−→ ✓, ε, σk−1[⟨x, σk−1 JēK (ik)⟩ 7→ σk−1 JeK (ik)].

It suffices to show that the state on the right equals σk. Therefore what we have
to show is σk−1 JēK (ik) = σ JēK (ik) and σk−1 JeK (ik) = σ JeK (ik). To prove this, by

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 K. Kojima and A. Igarashi

Lemma 6.15 it suffices to check that σ = σk−1 on Rik and σ(x)(ik) = σk−1(x)(ik) for
all local variables x. The latter part is immediate from the definition of σk ’s. Consider
ℓ ∈ Rik and suppose σ(ℓ) ̸= σk−1(ℓ). Then, since the only differences between σ and
σk−1 are the values at ℓi1 , . . . , ℓik−1

, we have ℓ = ℓij for some j with 1 ≤ j ≤ k − 1.
Then by definition of σk−1 we have σ(ℓij) ̸= σk−1(ℓij) = vij , hence it follows from race-
freedom that ℓij /∈ Rik (note that j ̸= k, hence ij ̸= ik), a contradiction.

LEMMA 6.20. Suppose (P, ε | i ∈ µ), σ is race-free, and let D be a partial derivation
reachable from P, µ, σ ⇓ X. Then D is locally interleavable.

PROOF. By Lemma 6.19, it suffices to show that for every instance A,µ, σ ⇓ σ′ of
T-SASSIGN in D, (A,µ, σ) is race-free. We prove this by induction on −→∗. The base
case is obvious as there is no such rule instance. For the induction step, consider D and
D′ such that (P, µ, σ ⇓ X) −→∗ D −→ D′ and suppose that D is locally interleavable.
If D′ contains an instance of E-SASSIGN that does not appear in D, then it must be
the case that D −→ D′ is obtained by S-ATOM; note that the substitution performed
by S-WHILEFALSE does not produce a new instance of E-SASSIGN because it does
not replace an occurrence of a state variable on a leaf except for the leaf to which
E-WHILEFALSE is applied. Therefore D takes the form E[A,µ′, σ′ ⇓ X ′] where A is an
assignment to a shared variable, and D′ = D{σ′′/X ′}.

By the induction hypothesis D is locally interleavable, and hence by Proposition 6.9,
|D| is reachable from (P, ε | i ∈ µ), σ. To show that (A,µ′, σ′) is race-free, by Re-
mark 6.18 it suffices to show that (A, ε | i ∈ µ′), σ′ is not racy. Here we use the fol-
lowing facts: from the assumption of race-freedom |D| is not racy, and |D| has the form
(Qi , si)i, σ

′ where Qi = (A; Q ′
i) if i ∈ µ′. First, if (Qi , si)i, σ

′ is not racy, then neither
does the configuration (Qi , si | i ∈ µ′)i, σ

′ with fewer active threads (that is, i with
Qi ̸= ✓). This is because the definition of a race can be written as an existential state-
ment on active threads (there exists two active threads such that...). Since Qi = A; Q ′

i ,
this means that (A; Q ′

i , si | i ∈ µ′)i, σ
′ is not racy. Second, this implies (A, ε | i ∈ µ′)i, σ

′

is not racy, because the definition of a race only mentions the first statement of each
program, hence Qi and si are irrelevant.

6.4. Barrier Divergence
In this section we prove the following Lemma.

LEMMA 6.21. If P0, µ0, σ0 ⇓ X0 −→∗ D = E[sync, µ, σ ⇓ X] and µ ̸= ∅,T, then there
exists no σ′ such that |D| →∗

I (✓, ε)i, σ′.

The basic strategy of the proof is to define an ordering <L on thread configurations
so that

— if (Pi, si)i, σ →I (P ′
i , s

′
i)i, σ

′ then (Pi, si) ≤L (P ′
i , s

′
i) for each i,

— under the same assumptions as Lemma 6.21, if j ∈ µ, k /∈ µ, and |D| = (Pi, si)i, σ,
then (Pj , sj) <L (Pk, sk), and

— if (Pi, si)i, σ is an I-configuration to which I-SYNC applies, then (Pj , sj) ̸<L (Pk, sk)
for every pair of threads j, k.

We will call this order L-order (L stands for lockstep). The intuition behind this order
is: to simulate the lockstep execution in the interleaving semantics, the least thread
with respect to this order has to be executed first. The first and third clauses mean
that a smaller configuration gets larger as its execution proceeds and, by the time
a barrier synchronization succeeds, all configurations are incomparable. The second
clause means that, if threads are barrier-divergent, then a thread that has reached
sync is strictly smaller. Therefore, being strictly smaller is an invariant condition (by

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:23

the first clause), and the threads will never be ready for synchronization. The lemma
follows from this observation, because |D| cannot terminate without using I-SYNC.

The precise definition of L-order (Definition 6.33) turns out to be tricky, but basically
it compares program counters (which we will introduce below) of both sides, so that
the state increases as the execution of the program proceeds (this implies the first
condition above). A difficulty arises from the existence of loops: when the execution
goes back to the beginning of a loop, the program counter decreases. To handle such
a case correctly, L-order takes the state of stacks into account, and this makes the
definition of L-order complicated.

The proof of Lemma 6.21 goes as follows. First, we introduce counters and modify
the notions we have introduced so far, such as derivation search and interleaving se-
mantics; after that we show that Lemma 6.21 follows from its variant, Lemma 6.31
(Section 6.4.1). The latter states that Lemma 6.21 holds for the annotated versions
of partial derivations and I-configurations. Then it remains to prove Lemma 6.31. To
prove this, we define L-order (Section 6.4.2) and show that it is transitive on reachable
thread configurations (Lemma 6.48 in Section 6.4.3). To prove the transitivity we have
to introduce several auxiliary notions and lemmas. This machinery is used only in the
proof of the transitivity, and will not be used in the remaining part of the proof, except
for Lemmas 6.41 and 6.46. After proving the transitivity, in Section 6.4.4, the first and
second properties of L-order listed above are proved in Lemma 6.51 and Lemma 6.53,
respectively. The third property is almost immediate from the definition of L-order.
Finally, at the end of this section, we put these results together to prove Lemma 6.31.

6.4.1. Interleaving Semantics with Program Counters. First, we introduce a program
counter into our program syntax:

P ::= c : xn[ē] := e | c : skip | c : sync | P ; P ′ | c : ifl e thenP elseP ′

| c : whilel e doP | c : endifl

Counters c range over natural numbers.
Since c represents a position of each statement in the initial program, it is natural

to assume that c is annotated from left to right. In addition to this, we will assume a
certain condition on counters, which we specify below.

Definition 6.22. Let P be a program. Then we denote the sequence of labels appear-
ing in P by labs(P). Similarly the counters appearing in P is denoted by cts(P). More
formally,

labs(c : x[ē] := e) = ε

labs(c : skip) = ε

labs(c : sync) = ε

labs(P ; P ′) = labs(P) · labs(P ′)

labs(c : ifl e thenP elseP ′) = l · labs(P) · labs(P ′)

labs(c : whilel e doP) = l · labs(P)
labs(c : endifl) = ε

cts(c : x[ē] := e) = c

cts(c : skip) = c

cts(c : sync) = c

cts(P ; P ′) = cts(P) · cts(P ′)

cts(c : ifl e thenP elseP ′) = c · cts(P) · cts(P ′)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 K. Kojima and A. Igarashi

1:s = n / 2;
2:whilel (s > 0) {

3:ifm (tid < s)
4:a[tid] = a[tid] + a[tid + s];

6:s = s / 2;
7:sync;

}

1:s = n / 2;
2:whilel (s > 0) {

3:ifm (tid < s)
4:a[tid] = a[tid] + a[tid + s];

5:s = s / 2;
6:sync;

}
Fig. 6. Examples of well- and ill-annotated programs.

cts(c : whilel e doP) = c · cts(P)
cts(c : endifl) = c

where · is the concatenation of sequences.
Although labs(P) and cts(P) are sequences, we sometimes regard them as sets. For

example, we write l ∈ labs(P) to mean that l appears in labs(P). Also, ct(P) denotes
the first element of cts(P). Since cts(P) is always non-empty, ct(P) is well-defined. For
convenience, we also define cts(✓) = labs(✓) = ε and ct(✓) = ∞.

Definition 6.23. Let P be a program. A subprogram P ′ of P with label l is a subpro-
gram of P of the form c : ifl e thenP1 elseP2 or c : whilel e doP1.

Definition 6.24. Let P be a program such that labs(P) has no multiple occurrences
of the same label. We define bgnP for such a program as a map from labs(P) (regarded
as a set) to N such that for each label l ∈ labs(P) and the subprogram P ′ of P with label
l, bgnP (l) = ct(P ′).

Definition 6.25. A program P is said to be well-annotated if the following holds:

— cts(P) and labs(P) are strictly increasing.
— There exists a function end : labs(P) → N such that, for all subprograms P ′ of P , if
P ′ has a label l, then
— end(l′) < end(l) for all l′ ∈ labs(P ′);
— c < end(l) for all c ∈ cts(P ′);
— end(l) < c for all c ∈ cts(P) \ cts(P ′) such that bgn(l) < c.

The function end is used in the semantics (see Figure 7). As an example, consider
the programs in Figure 6. Although both programs satisfy the first condition of the
definition above, the program on the left is well-annotated while the program on the
right is not. To make the program on the left well-annotated, we can choose end(l) = 8
and end(m) = 5. However, to make the program on the right well-annotated, we have
to define end(m) so that 4 < end(m) < 5, which is impossible.

Below, when we consider a well-annotated program, we implicitly assume that a
function end (or sometimes denoted by endP) is specified.

The following lemma ensures that any program has a well-annotation.

LEMMA 6.26. Any program in the sense of Section 5 (i.e. without counters) can be
annotated so that the resulting program is well-annotated.

PROOF. Given a program P0, first annotate it with labels from left to right. After
that, define counter annotation and end by the following procedure:

— annot(P1; P2, c) = (P ′
1; P

′
2, c2,m1 ⊎ m2), where (P ′

1, c1,m1) = annot(P1, c) and
(P ′

2, c2,m2) = annot(P2, c1);
— annot(ifl e thenP1 elseP2, c) = (c : ifl e thenP ′

1 elseP
′
2, c2 + 1,m1 ⊎m2 ⊎ {(l, c2)})

where (P ′
1, c1,m1) = annot(P1, c+ 1) and (P ′

2, c2,m2) = annot(P2, c1);

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:25

c : skip; P̄ , s, σ
i−→c P̄ , s, σ (T-SKIP)

x is local σ′ = σ [x, i, σ JēK (i) 7→ σ JeK (i)]
c : x[ē] := e; P̄ , s, σ

i−→c P̄ , s, σ
′

(T-LASSIGN)

x is shared σ′ = σ [x, σ JēK (i) 7→ σ JeK (i)]
c : x[ē] := e; P̄ , s, σ

i−→c P̄ , s, σ
′

(T-SASSIGN)

σ JeK (i) ̸= 0

c : ifl e thenP1 elseP2; P̄ , s, σ
i−→c P1; end(l) : endif

l ; P̄ , s · (l, 1), σ
(T-IFTRUE)

σ JeK (i) = 0

c : ifl e thenP1 elseP2; P̄ , s, σ
i−→c P2; end(l) : endif

l ; P̄ , s · (l, 2), σ
(T-IFFALSE)

c : endifl ; P̄ , s · (l, k), σ i−→c P̄ , s, σ (T-ENDIF)
σ JeK (i) ̸= 0

c : whilel e doP ; P̄ , s, σ
i−→c P ; end(l) : whilel e doP ; P̄ , s+ l, σ

(T-WHILETRUE)

σ JeK (i) = 0

c : whilel e doP ; P̄ , s, σ
i−→c P̄ , s \ l, σ

(T-WHILEFALSE)

Fig. 7. Thread execution of GPU kernels with counters.

— annot(whilel e doP , c) = (c : whilel e doP ′, c1 + 1,m1 ⊎ {(l, c1)}) where (P ′, c1,m1) =
annot(P, c+ 1);

— if none of the above clauses applies, annot(P, c) = (c : P , c+ 1, ∅).

Let (P ′, c′,m) = annot(P, c). Then it holds that P ′ is well-annotated with endP ′ = m,
and c′ is greater than any element of cts(P ′) and the range of m.

Having introduced the counters and well-annotated programs, we will adapt some
of the arguments in the current and the previous sections to the new setting. Figures 7
and 8 show how to modify the interleaving semantics introduced in Section 5.1 to an-
notated programs (differences are highlighted). The rules are mostly straightforward,
except that every endifl appearing on the right-hand side is annotated by end(l), and
similarly for a while-statement in T-WHILETRUE. Since we expect counters to increase
from left to right, we have to annotate them with some number larger than the coun-
ters of Pi or P , but smaller than that of P̄ . So the second condition of Definition 6.25 is
exactly what we need here. Also note that I-SYNC allows the counters to vary among
threads, although it seems more natural to require that they are uniform as well as
the stacks. However, this relaxed version simplifies the proofs below.

In the interleaving semantics defined here, we assume a fixed initial program, say
P0, which is well-annotated. The functions bgn and end appearing in these rules are
considered as bgnP0

and endP0 , respectively. Below, unless otherwise specified we as-
sume implicitly that a well-annotated initial program is fixed, and for brevity we omit
the subscripts of bgn and end.

NOTATION 6.27. We denote by ⌊·⌋ the operation that removes all counters, which
applies to both programs and I-configurations. Below we often follow the convention
that if we have to treat both annotated and unannotated programs, we use P for
unannotated one and P̃ for annotated one (and similarly for partial derivations and
I-configurations).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 K. Kojima and A. Igarashi

Pi, si, σ
i−→c P

′, s′, σ′

(Pi, si)i, σ →Ic (Pi, si)i [i 7→ (P ′, s′)] , σ′ (I-THREAD)

∀i, j.si = sj

(ci : sync; P̄i , si)i, σ →Ic (P̄i , si)i, σ
(I-SYNC)

Fig. 8. Interleaving semantics of GPU kernels with counters.

Since the new rules only add counters to programs and change nothing else, →Ic and
→I are almost equivalent.

LEMMA 6.28. Let C̃ be an annotated I-configuration.

(1) If C̃′ is another annotated I-configuration and C̃ →Ic C̃′, then ⌊C̃⌋ →I ⌊C̃′⌋.
(2) If C′ is an unannotated I-configuration satisfying ⌊C̃⌋ →I C′, then there exists a

unique annotated I-configuration C̃′ such that C̃ →Ic C̃′ and ⌊C̃′⌋ = C′.

We next consider annotating partial derivations and the derivation search procedure
defined in Section 6.1. The new definition of partial derivations is mostly the same as
Definition 6.2. The only nontrivial case is (4) of Definition 6.2, where the counter of
the while-statement of D2 has to be end(l), while the counter of the statement at the
bottom is arbitrary. The other clauses are exactly the same as before, but P , P1 and
P2 denote annotated programs. This means that, for example, in clause (4) the three
occurrences of P in the conclusions of D1, D2 and the whole partial derivation has
to be identical including counters. Derivation search procedure defined in Figure 5 is
adapted in a straightforward way. We occasionally use −→c to denote the resulting
relation for clarity.

LEMMA 6.29. Let D̃ be an annotated partial derivation.

(1) If D̃′ is another annotated partial derivation and D̃ −→c D̃′, then ⌊D̃⌋ −→ ⌊D̃′⌋.
(2) If D′ is an unannotated partial derivation satisfying ⌊D̃⌋ −→ D′, then there exists

a unique annotated partial derivation D̃′ such that D̃ −→c D̃′ and ⌊D̃′⌋ = D′.

We can prove analogues of the results in Sections 6.2 and 6.3 in the same way as
before. The details are mostly straightforward, so we omit them. Below we denote the
translation from annotated partial derivations into annotated I-configurations by | · |c.

LEMMA 6.30. For an annotated partial derivation D̃, it holds that ⌊|D̃|c⌋ = |⌊D̃⌋|.

Now we can reduce our goal, Lemma 6.21, to the following lemma.

LEMMA 6.31. If P̃0, µ0, σ0 ⇓ X0 −→∗
c D̃ = Ẽ[c : sync, µ, σ ⇓ X] and µ ̸= ∅,T, then

there exists no σ′ such that |D̃|c →∗
Ic (✓, ε)i, σ′.

LEMMA 6.32. Lemma 6.31 implies Lemma 6.21.

PROOF. Let P̃0 be a well-annotated program such that ⌊P̃0⌋ = P0 (existence of such
P̃0 follows from Lemma 6.26. Then by Lemma 6.29, the assumption of Lemma 6.21
implies the existence of D̃ satisfying the assumption of Lemma 6.31 and the equation
⌊D̃⌋ = D. Therefore there is no σ′ such that |D̃|c →∗

Ic (✓, ε)i, σ′. Let us assume there
exists σ′ such that |D| →∗

I (✓, ε)i, σ′. Then, by using D = ⌊D̃⌋ and Lemma 6.30 we
obtain ⌊|D̃|c⌋ →∗

I (✓, ε)i, σ′. Therefore by Lemma 6.28, there exists an annotated I-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:27

configuration C̃ such that |D̃|c →∗
Ic C̃ and ⌊C̃⌋ = (✓, ε)i, σ′. However, by definition of ⌊C̃⌋

this equality implies C̃ = (✓, ε)i, σ′, a contradiction.

In the rest of this section, we prove Lemma 6.31. In what follows, we mostly consider
annotated programs and configurations, so we basically omit the adjective “annotated”
and use P and C rather than P̃ and C̃, when no confusion arises. Also, we omit counters
when it is not important.

6.4.2. L-order

Definition 6.33 (L-order).

— The partial order ⪯ on stacks is the prefix relation, that is, s ⪯ s′ if and only if there
exists s′′ (which is possibly empty) such that s′ = s · s′′.

— The relation ∥ on stacks is defined as: s ∥ s′ if and only if neither s ⪯ s′ nor s′ ⪯ s.
We use ∦ for the negation of ∥.

— The partial order ≤s on stacks is the lexicographical order, where elements are also
ordered lexicographically. More precisely, s ≤s s

′ if and only if either
— s ⪯ s′, or
— s = s0 · (l, k) · s1, s′ = s0 · (l′, k′) · s2 and (l, k) < (l′, k′),
where (l, k) < (l′, k′) if and only if either l < l′, or l = l′ and k < k′.

— The relation <L on thread configurations is such that (P, s) <L (P ′, s′) if and only if
either
— s ∥ s′ and s <s s

′, or
— s ∦ s′ and ct(P) < ct(P ′).
In particular, (P, s) <L (✓, ε) for all P ̸= ✓ and s since ct(✓) = ∞. We call this
relation L-order.

As usual, we write s ≺ s′ when s ⪯ s′ and s ̸= s′, and similarly for <s. We also write ≤L

for the reflexive closure of <L.

Intuitively, two thread configurations T and T ′ satisfy T <L T ′ when T is at an
earlier stage of execution than T ′. To see that this also applies when the execution
branches on if-statement, remember that our semantics executes the then-branch first.
Thus the then-branch is considered an earlier stage of execution than the else-branch.
Taking this into account, T-IFTRUE and T-IFFALSE push (l, 1) and (l, 2) to the stacks,
respectively, so that s · (l, 1) <L s · (l, 2). Therefore we basically compare counters of
both configurations, as in the second clause of the definition of L-order. However, it is
not sufficient to compare counters only, if a loop is involved. As an example, consider a
program whilel e do (1 : P1; 2 : P2) and two thread configurations

T = (2 : P2; 3 : whilel e do (1 : P1; 2 : P2), (l, 1)),

T ′ = (1 : P1; 2 : P2; 3 : whilel e do (1 : P1; 2 : P2), (l, 2)).

T is executing P2 in the first iteration, and T ′ is executing P1 in the second iteration.
We expect that T <L T

′, and this is indeed the case for the actual definition of L-order
(apply the first clause), but if we compare counters only, we would have T ′ <L T . To
treat this situation correctly, we have to take the stack into account.

6.4.3. Transitivity of L-order. L-order defined above is not transitive when considered as
a relation over the set of all thread configurations. For example, consider the three
thread configurations (1 : P1, ε), (2 : P2, (l, 1)) and (1 : P1, (l, 2)). Then we have: (1 :
P1, ε) <L (2 : P2, (l, 1)) because ε ∦ (l, 1) and 1 < 2 (the second clause of the definition of
L-order); (2 : P2, (l, 1)) <L (1 : P1, (l, 2)) because (l, 1) ∥ (l, 2) and (l, 1) < (l, 2) (the first
clause); but it is not the case that (1 : P1, ε) <L (1 : P1, (l, 2)) because ε ∦ (l, 2) but 1 ̸< 1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 K. Kojima and A. Igarashi

However, we do not need the transitivity on all thread configurations. Since we are
interested in configurations that are reachable from the initial configuration, it is suf-
ficient if the transitivity holds on such configurations. We will show that this is indeed
the case (Lemma 6.48). The precise definition of reachability is as follows:

Definition 6.34 (Reachability). We say an I-configuration C is reachable from an ini-
tial configuration C0 if C0 →∗

Ic C. We also say (P, s) is reachable if it is a thread con-
figuration of some reachable I-configuration, that is, (P, s) = (Pi, si) for some i and a
reachable configuration (Pi, si)i, σ.

To prove the transitivity, we analyze the relationship between P and s when (P, s) is
a reachable thread configuration. In particular, we prove Lemma 6.45, which says that
dom(s) is actually determined by P . We first define the function p used in Lemma 6.45.

Definition 6.35 (Context). We define a (one-hole) context as follows:

C ::= [] | C ; P | P ; C | c : ifl e thenC elseP | c : ifl e thenP elseC

| c : whilel e doC .

Definition 6.36 (Path). For each context C, we define the path to the hole in C as
follows:

p([]) = ε; p(C ; P) = p(P ; C) = p(C);

p(c : ifl e thenP elseC) = p(c : ifl e thenC elseP) = l · p(C);
p(c : whilel e doC) = l · p(C).

Also, for a well-annotated program P , we define a map pP from cts(P) ∪ endP (labs(P))
to L∗ as follows:

— given c ∈ cts(P), there exists a unique context C and program P ′ such that P = C[c :
P ′]. Define pP (c) = p(C);

— given l ∈ labs(P), define pP (endP (l)) = pP (bgnP (l)) · l (note that bgnP (l) ∈ labs(P)).

Below we denote the set cts(P) ∪ endP (labs(P)) by dom(pP).

Remember that we work under some initial program P0. Below we omit the subscript
P0 of pP0 , and similarly for bgn and end.

LEMMA 6.37. bgn and end are injective, and bgn is strictly monotone.

PROOF. By definition of bgn and end.

LEMMA 6.38. Take any pair of labels l, l′ ∈ labs(P0), and consider two intervals
[bgn(l), end(l)] and [bgn(l′), end(l′)]. Then either they are disjoint, or one of them is con-
tained in the other. Equivalently, if bgn(l) < bgn(l′) then either end(l) < bgn(l′) or
end(l′) < end(l).

PROOF. Let l, l′ ∈ labs(P0) and suppose bgn(l) < bgn(l′). Let P ′ be the program with
label l. If l′ ∈ labs(P ′) then by Definition 6.25 we have end(l′) < end(l). Otherwise,
l′ /∈ labs(P ′) implies bgn(l′) /∈ cts(P ′), therefore by the last clause of Definition 6.25
(put c = bgn(l′)) we obtain end(l) < bgn(l′), as required.

LEMMA 6.39. Let l ∈ labs(P0) and c ∈ dom(p). Then l ∈ p(c) if and only if bgn(l) <
c ≤ end(l).

PROOF. We first consider the case c ∈ cts(P0). Let C be the context such that P0 =
C[c : P]. Then p(c) = p(C). Let Pl be the subprogram of P0 with label l, and take
C1 so that P0 = C ′[Pl]. Then by Definition 6.25 we have c ∈ cts(Pl) if and only if

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:29

bgn(l) ≤ c ≤ end(l). It is also easy to see that c ∈ cts(Pl) if and only if there exists C2

such that Pl = C2[c : P]. Therefore it suffices to show that

l ∈ p(C) ⇐⇒ Pl = C2[c : P] for some C2, and c ̸= bgn(l) (2)

where P0 = C[c : P] = C ′[Pl] and Pl has label l. First, note that

l ∈ p(C) ⇐⇒ C = C1[C2] for some C1, C2 where C2 ̸= [] has label l

(here by abuse of terminology we apply the predicate “has label l” to a context when
the context is non-empty) since in general p(C1[C2]) = p(C1) · p(C2) and p(C) starts
with l if and only if C has label l. If C = C1[C2] and C2 has label l, then Pl = C2[c : P].
In this case we also have c ̸= bgn(l) since otherwise c = bgn(l) = ct(Pl) and therefore C2

has to be empty. This shows the left-to-right direction of (2). For the converse, suppose
Pl = C2[c : P] and c ̸= bgn(l). Then, because P0 = C[c : P] = C ′[Pl], we have P0 =
C ′[C2[c : P]]. Therefore C = C ′[C2]. Also, we can check that C2 ̸= [] in the same way as
above, hence l ∈ p(C2) ⊆ p(C). This proves the lemma for c ∈ cts(P0).

If c = end(l′), then p(c) = p(bgn(l′)) · l′, so

l ∈ p(c) ⇐⇒ l = l′ or l ∈ p(bgn(l′))

⇐⇒ l = l′ or bgn(l) < bgn(l′) ≤ end(l)

⇐⇒ bgn(l) < end(l′) ≤ end(l).

The second equivalence follows from this lemma for c = bgn(l′) which is already proved
above. The last equivalence follows from Lemmas 6.37 and 6.38.

LEMMA 6.40. p(c) is strictly increasing for all c ∈ cts(P0), where P0 is well-
annotated.

PROOF. It suffices to prove that p(c) is a subsequence of labs(P0). It is easy prove
that if P0 = C[c : P] then p(C) is a subsequence of labs(P0), by induction on P0. This
immediately implies the lemma for c not of the form end(l).

Consider the other case: c = end(l). Suppose that l is a label of an if-statement, and
define C and C ′ so that P0 = C[ifl e thenP1 elseP2] and C ′ = C[ifl e then [] elseP2].
Then p(end(l)) = p(C ′) since both sides equal p(C) · l, and therefore p(end(l)) is a
subsequence of labs(P0). The case l is a label of a while-statement is similar.

LEMMA 6.41. Let c1, c2, c3 ∈ dom(p). If c1 ≤ c2 ≤ c3 then p(c1) ∩ p(c3) ⊆ p(c2).

PROOF. If l ∈ p(c1) ∩ p(c3), by Lemma 6.39 we have bgn(l) < c1, c3 ≤ end(l). Since
c1 ≤ c2 ≤ c3 it has to be the case that bgn(l) < c2 ≤ end(l). Again applying Lemma 6.39
we obtain l ∈ p(c2) as required.

In the proof of Lemma 6.45, we use an auxiliary function rm. This function receives
a program and returns the list of labels which will be removed from the stack when
the program is executed.

Definition 6.42. Define a mapping rm from programs to L∗ by

— rm(P1; P2) = rm(P2) · rm(P1),
— rm(end(l) : endifl) = rm(end(l) : whilel e doP) = l, and
— rm(P) = ε in other cases.

LEMMA 6.43. If (P, s) is reachable for some s, and P ′ is a subprogram of P that does
not occur in the top level of P (precisely, there exists no (sequences of) programs P̄ and
P̄ ′ such that P = P̄ ; P ′; P̄ ′), then P ′ is a subprogram of the initial program.

PROOF. By induction on →∗
Ic.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 K. Kojima and A. Igarashi

LEMMA 6.44. If P is a subprogram of the initial program, then rm(P) = ε.

PROOF. By straightforward induction on P , using the fact that neither end(l) :
endifl nor end(l) : whilel e doP ′ appears in the initial program. Note that end(l) is
defined as a label that does not appear in the initial program.

LEMMA 6.45. Let (P, s) be a reachable thread configuration. Then p(ct(P)) =
dom(s).

PROOF. By induction on →∗
Ic we prove that if (P, s) is reachable, then for any Q̄1

and Q̄2 such that P = Q̄1; Q̄2 (here we allow Q̄1 to be empty) it holds that dom(s) =
p(ct(Q̄2)) · rm(Q̄1). The base case is obvious as both sides are empty (the right-hand
side is empty by the above two lemmas). Below we say that such Q̄2 is a tail of P .

Consider the case of T-IFTRUE. We have (c : ifl e thenP1 elseP2; P̄ , s)
i−→c

(P1; end(l) : endifl ; P̄ , s · (l, 1)). If P1; end(l) : endifl ; P̄ = Q̄1; Q̄2, then there are
three cases: (1) Q̄2 is a tail of P̄ , (2) Q̄2 = end(l) : endifl ; P̄ , or (3) Q̄2 starts with a
tail of P1. Case (1) is immediate from the induction hypothesis, using the fact that
rm(P1) = ε (because P1 is a subprogram of the initial program). In case (2) we have
rm(Q̄1) = rm(P1) = ε. Moreover p(ct(Q̄2)) = p(end(l)) = p(bgn(l)) · l. By the induc-
tion hypothesis and the fact that the counter c is actually bgn(l) (which is easy to
prove that in general the counter of this statement is always bgn(l)), this sequence
equals dom(s) · l = dom(s · (l, 1)), as required. The case (3) can be treated similarly,
if we notice that p(ct(Q̄2)) = p(bgn(l)) · l = p(end(l)). The second equality is by def-
inition, and the first is checked as follows. Since P1 has the form Q̄1; Q̄, and there-
fore if C is the context such that P0 = C[ifl e thenP1 elseP2], then p(bgn(l)) = p(C),
and p(ct(Q̄2)) = p(C[ifl e then (Q̄1; []) elseP2]) = p(C) · l, as required. The case of
T-IFFALSE is proved in the same way.

Next we consider T-WHILETRUE. In this case we have

(c : whilel e doP ; P̄ , s)
i−→c (P ; end(l) : whilel e doP ; P̄ , s+ l).

First, by the induction hypothesis, we have p(c) = dom(s). It is easily checked by
induction on →Ic that c is either bgn(l) or end(l). If c = bgn(l), then l /∈ p(c), since
p(end(l)) = p(bgn(l)) · l by definition, and by Lemma 6.40 this sequence is strictly
increasing. Therefore l /∈ dom(s), so s does not end with (l, k) (for any k). If c = end(l),
then p(c) = p(bgn(l)) · l. Therefore s = s′ · (l, k) for some s′ and k. To summarize the
argument above, s ends with (l, k) for some k if and only if c = end(l).

With this in mind, we consider three cases, similarly to the case of T-IFTRUE. First,
consider the case Q̄2 is a tail of P̄ , and write P̄ = P̄ ′; Q̄2. By the induction hypothesis
we have

dom(s) = p(ct(Q̄2)) · rm(c : whilel e doP ; P̄ ′)

= p(ct(Q̄2)) · rm(P̄ ′) · rm(c : whilel e doP)

=

{
p(ct(Q̄2)) · rm(P̄ ′) c = bgn(l)

p(ct(Q̄2)) · rm(P̄ ′) · l c = end(l).

What we have to prove is

dom(s+ l) = p(ct(Q̄2)) · rm(P ; end(l) : whilel e doP ; P̄ ′).

Rewriting the right-hand side using the previous equation we obtain

RHS = p(ct(Q̄2)) · rm(P̄ ′) · l

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:31

=

{
dom(s) · l c = bgn(l)

dom(s) c = end(l).

This indeed equals dom(s+ l), since s ends with (l, k) for some k if and only if c = end(l),
as we have proved above. Consider the second case, where Q̄1 = P and Q̄2 = end(l) :
whilel e doP ; P̄ . In this case p(ct(Q̄2))·rm(Q̄1) = p(end(l))·rm(P) = p(end(l)). By a case
splitting similar to the previous case we can verify that this indeed equals dom(s+ l).
In the third case, Q̄2 starts with a tail of P , by an argument similar to (3) of T-IFTRUE
case, we obtain p(ct(Q̄2)) = p(end(l)). The rest of the proof is the same as the previous
case.

Other cases are almost straightforward. We only mention T-ENDIF, in which case
we have (end(l) : endifl ; P̄ , s · (l, k)) i−→c (P̄ , s). If we split P̄ as Q̄1; Q̄2, by the induc-
tion hypothesis we have p(ct(Q̄2)) · rm(end(l) : endifl ; Q̄1) = dom(s · (l, k)), and hence
p(ct(Q̄2)) · rm(Q̄1) · l = dom(s) · l. By canceling l we obtain the conclusion.

LEMMA 6.46. If (P, s) is reachable, then dom(s) is strictly increasing.

PROOF. Immediate from Lemmas 6.40 and 6.45.

LEMMA 6.47. Let (Pi, si) for i = 1, 2, 3 be reachable configurations, and let ci =
ct(Pi). If s1 ⪯ s2, s1 ⪯ s3, s2 ∥ s3, and c1 is in the closed interval spanned by c2 and c3,
then s2 <s s3 if and only if c2 < c3.

PROOF. From the assumption we have either c2 ≤ c1 ≤ c3 or c3 ≤ c1 ≤ c2. In either
case we have p(c2) ∩ p(c3) ⊆ p(c1) by Lemma 6.41, and therefore dom(s2) ∩ dom(s3) ⊆
dom(s1) by Lemma 6.45. The converse of this inclusion also holds since s1 is a common
prefix. Since if we write s2 = s1 · (l2, k2) · · · and s3 = s1 · (l3, k3) · · · , then l2 ̸= l3 (for
otherwise l2 = l3 ∈ dom(s2) ∩ dom(s3) = dom(s1), so l2 appears in s1, and hence l2
appears more than once in dom(s2), but this contradicts Lemma 6.46).

From the argument above, we have l2 ∈ dom(s2)\dom(s3) and l3 ∈ dom(s3)\dom(s2).
By using an equivalence

l ∈ dom(si) ⇐⇒ bgn(l) < ci ≤ end(l)

which follows from Lemma 6.45 and Lemma 6.39, we can obtain

c2 ∈ (bgn(l2), end(l2)] \ (bgn(l3), end(l3)] , and
c3 ∈ (bgn(l3), end(l3)] \ (bgn(l2), end(l2)] .

Therefore by Lemma 6.38 two intervals (bgn(l2), end(l2)] and (bgn(l3), end(l3)] are dis-
joint. Therefore c2 < c3 if and only if bgn(l2) < bgn(l3). since bgn is strictly monotone
map between linear orders (Lemma 6.37), bgn(l2) < bgn(l3) if and only if l2 < l3. So it
only remains to show that l2 < l3 if and only if s2 <s s3, but this is immediate from the
definition of <s and the choice of l2 and l3 (also note that l2 ̸= l3).

LEMMA 6.48. L-order <L, when restricted to the set of all reachable thread configu-
rations, is transitive.

PROOF. Suppose (P1, s1) <L (P2, s2) <L (P3, s3). Let ci = ct(Pi) for i = 1, 2, 3, and
consider the conditions

(1) s1 ∥ s2 and s1 <s s2,
(2) s1 ⪯ s2 and c1 < c2,
(3) s2 ⪯ s1 and c1 < c2,
(4) s2 ∥ s3 and s2 <s s3,
(5) s2 ⪯ s3 and c2 < c3, and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 K. Kojima and A. Igarashi

(6) s3 ⪯ s2 and c2 < c3.

Then we have (1 ∨ 2 ∨ 3) ∧ (4 ∨ 5 ∨ 6), hence (1 ∧ 4) ∨ (1 ∧ 5) ∨ · · · ∨ (3 ∧ 6).
First, consider the case 1 ∧ 4. Since s1 <s s3 is clear, it suffices to show that s1 ∥ s3.

Suppose otherwise. It does not hold that s3 ⪯ s1, since this implies s3 ≤s s1 but this
contradicts s1 <s s3. So we have s1 ⪯ s3. However, together with s1 <s s2 and s1 ∥ s2
this implies s3 <s s2 (which is a contradiction) as follows. From s1 ∥ s2 we have s1 =
s0 · q · · · and s2 = s0 · q′ · · · where s0 is the longest common prefix. As s1 <s s2, we have
q < q′. If s1 ⪯ s3 then s3 also has the form s0 · q · · · , therefore s3 <s s2.

If 1∧ 5 is the case, since s1 <s s3 it suffices to check that s1 ∥ s3. If s1 ⪯ s3, then both
s1 and s2 are prefixes of s3, but this implies s1 ∦ s2, a contradiction. If s3 ⪯ s1, then
s2 ⪯ s3 ⪯ s1, but this also implies s1 ∦ s2, a contradiction.

Suppose 1 ∧ 6 is the case. Then s1 ̸⪯ s3, since otherwise the transitivity of ⪯ implies
s1 ⪯ s2. Let us first consider the case s3 ̸⪯ s1. In this case we can show that s1 <s s3. Let
s0 be the longest common prefix of s1 and s2. Then because s1 ∥ s2 we have s1 = s0 ·q · · ·
and s2 = s0 · q′ · · · with q < q′. Since s3 ⪯ s2 but s3 ̸⪯ s1, s3 also has the form s0 · q′ · · · ,
therefore s1 <s s3. Next consider the case s3 ⪯ s1. In this case c1 < c3 holds, because
otherwise c2 < c3 ≤ c1, so by Lemma 6.47 we have s2 <s s1, but this contradicts 1.

Consider the case 2 ∧ 4. Since s1 <s s3, it suffices to consider the case s1 ∥ s3. It is
clear that s3 ̸⪯ s1, so suppose s1 ⪯ s3. We prove that c1 < c3. Otherwise, c3 ≤ c1 < c2.
Because s1 ⪯ s2, s1 ⪯ s3, and s2 ∥ s3, by Lemma 6.47 we have s3 <s s2. However this
contradicts 4.

The case 2 ∧ 5 holds is easy since ⪯ and < are transitive.
If 2 ∧ 6 holds, then both s1 and s3 are prefixes of s2. Therefore one of s1 and s3 is a

prefix of the other, that is, s1 ∦ s3. Moreover we have c1 < c2 < c3, so (P1, s1) <L (P3, s3)
as required.

Consider the case 3 ∧ 4 holds. First, note that s2 ⪯ s1, s2 <s s3, and s2 ̸⪯ s3 implies
s1 <s s3, so it suffices to show that s1 ∥ s3. Clearly s3 ̸⪯ s1 since s1 <s s3, while s1 ⪯ s3
implies s2 ⪯ s3, a contradiction.

If 3 ∧ 5 is the case, it suffices to show that s1 ∥ s3 implies s1 <s s3. Because s2 is a
common prefix of s1 and s3, and c1 < c2 < c3, this follows from Lemma 6.47.

Finally, the case of 3 ∧ 6 is similar to 2 ∧ 5. This completes the proof.

6.4.4. More Properties of L-order. Having proved the transitivity of L-order, we next
show that the thread configuration keeps increasing (with respect to L-order) during
the execution. To prove this we use the fact that for all reachable thread configurations
of the form (c : P ; c′ : P ′; P̄ , s) it holds that c < c′ (which follows from Lemma 6.50).
However, to prove this by induction, we need a stronger induction hypothesis, which is
stated in terms of the following functions.

Definition 6.49. We define allcts and allcts∗ as follows:

allcts(P ; P ′) = allcts(P) · allcts(P ′)

allcts(c : ifl e thenP elseP ′) = c · allcts(P) · allcts(P ′) · end(l)
allcts(c : whilel e doP) = c · allcts(P) · end(l)

allcts∗(P ; P ′) = allcts∗(P) · allcts∗(P ′)

allcts∗(c : ifl e thenP elseP ′) = c · allcts(P) · allcts(P ′) · end(l)

allcts∗(c : whilel e doP) =

{
end(l) c = end(l)

c · allcts(P) · end(l) otherwise

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:33

and, if none of the above applies,

allcts∗(c : P) = allcts(c : P) = c.

allcts(P) is the list of all counters appearing in P and end(l) for all l ∈ labs(P), sorted
in ascending order. allcts∗(P) is similar, but the body of a while-statement is ignored if
its counter is end(l) (that is, that loop is currently being executed).

LEMMA 6.50. If (P, s) is reachable, then allcts∗(P) is strictly increasing.

PROOF. We prove that

(1) allcts∗(P) is strictly increasing, and
(2) for each tail of P the form whilel e doP ′; P̄ , the sequence allcts(P ′)·end(l)·allcts∗(P̄)

is also strictly increasing

by induction on →∗
Ic. This holds for initial configurations by definition of well-

annotated programs. For the induction step, we only check T-IFTRUE, T-IFFALSE, and
T-WHILETRUE since other cases are easy. In the first two cases, we have

c : ifl e thenP1 elseP2; P̄
i−→c Pk ; end(l) : endif

l ; P̄

for k = 1 or k = 2, hence the allcts∗ of the right-hand side is a subsequence of that
of the left-hand side, so the first claim is immediate from the induction hypothesis.
For the second claim, consider a tail Q̄ of the right-hand side with the specified form.
It suffices to consider the case where the tail contains a tail of Pk, since otherwise
Q̄ is a tail of P̄ in which case the conclusion is immediate from the induction hy-
pothesis. If Q̄ contains a tail of Pk, split Pk as Pk = Q̄1; while

l′ e doP ′; Q̄2 so that
Q̄ = whilel

′
e doP ′; Q̄2; end(l) : endif

l ; P̄ . Then what we have to show is that

allcts(P ′) · end(l′) · allcts∗(Q̄2) · end(l) · allcts∗(P̄)
is increasing. Notice that allcts(P ′) · end(l′) · allcts∗(Q̄2) is a subsequence of
allcts(whilel

′
e doP ′; Q̄2), which is a subsequence of allcts(Pk). Therefore the whole

sequence is a subsequence of allcts∗(c : ifl e thenP1 elseP2; P̄), which is increasing
by the induction hypothesis.

Consider T-WHILETRUE

c : whilel e doP ; P̄ −→c P ; end(l) : whilel e doP ; P̄ .

The second claim of the induction hypothesis implies that allcts(P) · end(l) · allcts∗(P̄)
is strictly increasing. Since this sequence is a subsequence of allcts∗ of the right-hand
side, the first claim is verified. For the second claim, we have three cases: the tail
either (1) contains a tail of P , (2) equals end(l) : whilel e doP ; P̄ , and (3) is a tail of
P̄ . The last case is immediate from the induction hypothesis. In case (1), let the tail
be whilel

′
e ′ doP ′; P̄ ′. Then the sequence we have to consider is allcts(P ′) · end(l′) ·

allcts∗(P̄ ′) · end(l) · allcts∗(P̄). This is indeed strictly increasing as it is a subsequence of
allcts(P) · end(l) · allcts∗(P̄). In case (2), what we have to show is that allcts(P) · end(l) ·
allcts∗(P̄) is strictly increasing, which is the induction hypothesis.

LEMMA 6.51. Let (Pi, si)i, σ be a reachable I-configuration and suppose
(Pi, si)i, σ →Ic (P

′
i , s

′
i)i, σ

′. Then (Pi, si) ≤L (P ′
i , s

′
i) for each i.

PROOF. We check that the assertion holds for each rule. We omit the state part of
the I-configurations, because it is irrelevant to the proof of this lemma.

First, consider I-SYNC. By Lemma 6.50 and the fact that ct(P̄) is the first element
of allcts∗(P̄), we have c < ct(P̄). Therefore (c : sync; P̄ , s) <L (P̄ , s).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 K. Kojima and A. Igarashi

Other cases uses I-THREAD, so we check that (P, s)
i−→c (P ′, s′) implies (P, s) <L

(P ′, s′) for each i.
The cases of T-SKIP, T-LASSIGN, and T-SASSIGN are similar to the case of I-SYNC.

The cases of T-IFTRUE, T-IFFALSE, T-ENDIF, and T-WHILEFALSE are also similar.
Although in these cases the stack is modified, in any cases we have s ∦ s′: In the first
two cases we have s ⪯ s′, and the other two cases we have s′ ⪯ s.

The remaining case is T-WHILETRUE. If s is of the form s0 · (l, k), then we have
s′ = s0 · (l, k + 1), so we have s ∥ s′ and s <s s

′, from which the conclusion follows.
Otherwise, we have

c : whilel e doP ; P̄ , s
i−→c P ; end(l) : whilel e doP ; P̄ , s · (l, 1).

If c = bgn(l) then this case is treated in the same way as other cases, using Lemma 6.50.
Therefore it suffices to show that c = bgn(l). Suppose otherwise. Then it has to be the
case that c = end(l), because a counter of a statement with label l is necessarily one
of bgn(l) and end(l), which is easily proved by induction on the interleaving execution.
However, by an easy induction we can also show that for any reachable thread config-
uration (P, s), if end(l) appears in P then l has to appear in dom(s). However, this is
impossible since dom(s · (l, 1)) = dom(s) · l is strictly increasing by Lemma 6.46.

LEMMA 6.52. Suppose D = E[P, µ, σ ⇓ X] ∈ P(P0, µ0, σ0 ⇓ X0), and |D| =
(Pi, si)i, σ. Then

(1) for each i, Pi is a sequence of subprograms of P ;
(2) µ ⊆ µ0;
(3) if i ∈ µ, then Pi ̸= ✓;
(4) if i /∈ µ0, then Pi = ✓;
(5) if Pi = ✓, then si = ε.

PROOF. By induction on D.

LEMMA 6.53. Suppose D = E[P, µ, σ ⇓ X] ∈ P(P0, µ0, σ0 ⇓ X0), and |D| =
(Pi, si)i, σ. Then for all i ∈ µ and j ∈ T \ µ, it holds that (Pi, si) <L (Pj , sj). Moreover, if
j ∈ µ0, then si ̸⪯ sj .

PROOF. First, note that if i ∈ µ then Pi ̸= ✓, and if j /∈ µ0 then Pj = ✓ and sj = ε.
In such a case the lemma is obvious. Therefore, below we assume j ∈ µ0 \ µ.

We prove the lemma by induction on the construction of D. (Notice that if P ′ is a
subprogram of a well-annotated program P , then P ′ is also well-annotated with endP ′

being the restriction of endP .)
In the base case, we have D = (P0, µ0, σ0 ⇓ X0), hence µ0 = µ. Therefore we have

nothing to prove.
Consider the case D is of the form

D =
D1 P2;µ0, X

′ ⇓ X0

P1; P2, µ0, σ0,⇓ X0

for non-total D1. Let (Qi, si)i = |D1| (in the proof below, we omit the state part
of an I-configuration because it is irrelevant). Then by definition of | · | we have
|D| = (Qi ; P2, si | i ∈ µ0), and by the induction hypothesis (Qi, si) <L (Qj , sj). We have
to show that (Qi ; P2, si) <L (Qj ; P2, sj) and si ̸⪯ sj ; the latter is immediate from the in-
duction hypothesis. If si ∥ sj , then by the induction hypothesis we have si <s sj , hence
the conclusion follows. Otherwise, the induction hypothesis implies ct(Qi) < ct(Qj).
If Qj ̸= ✓, this implies ct(Qi ; P2) = ct(Qi) < ct(Qj) = ct(Qj ; P2), so the conclusion
follows. If Qj = ✓, we have to show that ct(Qi) < ct(P2). To see this, note that Qi con-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:35

sists of subprograms of P1 and P1; P2 is well-annotated. This means that any counter
appearing in P2 is greater than any counter in Qi, hence ct(Qi) < ct(P2).

If D is of the form

D =
D1 D2

P1; P2, µ0, σ0,⇓ X0

and D1 is total, we have |D| = |D2|, so the conclusion is immediate from the induction
hypothesis.

Next, consider the case

D =
D1 P2, µ0 \ σ0 JeK , X ⇓ X0

ifl e thenP1 elseP2, µ0, σ0 ⇓ X0

where D1 is non-total. Let (Qi, si)i = |D1|. We have

|D| =
(
Qi ; endif

l , (l, 1) · si | i ∈ µ0 ∩ σ0 JeK
P2; endif

l , (l, 2) | i ∈ µ0 \ σ0 JeK
)
.

In case j ∈ µ0 \ σ0 JeK, the claim is that

(Qi ; endif
l , (l, 1) · si) <L (P2; endif

l , (l, 2)) and (l, 1) · si ̸⪯ (l, 2).

The latter is obvious. The former follows from (l, 1) · si ∥ (l, 2), Qi ̸= ✓, and ct(Qi) <
ct(P2). The last inequality can be checked by an argument similar to the first case of
sequencing. If j ∈ (µ0 ∩ σ0 JeK) \ µ, we have to show

(Qi ; endif
l , (l, 1) · si) <L (Qj ; endif

l , (l, 1) · sj) and (l, 1) · si ̸⪯ (l, 1) · sj
which follows from the induction hypothesis and, in case of Qj = ✓, the fact that
ct(Qi) < end(l).

Next, consider the case

D =
D1 D2

ifl e thenP1 elseP2, µ0, σ0 ⇓ X0

where D1 is total. Let (Qi, si)i = |D2|. In this case we have j ∈ (µ0 \ σ0 JeK) \ µ, and

|D| = (Qi ; endif
l , (l, 2) · si | i ∈ µ \ σ0 JeK).

The claim, (Qi ; endif
l , (l, 2) · si) <L (Qj ; endif

l , (l, 2) · sj) and (l, 2) · si ̸⪯ (l, 2) · sj , is
checked in a similar way to the previous case.

The remaining cases are while-statement. We first consider the case D has the form

P0, µ1, σ0 ⇓ σ1

D1 whilel e doP0, µk, X1 ⇓ X0

whilel e doP0, µk−1, σk−1 ⇓ X0....
whilel e doP0, µ1, σ1 ⇓ X0

whilel e doP0, µ0, σ0 ⇓ X0

where k ≥ 1 and D1 is non-total. Let (Qi, si)i = |D1|. Then si does not contain l since
D1 ∈ P(P0, µk, σk−1 ⇓ X1) and P0 does not contain l. Therefore

|D| = (Qi ; end(l) : while
l e doP , (l, k) · si | i ∈ µk).

If j /∈ µk the claim is obvious, so suppose j ∈ µk. Note that (l, k) · si ∥ (l, k) · sj if and
only if si ∥ sj . In case si ∥ sj , we have si <s sj by the induction hypothesis, and hence
(l, k) · si <s (l, k) · sj . Next, suppose si ∦ sj . Then we have ct(Qi) < ct(Qj), and the claim

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 K. Kojima and A. Igarashi

follows in a similar way to other cases (e.g. the case of sequencing). (l, k) · si ̸⪯ (l, k) · sj
easily follows from the induction hypothesis.

Finally, we consider the case D is of the form

P0, µ1, σ0 ⇓ σ1

D1 whilel e doP0, µk, σk ⇓ X0

whilel e doP0, µk−1, σk−1 ⇓ X0....
whilel e doP0, µ1, σ1 ⇓ X0

whilel e doP0, µ0, σ0 ⇓ X0

where k ≥ 1 and D1 is total. We have

|D| = (end(l) : whilel e doP0, (l, k) | i ∈ µk).

In this case µ = µk, so the claim is obvious.

PROOF OF LEMMA 6.31. Suppose P0, µ0, σ0 ⇓ X0 −→∗
c D = E[sync, µ, σ ⇓ X] and

µ ̸= ∅,T. Then Pi is of the form sync; P̄ for every i ∈ µ ̸= ∅. Therefore |D| never
terminates without using I-SYNC, since the execution of thread i does not proceed by
other rules. So it suffices to show that I-SYNC is not applicable to any I-configuration
reachable from |D|.

Suppose otherwise: there exists an I-configuration (P ′
i , s

′
i)i, σ

′ to which I-SYNC is
applicable and is reachable from |D|. Then from the premise of I-SYNC we obtain s′i =
s′j for any pair of threads i, j. Without loss of generality we may assume that I-SYNC is
not used in the transition |D| = (Pi, si)i, σ →∗

Ic (P ′
i , s

′
i)iσ

′. Then we also have (Pi, si) =
(P ′

i , s
′
i) for every i ∈ µ.

Take i ∈ µ and j ∈ T \ µ. If j /∈ µ0, then it follows that Pj = ✓, and in that case it is
easy to see the conclusion: since Pj = ✓ the rule I-SYNC is never applicable. Therefore,
we may assume j ∈ µ0. Then, by Lemmas 6.48, 6.51, and 6.53, we have

(Pi, si) <s (Pj , sj) ≤s (P
′
j , si) and si ̸⪯ sj .

We will show that this leads to a contradiction. From the above inequalities we have

— if si ∥ sj then si <s sj , and otherwise ct(Pi) < ct(Pj), and
— if sj ∥ si then sj <s si, and otherwise ct(Pj) ≤ ct(P ′

j).

Since ∥ is symmetric while si <s sj and sj <s si are exclusive, it has to be the case
that si ∦ sj and ct(Pi) < ct(Pj) ≤ ct(P ′

j). By Lemma 6.41, the latter implies dom(si) ⊆
dom(sj). On the other hand, since si ̸⪯ sj as mentioned above, si ∦ sj implies sj ≺
si. Therefore sj · t = si for some t ̸= ε. Then clearly dom(t) ⊆ dom(si), but because
dom(si) ⊆ dom(sj), we have dom(t) ⊆ dom(sj). However this is impossible because
dom(sj) · dom(t) = dom(si) has to be strictly increasing and t is non-empty.

6.5. Proof of the Equivalence
We now prove the equivalence between lockstep and interleaving semantics under
race-freedom.

THEOREM. Let P be a program and µ a mask and suppose that (P, ε | i ∈ µ), σ is
race-free. Then, P, µ, σ ⇓ σ′ if and only if (P, ε | i ∈ µ), σ →∗

I (✓, ε)i, σ′.

PROOF. Below, C0 denotes the initial I-configuration (P, ε | i ∈ µ), σ.
Suppose that P, µ, σ ⇓ σ′ has a derivation D. From completeness of the derivation

search procedure (Proposition 6.7), we have P, µ, σ ⇓ X −→∗ D. By Lemma 6.20, the as-
sumption of race-freedom implies that D is locally interleavable, so by Proposition 6.9
we conclude that C0 →∗

I |D| = (✓, ε)i, σ′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:37

For the converse, suppose that C0 →∗
I (✓, ε)i, σ′. Notice that, by Lemma 6.16, any

execution sequence from C0 is finite and ends with (✓, ε)i, σ′.
First, suppose that the lockstep execution terminates, that is, there exists σ′′ such

that P, µ, σ ⇓ σ′′. Then by the same argument as above we obtain C0 →∗
I (✓, ε)i, σ′′, so

by determinacy σ′ = σ′′. Therefore, if the lockstep execution terminates, the final state
necessarily equals σ′, that is P, µ, σ ⇓ σ′ holds, as required. This argument means that
it is sufficient to show the termination of the lockstep execution.

Below we suppose that there does not exist σ′′ such that P, µ, σ ⇓ σ′′, and derive a
contradiction. From this assumption, at least one of the following holds: (1) there is an
infinite sequence via −→ from P, µ, σ ⇓ X, or (2) P, µ, σ ⇓ X −→∗ E[sync, µ1, σ1 ⇓ X1]
and µ1 ̸= ∅,T.

In case (1), let D0 = (P, µ, σ ⇓ X) −→ D1 −→ . . . be an infinite sequence. Then by
Proposition 6.9 we obtain a sequence C0 = |D0| →∗

I |D1| →∗
I It suffices to show that

this sequence is also infinite, since the existence of such a sequence contradicts the
determinacy mentioned above. To this end, we show that |Dn| →+

I |Dn+1| for infinitely
many n. Let us write Dn = En[Pn, µn, σn ⇓ Xn], and Dn =⇒ Dn+1 if either Pn is a
sequencing or µn = ∅. Then, from Proposition 6.9, |Dn| = |Dn+1| if and only if Dn =⇒
Dn+1. It is easy to check that there is no infinite sequence using only =⇒ (the length
of such a sequence can be bound by the size of the program). Therefore |Dn| →+

I |Dn+1|
for infinitely many n.

In case (2), let D = E[sync, µ1, σ1 ⇓ X1]. Then by Lemma 6.20, D is locally interleav-
able, hence by Proposition 6.9, we obtain C0 →∗

I |D|. This means that any execution
sequence from |D| is a suffix of an execution sequence from C0, which eventually has
to terminate with (✓, ε)i, σ′ by determinacy. Therefore |D| →∗

I (✓, ε)i, σ′, but this con-
tradicts Lemma 6.21.

7. ADDITIONAL REMARKS
Treatment of synchronization failure.. In our lockstep semantics, barrier divergence

causes non-termination because E-SYNC applies only when the synchronization suc-
ceeds. However, on an actual GPU, barrier divergence does not always block the ex-
ecution. The program may terminate but with an unexpected result. To capture this
behavior we could add a special state representing an error, denoted by ⊥. We modify
the definition of the validity of {φ}m ⇒ P {ψ}: if P, σ JmK , σ ⇓ σ′, then σ′ ̸= ⊥ and
σ′ |= ψ. We introduce a new execution rule

µ ̸= ∅,T
sync, µ, σ ⇓ ⊥ (E-SYNCDIV)

and replace H-SYNC with
{(all(m) ∨ none(m)) ∧ φ}m⇒ sync {φ} .

(Other rules have to be adapted to handle ⊥.) Then, we can prove {φ}m ⇒ sync {ψ}
only if φ implies all(m) ∨ none(m).

If we try to continue the argument in Section 5 under this setting, a difficulty would
stem from the definition of the interleaving semantics: how do we modify the inter-
leaving semantics so that the equivalence holds under the presence of E-SYNCDIV? It
would not be straightforward to fix the interleaving semantics so that it can simulate
E-SYNCDIV, because there are no obvious way of detecting barrier-divergence when
threads interleave. We could formulate it by using L-order introduced in Section 6.4,
but this makes the definition of the semantics much more complicated than the present
form.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 K. Kojima and A. Igarashi

If we leave the interleaving semantics unchanged, then the statement of Theo-
rem 5.5 could be modified as “. . . Then, P, µ, σ ⇓ σ′ without using E-SYNCDIV if and
only if (P, ε | i ∈ µ), σ →∗

I (✓, ε)i, σ′,” and the proof of Section 6 would work.

Multiple warps.. The actual execution of GPUs is a hybrid of our interleaving and
lockstep semantics. Instead of scheduling each thread individually, we treat each warp
as a unit of interleaving execution. Each warp executes a program as in our lock-
step semantics, and warps interleave as in our interleaving semantics. Equivalence
between this semantics and complete lockstep semantics would be proved in a similar
way. Race-freedom can be relaxed so that a race involving two threads belonging to the
same warp occurs only within a single assignment.

Function calls.. We did not include function calls in our formalism, but we conjecture
that we can follow the existing extension of Hoare Logic with function calls, and this
would not be technically difficult. However, a complication would stem from function
parameters. If a function is called from host code, then the arguments are uniform (i.e.
all threads receive the same value), but if it is called from device code the arguments
may vary among threads. Therefore we would have to treat these two types of function
call differently.

Also, masks have to be taken into account to write the specifications of functions.
Currently we do not have to introduce a mask into pre- and postconditions because
we assume that the program is a whole device code, therefore all threads are enabled
at the beginning of the execution. If we extend our system with function calls, then a
function may have to specify a formula referring to the state of the mask. Thus, we
have to slightly extend the assertion language.

8. RELATED WORK
Semantics of GPU programs. Habermaier and Knapp formalized both SIMT (lock-

step) and interleaved multi-thread semantics, and discussed relationships between
them [Habermaier and Knapp 2012]. In particular, they proved that their SIMT se-
mantics can be simulated by the interleaved semantics with an appropriate schedul-
ing. Collingbourne et al. considered a lockstep execution of an unstructured programs
based on control-flow graph [Collingbourne et al. 2013]. They defined both interleaving
and lockstep semantics, and proved that the two semantics are equivalent in a certain
sense under the assumption of race-freedom and termination. Betts et al. defined an-
other semantics, called synchronous, delayed visibility (SDV) semantics [Betts et al.
2012]. The main difference from other semantics (including ours) is that it keeps track
of the accesses to shared memory, and raises an error if a race is detected. Based on
this semantics, they developed a verification tool GPUVerify that automatically detects
race condition and barrier divergence. These three semantics are all small-step, and it
seems that ours is the first big-step semantics for lockstep execution.

Deductive verification. Owicki–Gries method [Owicki and Gries 1976] and
rely/guarantee reasoning [Jones 1981] are well-known approach to deductive verifi-
cation of concurrent programs. Their main concern is to reason about interference.
The difficulty is that an assertion can be invalidated by other threads through shared
variables. To solve this problem, Owicki-Gries method verifies that each assertion is
not invalidated by other threads; rely/guarantee reasoning specifies an assumption on
the behavior of an environment as a rely condition. In contrast, in this work we did
not need to handle such an interference. This is because we assumed lockstep execu-
tion, in which threads cannot interleave. Although a race can occur when assigning
to a shared variable, such a race does not affect soundness of our logic because the
assertion language can express such a nondeterminism (as in the rule H-ASSIGN).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:39

Regarding a deductive verification of GPU programs, Blom, Huisman and Mihelčić
suggested using permission-based separation logic [Blom et al. 2014]. They demon-
strated how they can verify race-freedom and functional correctness by using separa-
tion logic. They consider an assignment of resources to threads, and use it to prove
race-freedom. Compared to their approach, our framework cannot prove race-freedom,
but provides a simpler proof system for verifying functional correctness relying on the
assumption of race-freedom. An extension of Blom et al.’s system with a frame rule has
recently been proposed by Asakura et al. [2016]. Soundness of their system is proved
on the Coq proof assistant.

Equivalence between Lockstep and Interleaving Semantics. Collingbourne et al.
[2013] also proved an equivalence result between lockstep and interleaving execution.
We will discuss several differences between their work and ours, and how our work
improves theirs.

First, our semantics treats barrier synchronizations more formally than Colling-
bourne et al., by introducing a stack into a thread configuration. Collingbourne et al.
do not do this formally. They introduce special thread-local variables vbarrier, which is
set to the id of the barrier when a barrier is reached, and vL for every loop labeled by
L, which count the number of iterations of the loop L. These variables are called bar-
rier variables, and play a similar role to the stack in our semantics. It is assumed that
those variables are modified appropriately when a thread executes a loop or reaches a
barrier, but this is stated informally only in prose English. The formal execution rules
do not mention barrier variables, thus the rules do not specify when and to what value
the contents of barrier variables should be changed.

Second, our proof given in Section 6 is more formal than theirs provided in the full
version of Collingbourne et al. [2013]. This is partly because barrier variables are not
fully formalized in their execution rules. For example, to prove that the interleaving
semantics can simulate the lockstep semantics, they have to show that if the lockstep
semantics succeeds synchronization, then so does the interleaving semantics (the first
part of the claim in the proof of Theorem B.20). To do this, they argue that the barrier
variables satisfy the premise of the execution rule for synchronization, but this argu-
ment does not appear to be formal. In contrast, we have tried to make our arguments
as formal as possible throughout the proof of equivalence. We believe that most part
of our arguments are sufficiently formal so that one can mechanize them in a proof
assistant without nontrivial modifications.

Third, the statement of our equivalence theorem is simpler. The equivalence stated
in Collingbourne et al. [2013], unlike ours, guarantees the equivalence on shared vari-
ables only, and the statement explicitly mentions termination of the program. Also,
their lockstep semantics is not directly defined. It is given by a translation from a
GPU program P (which is executed in an interleaving semantics) into a sequential
vector program ϕ(P) encoding the lockstep execution of P .

Verification tools. Verification tools for GPU programs are developed by several au-
thors. Tripakis, Stergiou and Lublinerman developed a method to check determinism
and equivalence of SPMD programs based on non-interference [Tripakis et al. 2010].
Collingbourne, Cadar and Kelly proposed a method of symbolic execution of SIMD pro-
grams based on KLEE symbolic execution tool [Collingbourne et al. 2011; 2012]. Li and
Gopalakrishnan developed an SMT-based verification tools PUG [Li and Gopalakrish-
nan 2010] and PUGpara [Li and Gopalakrishnan 2012]. Li et al. developed a concolic
verification and test generation tool for GPU programs, called GKLEE [Li et al. 2012b].
Further optimizations and extensions of GKLEE are also considered [Li et al. 2012a;
Chiang et al. 2013]. Bardsley et al. develop a tool GPUVerify, which statically checks
race freedom of OpenCL and CUDA kernels [Betts et al. 2012; Bardsley et al. 2014].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 K. Kojima and A. Igarashi

9. CONCLUSION
We have extended the while-language with arrays and several features of GPU ker-
nels, and defined a Hoare Logic for this language. We formalized the execution model
of our language in two ways, lockstep and interleaving semantics, and we first proved
that our Hoare Logic is sound and relatively complete for the lockstep semantics.
Although in the proof we worked under the assumption that the program contains
only monotonic loops, this extra assumption is not a serious limitation because we
can transform any program into an equivalent one conforming to this condition. We
have also considered the relationship between lockstep and interleaving semantics.
We have proved that for race-free programs two semantics produce the same result.
This means that, as far as race-free programs are concerned, our Hoare Logic is sound
and relatively complete with respect to the interleaving semantics. This implies that
we can separate verification of GPU kernels into two problems, race-freedom and func-
tional correctness, and our framework can be used to solve the latter assuming that
the former is already verified.

We are currently implementing an automated verifier based on this work. It success-
fully verifies a matrix multiplication program with shared-memory optimization [Ko-
jima et al. 2016]. We have also mechanized our Hoare Logic on Coq, and manually ver-
ified several implementations of prefix-sum algorithms [Okumura et al. 2016], which
are more complicated than examples shown in Section 3.3.

ACKNOWLEDGMENTS

We thank Kohei Suenaga and anonymous reviewers for valuable comments.

REFERENCES
Krzysztof R. Apt, Frank de Boer, and Ernst-Rdiger Olderog. 2009. Verification of Sequential and Concurrent

Programs (3rd ed.). Springer Publishing Company, Incorporated.
Izumi Asakura, Hidehiko Masuhara, and Tomoyuki Aotani. 2016. Proof of Soundness of Concurrent Sepa-

ration Logic for GPGPU in Coq. Journal of Information Processing 24, 1 (2016), 132–140.
Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis Deligiannis, Alastair F. Donald-

son, Jeroen Ketema, Daniel Liew, and Shaz Quadeer. 2014. Engineering a Static Verification Tool for
GPU Kernels. In Proc. of the 26th International Conference on Computer Aided Verification, CAV 2014
(LNCS), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer Verlag, 226–242.

Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify:
a verifier for GPU kernels. In Proc. of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 113–132.
DOI:http://dx.doi.org/10.1145/2384616.2384625

Stefan Blom, Marieke Huisman, and Matej Mihelčić. 2014. Specification and verification of GPGPU pro-
grams. Science of Computer Programming 95, 3 (12 2014), 376–388.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and Zvonimir Rakamarić. 2013. Formal Analysis of
GPU Programs with Atomics via Conflict-Directed Delay-Bounding. In Proc. of the 5th NASA Formal
Methods Symposium (NFM 2013) (LNCS), Vol. 7871. Springer Verlag, 213–228.

Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic crosschecking of floating-point
and SIMD code. In Proc. of the sixth conference on Computer systems (EuroSys ’11). ACM, New York,
NY, USA, 315–328. DOI:http://dx.doi.org/10.1145/1966445.1966475

Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2012. Symbolic Testing of OpenCL Code. In Proc.
of Hardware and Software: Verification and Testing (LNCS), Kerstin Eder, João Lourenço, and Onn She-
hory (Eds.), Vol. 7261. Springer Verlag, 203–218. DOI:http://dx.doi.org/10.1007/978-3-642-34188-5 18

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. 2013. Interleaving and Lock-
Step Semantics for Analysis and Verification of GPU Kernels. In Proc. of European Symposium on
Programming (ESOP’13) (LNCS), Vol. 7792. Springer Verlag, 270–289. full version is available at http:
//multicore.doc.ic.ac.uk/tools/GPUVerify/ESOP2013/.

Carl A. Gunter and Didier Rémy. 1993. A Proof-Theoretic Assessment of Runtime Type Errors. Technical
Report. AT&T Bell Laboratories Technical Memo 11261-921230-43TM.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:41

Axel Habermaier and Alexander Knapp. 2012. On the Correctness of the SIMT Execution Model of GPUs.
In Proc. of European Symposium on Programming (ESOP’12) (LNCS), Vol. 7211. Springer Verlag, 316–
335.

C. B. Jones. 1981. Development methods for computer programs including a notion of interference. Ph.D.
Dissertation. Oxford University. Printed as: Programming Research Group, Technical Monograph 25.

Kensuke Kojima and Atsushi Igarashi. 2013. A Hoare Logic for SIMT Programs. In Proc. of Asian Sympo-
sium on Programming Languages and Systems (LNCS), Chung chieh Shan (Ed.), Vol. 8301. Springer
Verlag, 58–73.

Kensuke Kojima, Akifumi Imanishi, and Atsushi Igarashi. 2016. Automated Verification of Functional Cor-
rectness of Race-Free GPU Programs. (2016). draft.

Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of GPU kernel functions.
In Proc. of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE’10). ACM, 187–196. DOI:http://dx.doi.org/10.1145/1882291.1882320

Guodong Li and Ganesh Gopalakrishnan. 2012. Parameterized Verification of GPU Kernel Programs. In
2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Fo-
rum. IEEE, 2450–2459.

Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan.
2012b. GKLEE: concolic verification and test generation for GPUs. In Proc. of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming (PPoPP ’12). ACM, New York, NY, USA,
215–224. DOI:http://dx.doi.org/10.1145/2145816.2145844

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2012a. Parametric flows: automated behavior equiv-
alencing for symbolic analysis of races in CUDA programs. In Proc. of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC’12). IEEE Computer Society
Press, Article 29, 10 pages.

NVIDIA 2014. NVIDIA CUDA C Programming Guide. NVIDIA.
NVIDIA 2015. Parallel Thread Execution ISA Version 4.3. NVIDIA.
Kentaro Okumura, Kensuke Kojima, and Atsushi Igarashi. 2016. Mechanization of Hoare Logic for SIMT

in Coq and Verification of Parallel Prefix-Sum Algorithms. In Proceedings of the 18th JSSST Workshop
on Programming and Programming Languages (PPL2016). in Japanese.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron Lefohn, and Timothy J.
Purcell. 2007. A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics
Forum 26, 1 (2007), 80–113.

Susan Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Informat-
ica 6 (1976), 319–340.

Stavros Tripakis, Christos Stergiou, and Roberto Lublinerman. 2010. Checking Equivalence of SPMD Pro-
grams Using Non-Interference. Technical Report UCB/EECS-2010-11. EECS Department, University of
California, Berkeley.

Glynn Winskel. 1993. The Formal Semantics of Programming Languages. The MIT Press.

A. AUXILIARY LEMMAS
LEMMA A.1. Let σ be a state. Then σ |= all(e) if and only of σ JeK = T, and σ |=

none(e) if and only if σ JeK = ∅.

LEMMA A.2. If x′ is a variable not occurring in φ, then σ[x′ 7→ a] |= φ[x′/x] if and
only if σ[x 7→ a] |= φ.

LEMMA A.3. Suppose that m does not contain variables occurring in P . Then
P, σ JmK , σ ⇓ σ′ implies σ JmK = σ′ JmK.

LEMMA A.4. If P, ∅, σ ⇓ σ′, then σ = σ′.

LEMMA A.5. Let W = while e doP . Suppose µ ∩ σ JeK = µ′ ∩ σ JeK and there is a
derivation of W,µ, σ ⇓ σ′. Then there is a derivation of the same size (the number of
nodes) with conclusion W,µ′, σ ⇓ σ′.

B. PROOF OF SOUNDNESS
Soundness of H-CONSEQ, H-SKIP, and H-SEQ are obvious. H-SYNC is also easy; sync
gets stuck if and only if σ ̸|= all(m) ∨ none(m).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 K. Kojima and A. Igarashi

To show that H-ASSIGN is sound, suppose x[ē] := e, σ JmK , σ ⇓ σ′. From Lemma 3.6,
σ′ is of the form σ[x 7→ a] where a satisfies σ[x′ 7→ a] |= assign(x′,m, x, ē, e). So if we have
σ |= ∀x′.assign(x′,m, x, ē, e) → φ[x′/x], then σ[x′ 7→ a] |= φ[x′/x]. By using Lemma A.2,
we obtain σ[x 7→ a] |= φ, and therefore σ′ |= φ (because σ′ = σ[x 7→ a]), as required.

Next we check H-IF. Suppose σ |= φ and if e thenP elseQ , σ JmK , σ ⇓ σ′′. Then
there exists σ′ such that P, σ JmK ∩ σ JeK , σ ⇓ σ′ and Q, σ JmK \ σ JeK , σ′ ⇓ σ′′. We have
to show σ′′ |= χ. Let σ0 = σ[z 7→ σ JeK], σ′

0 = σ′[z 7→ σ JeK], and σ′′
0 = σ′′[z 7→ σ JeK].

Then, since z does not occur in P and σ JeK = σ0(z) it holds that P, σ0 Jm && z K , σ0 ⇓ σ′
0.

Similarly, we also have Q, σ′
0 Jm && ! z K , σ′

0 ⇓ σ′′
0 . Then from the induction hypotheses

we have σ′
0 |= ψ and σ′′

0 |= χ. Since z does not occur in χ, and σ′′
0 and σ′′ differ only in z,

it holds that σ′′ |= χ.
Finally we show that H-WHILE is sound by induction on the size of the derivation

of ⇓. Precisely, by induction we prove that if {φ ∧ e = z}m && z ⇒ P {φ} is valid, then
for all σ and σ′ such that while e doP , σ JmK , σ ⇓ σ′ and σ |= φ, it holds that σ′ |=
φ ∧ none(m && e).

The base case is the rule E-WHILEFALSE, which is obvious. For the induction step,
let us assume the derivation has the form

P, σ JmK ∩ σ JeK , σ ⇓ σ′

.... D
while e doP , σ JmK ∩ σ JeK , σ′ ⇓ σ′′

while e doP , σ JmK , σ ⇓ σ′

and suppose σ |= φ. We have to show that σ′′ |= φ ∧ none(m && e).
Let σ0 = σ[z 7→ σ JeK] and σ′

0 = σ′[z 7→ σ JeK]. Then, since z is fresh, we have

P, σ0 JmK ∩ σ0 JeK , σ0 ⇓ σ′
0,

and σ0 |= φ∧e = z. Since σ0 JmK∩σ0 JeK = σ0 Jm && z K, by assumption we obtain σ′
0 |= φ.

Let σ′′
0 = σ′′[z 7→ σ0 JeK]. Then we have a derivation of

while e doP , σ JmK ∩ σ JeK , σ′
0 ⇓ σ′′

0

with the same size as D. Now we are going to use Lemma A.5 to obtain a derivation of

while e doP , σ′
0 JmK , σ′

0 ⇓ σ′′
0 ,

again with the same size as D. Here the assumption of Lemma A.5 is indeed satisfied:
the monotonicity and Lemma 4.2 implies σ JmK ∩ σ′ JeK ⊆ σ JmK ∩ σ JeK, so by definition
of σ′

0 we have (σ JmK ∩ σ JeK) ∩ σ′
0 JeK = σ′

0 JmK ∩ σ′
0 JeK.

Then we can apply the induction hypothesis, therefore σ′
0 |= φ implies σ′′

0 |= φ ∧
none(m && e). Since the antecedent is already proved, we have σ′′

0 |= φ ∧ none(m && e).
Moreover, z does not occur in φ, m nor e, which implies σ′′ |= φ ∧ none(m && e). This
completes the proof.

C. PROOF OF RELATIVE COMPLETENESS
By the standard argument, it suffices to show that

⊢ {wlp(m,P, φ)}m⇒ P {φ} .
We proceed by induction on P

When P = skip, by H-SKIP we have ⊢ {φ}m ⇒ skip {φ}. So it suffices to show that
|= wlp(m, skip, φ) → φ. Suppose σ |= wlp(m, skip, φ). Then, since skip,m, σ ⇓ σ, we
conclude σ |= φ.

When P = sync, by H-SYNC we have ⊢ {all(m) ∨ none(m) → φ}m ⇒ sync {φ}, so
it suffices to show that |= wlp(m, sync, φ) → all(m) ∨ none(m) → φ. This is clear from
E-SYNC.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:43

When P = x[ē] := e, by H-ASSIGN we have

⊢ {∀x′.assign(x′,m, x, ē, e) → φ[x′/x]}m⇒ x[ē] := e {φ} .
So it suffices to show that

|= wlp(m, x[ē] := e, φ) → ∀x′.assign(x′,m, x, ē, e) → φ[x′/x].

Suppose σ |= wlp(m, x[ē] := e, φ) and σ[x′ 7→ a] |= assign(x′,m, x, ē, e). Then from
Lemma 3.6, we have x[ē] := e, σ JmK , σ ⇓ σ[x 7→ a]. Therefore σ[x 7→ a] |= φ, hence
by Lemma A.2 we obtain σ[x′ 7→ a] |= φ[x′/x].

When P = P1; P2, by the induction hypotheses we have ⊢ {wlp(m,P1, ψ)}m⇒ P1 {ψ}
and ⊢ {wlp(m,P2, φ)}m⇒ P2 {φ} for all ψ and φ. Therefore by H-SEQ

⊢ {wlp(m,P1,wlp(m,P2, φ))}m⇒ P1;P2 {φ} .
So it suffices to show that

|= wlp(m,P1; P2, φ) → wlp(m,P1,wlp(m,P2, φ)).

Suppose σ |= wlp(m,P1; P2, φ), and consider σ′ such that P1, σ JmK , σ ⇓ σ′. We have to
show that σ′ |= wlp(m,P2, φ), that is, σ′′ |= φ for all σ′′ with P2, σ

′ JmK , σ′ ⇓ σ′′. This is
immediate from P1; P2, σ JmK , σ ⇓ σ′′ which follows from assumptions and E-SEQ.

When P = if e thenP1 elseP2, let χ = wlp(m && z , P1,wlp(m && ! z , P2, φ)). Then by
the induction hypotheses we have

⊢{χ}m && z ⇒ P1 {wlp(m && ! z , P2, φ)} ,
⊢{wlp(m && ! z , P2, φ)}m && ! z ⇒ P2 {φ} .

Since

|= (∃z.e = z ∧ χ) ∧ e = z → χ,

we have

⊢ {(∃z.e = z ∧ χ) ∧ e = z}m && z ⇒ P1 {wlp(m && ! z , P2, φ)}
by H-CONSEQ. Therefore, by H-IF,

⊢ {∃z.e = z ∧ χ}m⇒ if e thenP1 elseP2 {φ} .
So our goal is to prove

|= wlp(if e thenP1 elseP2,m, φ) → ∃z.e = z ∧ χ.
Suppose σ |= wlp(if e thenP1 elseP2,m, φ), and let σ0 = σ[z 7→ σ JeK]. It suffices to
show that σ0 |= e = z ∧ χ. It is obvious that σ0 |= e = z. To prove σ0 |= χ, suppose

P1, σ0 Jm && z K , σ0 ⇓ σ′,

P2, σ
′ Jm && ! z K , σ′ ⇓ σ′′.

Then, since z and variables in m are fresh, we have σ′ Jm && ! z K = σ0 Jm && ! z K, hence
P2, σ0 Jm && ! z K , σ′ ⇓ σ′′. Therefore by E-IF and the equality σ0(z) = σ JeK = σ0 JeK we
obtain

if e thenP1 elseP2, σ0 JmK , σ0 ⇓ σ′′.

On the other hand, we assumed that σ |= wlp(if e thenP1 elseP2,m, φ) and this for-
mula does not depend on z, so σ0 satisfies the same formula. Hence σ′′ |= φ, as required.

When P = while e doQ , let ψ = ∃z.e = z ∧ wlp(m && z , P, φ). We prove

(1) ⊢ {ψ ∧ e = z}m && z ⇒ Q {ψ},
(2) |= ψ ∧ none(m && e) → φ, and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 K. Kojima and A. Igarashi

(3) |= wlp(m,P, φ) → ψ.

The conclusion follows from them by H-WHILE and H-CONSEQ.
First we prove (1). By the induction hypothesis it suffices to prove the validity in-

stead of the provability. So our goal is

σ |= ψ ∧ e = z and Q, σ Jm && z K , σ ⇓ σ′ =⇒ σ′ |= ψ.

If σ Jm && z K = ∅, then by Lemma A.4 we have σ′ = σ, hence this is clear. Below we
assume σ Jm && z K ̸= ∅. By definition of ψ, the above statement is equivalent to

σ |= ψ ∧ e = z, Q, σ Jm && z K , σ ⇓ σ′, and
P, (σ′[z 7→ σ′ JeK]) Jm && z K , σ′[z 7→ σ′ JeK] ⇓ σ′′

=⇒ σ′′ |= φ.

Suppose the premises hold for σ, σ′ and σ′′. Let σ′′
0 = σ′′[z 7→ σ′(z)]. Then it suffices to

show that σ′′
0 |= φ.

First, from σ |= ψ ∧ e = z it follows that σ |= wlp(m && z , P, φ), so to prove σ′′
0 |= φ it

suffices to show that

P, σ Jm && z K , σ ⇓ σ′′
0 .

To prove this, we first show that

Q, σ Jm && z K ∩ σ JeK , σ ⇓ σ′ and P, σ Jm && z K ∩ σ JeK , σ′ ⇓ σ′′
0 ,

and then apply E-WHILETRUE. Note that the rule is applicable because the assump-
tion σ |= e = z implies σ Jm && z K ∩ σ JeK = σ Jm && z K. The first assertion also follows
from σ Jm && z K ∩ σ JeK = σ Jm && z K together with the assumption. For the second one,
note that

P, (σ′[z 7→ σ′ JeK]) Jm && z K , σ′ ⇓ σ′′
0

holds from assumption and the fact that z is fresh. In view of Lemma A.5, it suffices to
show that

(σ Jm && z K ∩ σ JeK) ∩ σ′ JeK = ((σ′[z 7→ σ′ JeK]) Jm && z K) ∩ σ′ JeK .
From σ JeK = σ JzK this reduces to

(σ JmK ∩ σ JeK) ∩ σ′ JeK = σ JmK ∩ σ′ JeK .
This follows from the assumption of monotonicity and Lemma 4.2. This completes the
proof of (1).

Next we prove (2). Suppose σ |= ψ ∧ none(m && e) and let σ0 = σ[z 7→ σ JeK]. Then
by definition of ψ we have σ0 |= wlp(m && z , P, φ). Moreover, σ0 JzK = σ JeK and σ |=
none(m && e) imply that σ0 Jm && z K = ∅, therefore P, σ0 Jm && z K , σ0 ⇓ σ0. Hence σ0 |= φ,
and φ does not contain z, so σ |= φ as required.

Finally we prove (3). Suppose σ |= wlp(m,P, φ), and let σ0 = σ[z 7→ σ JeK]. Then
clearly σ0 |= e = z. We will prove σ0 |= wlp(m && z , P, φ). To do this suppose
P, σ0 Jm && z K , σ0 ⇓ σ′

0. Then, since σ0 Jm && z K = σ JmK ∩ σ JeK, by Lemma A.5 we have
P, σ JmK , σ0 ⇓ σ′

0. Since wlp(m,P, φ) does not depend on z and σ satisfies this formula,
so does σ0. Therefore σ′

0 |= φ.

D. PROOF OF THE SOUNDNESS OF DERIVATION SEARCH
Let us say a partial derivation D to be admissible if, for every substitution {σ̄/X̄}
such that X̄ is the list of all state variables occurring in D and every leaf of D{σ̄/X̄}
is derivable, then D{σ̄/X̄} is obtained by truncating several branches of some valid
derivation.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:45

It suffices to prove that all partial derivations are admissible: a total derivation D
is a partial derivation that does not contain state variables, hence its admissibility
implies that D itself is a valid derivation.

To prove this it suffices to prove that −→ preserves admissibility, since P, µ, σ ⇓ X
is clearly admissible. The cases of S-ATOM and S-WHILEFALSE are obvious. Consider
the case of S-SEQ:

D = E [P1; P2, µ, σ ⇓ X] −→ E

[
P1, µ, σ ⇓ X ′ P2, µ,X

′ ⇓ X
P1; P2, µ, σ ⇓ X

]
= D′.

Suppose D is admissible, and let {σ̄/X̄} be a substitution such that every leaf of
D′{σ̄/X̄} is a valid judgment. Let us denote by σY the state corresponding to a variable
Y appearing in X̄. Then the assumption means that

D′{σ̄/X̄} = E{σ̄/X̄}
[
P1, µ, σ ⇓ σX′ P2, µ, σX′ ⇓ σX

P1; P2, µ, σ ⇓ σX

]
has valid judgments as its leaves.3 Then, its truncation

D{σ̄/X̄} = E{σ̄/X̄} [P1; P2, µ, σ ⇓ σX]

also has valid judgments as its leaves: leaves appearing in E{σ̄/X̄} are valid since they
are leaves of D′{σ̄/X̄}, and P1; P2, µ, σ ⇓ σX is valid by rule E-SEQ and the assump-
tions that both P1, µ, σ ⇓ σX′ and P2, µ, σX′ ⇓ σX are valid. Therefore, by admissibility
of D it follows that D{σ̄/X̄} is a truncation of some valid derivation, say D0. The node
of D0 corresponding to P1; P2, µ, σ ⇓ σX in place of the hole of E has to be extended as

P1, µ, σ ⇓ σ′′ P2, µ, σ
′′ ⇓ σX

P1; P2, µ, σ ⇓ σX
in D0. Although σ′′ does not necessarily coincide with σX′ , it is possible to replace this
node with another one. This is because the premises of

P1, µ, σ ⇓ σX′ P2, µ, σX′ ⇓ σX
P1; P2, µ, σ ⇓ σX

are both valid, hence have some derivations. Therefore D′{σ̄/X̄} is also a truncation of
some derivation. S-IF and S-WHILETRUE can be treated in the same way.

E. PROOF OF THE COMPLETENESS OF DERIVATION SEARCH
Let us say a partial derivation D approximates a total derivation D0 if there exists a
substitution {σ̄/X̄} such that D{σ̄/X̄} is obtained by truncating several branches of
D0. We write D ⊑ D0 if D approximates D0.

Clearly if D0 is a derivation of P, µ, σ ⇓ σ′ then (P, µ, σ ⇓ X) ⊑ D0, so it suffices to
show that

(1) for every partial derivation D, if D ⊑ D0 and D ̸= D0, then there exists D′ such
that D −→ D′ and D′ ⊑ D0, and

(2) there exists no infinite sequence D1 −→ D2 −→ . . . such that Di ⊑ D0 for all i > 0.

To prove the first claim, note that if D ⊑ D0 and D ̸= D0, then D contains at least one
state variable, and hence of the form E[P, µ, σ ⇓ X]. If this cannot be extended, then
it has to be the case that P = sync and µ ̸= ∅,T. However, since D approximates D0,
for some σX the judgment P, µ, σ ⇓ σX has to appear in D0, and hence this has to be

3Here E{σ̄/X̄} does not belong to any syntactic category that we have defined so far, but we believe the
meaning of the whole expression is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 K. Kojima and A. Igarashi

a valid judgment, a contradiction. Therefore there exists some D′ such that D −→ D′.
It remains to check that D′ can be chosen so that D′ ⊑ D0. If S-ATOM is applicable
to D, take σ′ so that P, µ, σ ⇓ σ′ is the corresponding rule instance in D0, and let
D′ = D{σ′/X}. Then we have D −→ D′, and D′ is a truncation of D0. The case of
S-WHILEFALSE is similar. Next, consider S-SEQ:

D = E[P1; P2, µ, σ ⇓ X] −→ E

[
P1, µ, σ ⇓ X1 P2, µ,X1 ⇓ X

P1; P2, µ, σ ⇓ X

]
= D′.

The state corresponding to X1 in D0 determines σX1 , so that D′{σ̄, σX1/X̄,X1} is a
truncation of D0. Other two rules are similar.

For the second claim, let n(D) be the number of nodes of a partial derivation D,
and v(D) the number of state variables occurring in D. For each D such that D ⊑ D0,
consider the pair m(D) = (n(D0) − n(D), v(D)) ∈ N × N. Then it is easy to check that
if D −→ D′ then m(D′) < m(D) where < is the lexicographic order. The absence of an
infinite sequence follows from the well-foundedness of (N× N, <).

F. PROOF OF SIMULATION
LEMMA F.1. Suppose (Pi, si | i ∈ µ), σ →I (P ′

i , s
′
i | i ∈ µ), σ′, and consider families

of programs Qi indexed by i ∈ µ and a stack t. In case t ̸= ε we additionally assume
that, for each i such that si = ε, the last element of dom(t) does not appear in Pi. Then,
(Pi ; Qi , t · si | i ∈ µ), σ →I (P ′

i ; Qi , t · s′i | i ∈ µ), σ′.

PROOF. By induction on the derivation of i−→. In the case of T-WHILEFALSE, we
need to check that if si does not end with an element of the form (l, k) then neither
does t · si, which is a consequence of the assumption that if si = ε the last element of
dom(t) does not appear in Pi.

LEMMA F.2. Let D ∈ P(P, µ, σ ⇓ X) and (Qi, si)i, σ
′ = |D|. Then all labels appear-

ing in Qi appear in P .

PROOF. By induction on D.

PROOF OF PROPOSITION 6.9. By induction on the size of E. First, consider the case
E = []. Then we have D = (P, µ, σ ⇓ X). If P is a sequencing, |D| = |D′|. Otherwise, we
can obtain |D| →∗

I |D′| by applying I-THREAD |µ| times, so if µ ̸= ∅ we have |D| →+
I |D′|.

Note that if P is an assignment to a shared variable, we use the assumption that D′ is
locally interleavable.

Suppose E ̸= [] and the conclusion of E is whilel e doP0. Then E is either

P0, µ1, σ0 ⇓ σ1

E′ whilel e doP0, µk, X1 ⇓ X0

whilel e doP0, µk−1, σk−1 ⇓ X0....
whilel e doP0, µ1, σ1 ⇓ X0

whilel e doP0, µ0, σ0 ⇓ X0

(3)

where k ≥ 1, or

P0, µ1, σ0 ⇓ σ1

P0, µk, σk−1 ⇓ σk []

whilel e doP0, µk−1, σk−1 ⇓ X0....
whilel e doP0, µ1, σ1 ⇓ X0

whilel e doP0, µ0, σ0 ⇓ X0

(4)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:47

where k ≥ 1. In both cases µj = µj−1 ∩ σj−1 JeK for each 1 ≤ j ≤ k, and µk ̸= ∅. Below
we abbreviate whilel e doP0 as R.

Consider the case (3), and let D1 = E′[P, µ, σ ⇓ X]. Let E′′ be a context enclosing D1

in D, that is, E = E′′[E′] and therefore D = E′′[D1]. Since E′′ is an evaluation context,
we have either D′ = E′′[D′

1] for some D′
1 with D1 −→ D′

1, or D′ = E′′[D1]{σ′/X1} for
some σ′ with D1 −→ D1{σ′/X1}. In each of these cases, by the induction hypothesis we
have |D1| →∗

I |D′
1| and |D1| →∗

I (✓, ε)i, σ′, respectively. In the first case, let (Qi, si)i, σ =
|D1| and (Q′

i, s
′
i)i, σ

′ = |D′
1|. Then what we have to show is

|E′′|(Qi, si)i, σ →∗
I |E′′|(Q′

i, s
′
i)i, σ

′,

that is

(Qi ; R, (l, k) · si | i ∈ µk), σ →∗
I (Q ′

i ; R, (l, k) · s′i | i ∈ µk), σ
′.

This follows from Lemma F.1 and the induction hypothesis, but to apply Lemma F.1
we have to check that l /∈ labs(Qi). This follows from the fact that Qi is a program part
of |D1| and D1 has a conclusion of the form P0, µk, σk−1 ⇓ X1. Here P0 is the body of a
while-statement with label l, hence does not contain l (because we assume the same
label does not appear twice in a single program). Therefore by Lemma F.2, Qi does not
contain l. In the second case, where |D1| →∗

I (✓, ε)i, σ′, we have D′ = E′′[D1]{σ′/X1} so
|D′| = (R, (l, k) | i ∈ µk), σ

′. Since |D| is of the form (Qi ; R, (l, k) ·si)i, σ and by induction
hypothesis we have (Qi, si)i, σ →∗

I (✓, ε)i, σ′, the conclusion follows from Lemma F.1,
using l /∈ labs(Qi) which is verified in the same way as above.

Next, consider the case (4). In this case D = E[R,µk, σk ⇓ X0] and there are two
possibilities:

D′ = D{σk/X0}, or D′ = E

[
P0, µk+1, σk ⇓ X1 R,µk+1, X1 ⇓ X0

R,µk, σk ⇓ X0

]
.

In the first case, we have |D′| = (✓, ε)i, σk and µk ∩ σk JeK = ∅, and in the second case
|D′| = (P0; R, (l, k + 1) | i ∈ µk+1), σk and µk+1 = µk ∩ σk JeK. In both cases it is easy to
see that |D| = (R, (l, k) | i ∈ µk), σ →∗

I |D′|.
Next we consider the case of sequencing:

E =
D1 E′

P1; P2, µ0, σ0 ⇓ X0
or E =

E′ P2, µ0, X1 ⇓ X0

P1; P2, µ0, σ0 ⇓ X0
.

Then we have either

|D| = (Qi, si)i, σ or |D| = (Qi ; P2, si), σ.

The conclusion follows by an argument similar to the previous case, using Lemma F.1.
The case of if-statement is also similar.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

