
Resource Usage Analysis for the π-Calculus

Naoki Kobayashi1, Kohei Suenaga2, and Lucian Wischik3

1 Tohoku University, koba@ecei.tohoku.ac.jp
2 University of Tokyo, kohei@yl.is.s.u-tokyo.ac.jp

3 Microsoft Corporation, lwischik@microsoft.com

Abstract. We propose a type-based resource usage analysis for the π-
calculus extended with resource creation/access primitives. The goal of
the resource usage analysis is to statically check that a program accesses
resources such as files and memory in a valid manner. Our type system is
an extension of previous behavioral type systems for the pi-calculus, and
can guarantee the safety property that no invalid access is performed,
as well as the property that necessary accesses (such as the close oper-
ation for a file) are eventually performed unless the program diverges.
A sound type inference algorithm for the type system is also developed
to free the programmer from the burden of writing complex type an-
notations. Based on the algorithm, we have implemented a prototype
resource usage analyzer for the π-calculus. To the authors’ knowledge,
ours is the first type-based resource usage analysis that deals with an
expressive concurrent language like the π-calculus.

1 Introduction

Computer programs access many external resources, such as files, library func-
tions, device drivers, etc. Such resources are often associated with certain access
protocols; for example, an opened file should be eventually closed and after the
file has been closed, no read/write access is allowed. The aim of resource usage
analysis [9] is to statically check that programs conform to such access pro-
tocols. Although a number of approaches, including type systems and model
checking, have been proposed so far for the resource usage analysis or similar
analyses [1, 5–7, 9], most of them focused on analysis of sequential programs,
and did not treat concurrent programs, especially those involving dynamic cre-
ation/passing of channels and resources.

In the present paper, we propose a type-based method of resource usage anal-
ysis for concurrent languages. Dealing with concurrency is especially important
because concurrent programs are hard to debug, and also because actual pro-
grams accessing resources are often concurrent. We use the π-calculus (extended
with resource primitives) as a target language so that our analysis can be ap-
plied to a wide range of concurrency primitives (including those for dynamically
creating and passing channels) in a uniform manner.

For the purpose of analyzing resource usage, we extend previous behavioral
type systems for the π-calculus [3, 8]. The idea of the behavioral types [3, 8]

1

is to use CCS-like processes as types. The types express abstract behavior of
processes, so that certain properties of processes can be verified by verifying
the corresponding properties of their types, using, for example, model checking
techniques. The latter properties (of CCS-like types) are more amenable to auto-
matic verification techniques like model checking than the former ones, because
the types do not have channel mobility and also because the types typically
represent only the behavior of a part of the entire process.

Following the previous behavioral types, we use CCS-like types to express
resource-wise access behaviors of a process and construct a type system which
guarantees that any well-typed process uses resources in a valid manner. The
main contributions of the present paper are:

– Adaption of behavioral types (for pure π-calculus) [3, 8] to the π-calculus
extended with resource access primitives.

– Realization of fully automatic verification (while making the analysis more
precise than [8]). Igarashi and Kobayashi [8] gave only an abstract type
system, without giving a concrete type inference algorithm. Chaki et al. [3]
requires type annotations. The full automation was enabled by a combination
of a number of small ideas, like inclusion of hiding and renaming as type
constructors (Igarashi and Kobayashi [8] used a fragment without hiding
and renaming, and Chaki et al. [3] used a fragment without renaming),
approximation of a CCS-like type by a Petri net (to reduce the problem of
checking conformance of inferred types to resource usage specification).

– Verification of not only the usual safety property that an invalid resource
access does not occur, but also an extended safety (which we call partial
liveness) that necessary resource accesses (e.g. closing of a file) are even-
tually performed unless the whole process diverges. The partial liveness is
not guaranteed by Chaki et al.’s type system [3]. A noteworthy point about
our type system for guaranteeing the partial liveness is that it is parame-
terized by a mechanism that guarantees deadlock-freedom (in the sense of
Kobayashi’s definition [13]). So, our type system can be combined with any
mechanism (model checking, abstract interpretation, another type system,
or whatever) to verify deadlock-freedom.

– Implementation of a prototype resource usage analyzer based on the pro-
posed method. The implementation can be tested at
http://www.yl.is.s.u-tokyo.ac.jp/∼kohei/usage-pi/.

The rest of this paper is structured as follows. Section 2 introduces an ex-
tension of the π-calculus with primitives for creating and accessing resources.
Section 3 introduces a type system for resource usage analysis. Section 4 gives a
type inference algorithm for the type system. Section 5 presents our prototypical
implementation. Section 6 discusses related work. Section 7 concludes. For lack
of space, proofs and some explanations have been omitted. They are found in
the full version of this paper [15].

2

2 Language

Let x, y, z range over a countably infinite set Var of variables, let values v range
over variables and also the two constant values true and false, let tags t range
over {∅, c}, let ξ range over a set of access labels, and let Φ (called a trace set)
denote a set of sequences of access labels, possibly ending with a special label ↓,
that is closed under the prefix operation. We write x̃ for a sequence x1, . . . , xn

of variables, and similarly ṽ, and define Φ−ξ = {s | ξs ∈ Φ}. Let L range over
reduction labels {xξ | x ∈ Var} ∪ {τ}.

P ::= 0 | (P |Q) | if v then P else Q | (νx) P | ∗P
| xt〈ev〉. P | xt(ey). P | (NΦx)P | accξ(x).P

Structural preorder ¹ is as follows. P ≡ Q stands for (P ¹ Q) ∧ (Q ¹ P).

P |0 ≡ P P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R ∗P ¹ ∗P |P
(νx) P |Q ¹ (νx) (P |Q) and (NΦx)P |Q ¹ (NΦx)(P |Q)if x not free in Q

P ¹ P ′ Q ¹ Q′

P |Q ¹ P ′ |Q′
P ¹ Q

(νx) P ¹ (νx) Q

P ¹ Q

(NΦx)P ¹ (NΦx)Q

Labeled relation
L−→ is as follows. Write P −→ Q when P

L−→ Q for some L, and −→∗

for reflexive and transitive closure of −→. Define target(xξ) = {x} and target(τ) = ∅.

xt〈ez〉. P |xt′(ey). Q
τ−→ P | [ez/ey]Q accξ(x).P

xξ

−→ P
if true then P else Q

τ−→ P

if false then P else Q
τ−→ Q

P
L−→ Q

P |R L−→ Q |R
P

L−→ Q x 6∈ target(L)

(νx) P
L−→ (νx) Q

P
xξ

−→ Q

(NΦx)P
τ−→ (NΦ−ξx)Q

P
L−→ Q x 6∈ target(L)

(NΦx)P
L−→ (NΦx)Q

P ¹ P ′ P ′
L−→ Q′ Q′ ¹ Q

P
L−→ Q

Fig. 1. Process language

The process language P is in Figure 1. The first line is standard π-calculus
– (νx)P declares a new channel with bound name x, ∗P is replication, and
parallel composition | binds less tightly than the prefixes. We often omit trailing
0. Bound and free variables are defined as normal. We identify processes up to
α-conversion, and so assume that bound variables are always different from each
other and from free variables.

The input command xt(ỹ). P waits for input on channel x with bound formal
parameters ỹ and then behaves as P . The output command xt〈ṽ〉. P sends ṽ
along x and then behaves as P . The attribute t is either c (indicating that if

3

the input is executed then it will succeed unless the whole process diverges) or ∅
(which does not give the guarantee). We often omit ∅. Note that the attributes
do not affect the operational semantics of processes. Typically the attributes
have been inferred by some deadlock analysis tool such as TyPiCal [10–12, 14].
For this paper, we assume that the correctness of the attributes are ensured by
whichever deadlock-analysis tool used to make the annotations.

For the final line in the definition of processes, (NΦx)P declares a resource
with bound name x which is to be accessed according to specification Φ, and
accξ(x).P performs access ξ on resource x and then behaves like P . Resources
here are an abstraction of real-world resources such as files or objects. In this
paper we consider accesses such as I for initialize, R for read, W for write and
C for close. For example, (N(I(R+W)∗C ↓)#x)P creates a resource that should be
first initialized, read or written an arbitrary number of times, and then closed.
The symbol ↓ at the end indicates that the final close is required eventually
to occur. Here, (S)# is the prefix closure of S, i.e., {s | ss′ ∈ S}. We write ε
for the empty access sequence. We write init(x).P for accI(x).P , and similarly
read(x), write(x), close(x). We do not fix the syntax of Φ. Our type system
is independent of the choice of the language for describing the specificaiton Φ
(except for the sub-algorithm for type-checking discussed in Section 4.1, where
we assume that Φ is a regular language).

We treat resources as primitives in this paper, and give operational semantics
where accξ(x).P is non-blocking. This is for simplicity. It would also be possible
to treat a resource with (say) three access labels as a tuple of three channels.
This would allow previous work [3, 8] to infer some of the properties of this
paper, albeit with less precision and more complexity. Also in this paper we
have specifications Φ apply only to a single resource. To model a program with
two co-declared resources as in [8] with intertwined specifications, we would
instead merge them into a single resource with a single specification.

The operational semantics of the language are given in Figure 1, through a
structural preorder ¹ and a labeled reduction relation L−→. Notice that invalid
resource access sets Φ = ∅, valid access removes a prefix from Φ, and complete
access results in Φ = {ε, ↓}).

(N(IC ↓)#x)read(x).0 → (N∅x)0 (invalid access)

(N(IC ↓)#x)init(x).0 → (N(C ↓)#x)0 (valid access)

(N(IC ↓)#x)init(x).close(x).0 → (N{ε,↓}x)0 (complete access)

We are concerned with the following properties.

Definition 1 1. A process P is safe if it does not contain a sub-expression of
the form (N∅x)Q.

2. A process P is partially live if ↓ ∈ Φ whenever P −→∗¹ (ν̃Ñ)(NΦx)Q 6−→.

The first property means that the process has not performed any invalid access.
The second property means that necessary accesses are eventually performed

4

before the whole process converges. In the next section, we shall develop a type
system that guarantees the safety and partial liveness.

Example 1. The following example process is safe and partially live. It uses in-
ternal synchronization to ensure that the resource x is accessed in a valid order.

(N(IR∗C)#x)(νy) (νz)
(

init(x).(y〈 〉 | y〈 〉) /* initialize x, and send signals */
| yc(). read(x).z〈 〉 /* wait on y, then read x, and signal on z*/
| yc(). read(x).z〈 〉 /* wait on y, then read x, and signal on z*/
| zc(). zc(). close(x)

)
/* wait on z, then close x */

3 Type System

3.1 Types

We first introduce the syntax of types. We use two categories of types: value
types and behavioral types. The latter describes how a process accesses resources
and communicates through channels. As mentioned in Section 1, we use CCS
processes for behavioral types.

Definition 2 (types) The sets of value types σ and behavioral types A are de-
fined by:

σ ::=bool | res | chan〈(x1 : σ1, . . . , xn : σn)A〉
A::=0 | α | at.A | xξ.A | τt.A | (A1 |A2) | A1 ⊕A2 | ∗A

| 〈y1/x1, . . . , yn/xn〉A | (νx)A | µα.A | A↑S | A↓S

a (communication labels) ::= x | x

A behavioral type A, which is a CCS process, describes what kind of commu-
nication and resource access a process may perform. 0 describes a process that
performs no communication or resource access. The types xt. A, xt. A, xξ.A and
τt.A describes process that first perform an action and then behave according
to A; the actions are, respectively, an input on x, an output on x, an access
operation ξ on x, and the invisible action. Attributes t denote whether an action
is guaranteed to succeed. A1 |A2 describes a process that performs communica-
tions and resource access according to A1 and A2, possibly in parallel. A1⊕A2

describes a process that behaves according to either A1 or A2. ∗A describes a
process that behaves like A an arbitrary number of times, possibly in parallel.
〈y1/x1, . . . , yn/xn〉A, abbreviated to 〈ỹ/x̃〉A, denotes simultaneous renaming of
x̃ with ỹ in A. (νx)A describes a process that behaves like A for some hidden
channel x. For example, (νx) (x. y |x) describes a process that performs an out-
put on y after the invisible action on x. The type µα.A describes a process that
behaves like a recursive process defined by α

4
= A. The type A↑S describes a

process that behaves like A, except that actions whose targets are in S are re-
placed by the invisible action τ , while A↓S describes a process that behaves like

5

A, except that actions whose targets are not in S are replaced by τ . The formal
semantics of behavioral types is defined later using labeled transition semantics.

As for value types, bool is the type of booleans. res is the type of re-
sources. The type chan〈(x1 :σ1, . . . , xn :σn)A〉, abbreviated to chan〈(x̃ : σ̃)A〉,
describes channels carrying tuples consisting of values of types σ1, . . . , σn. Here
the type A approximates how a receiver on the channel may use the elements
x1, . . . , xn of each tuple for communications and resource access. For exam-
ple, chan〈(x : res, y : res)xR.yC〉 describes channels carrying a pair of resources,
where a party who receives the actual pair (x′, y′) will first read x′ and then
close y′. We sometimes omit σ̃ and write chan〈(x̃)A〉 for chan〈(x̃ : σ̃)A〉. When
x̃ is empty, we also write chan〈〉.

Note that 〈ỹ/x̃〉 is treated as a constructor rather than an operator for per-
forming the actual substitution. We write [ỹ/x̃] for the latter throughout this
paper. 〈ỹ/x̃〉A is slightly different from the relabeling of the standard CCS [17]:
〈y/x〉(x | y) allows the communication on y, but the relabeling of CCS does not.
This difference calls for the introduction of a special transition label {x, y} in
Section 3.2.

(νx)A, 〈ỹ/x̃〉A, and A↑S bind x, x̃, and the variables in S respectively. We
write FV(A) for the set of free variables in A. We identify behavioral types up to
renaming of bound variables. In the rest of this paper, we require that every chan-
nel type chan〈(x1 :σ1, . . . , xn : σn)A〉 must satisfy FV(A) ⊆ {x1, . . . , xn}. For
example, chan〈(x:res)xR〉 is a valid type but chan〈(x:res)yR〉 is not. By abuse
of notation, we write 〈v1/x1, . . . , vn/xn〉A for 〈vi1/xi1 , . . . , vik

/xik
〉A where

{vi1 , . . . , vik
} = {v1, . . . , vn}\{true, false}. For example,

〈true/x, y/z〉A stands for 〈y/z〉A.

3.2 Semantics of behavioral types

We give a labeled transition relation l−→ for behavioral types. The transition
labels l are

l ::= x | x | xξ | τ | {x, y}
The label {x, y} indicates the potential to react in the presence of a substitution
that identifies x and y. We also extend target to the function on transition labels
by:

target(x) = target(x) = {x} target({x, y}) = {x, y}
Figure 2 shows a part of the definition of the transition relation l−→ on behavioral
types. For the complete definition, see the full paper [15]. We write =⇒ for the
reflexive and transitive closure of τ−→. We also write l=⇒ for =⇒ l−→=⇒.

Remark 1. (νx)A should not be confused with A↑{x}. (νx) A is the hiding oper-
ator of CCS, while A↑{x} just replaces any actions on x with τ [8]. For example,

(νx) (x. yξ) cannot make any transition, but (x. yξ)↑{x} τ−→ yξ

−→ 0↑{x}.

6

at.A
a→A xξ.A

xξ

→ A τt.A
τ→A

A
l→A′ target(l)⊆S

A↑S
τ→A′↑S

A
l→A′ target(l)∩S=∅

A↑S
l→A′↑S

A
l→A′ target(l)⊆S

A↓S
l→A′↓S

A
l→A′ target(l)∩S=∅

A↓S
τ→A′↓S

Fig. 2. A Part of Definition of Transition semantics of behavioral types

We next define a predicate disabled(A,S) inductively as follows.

disabled(0, S)
disabled(xξ.A, S) if disabled(A, S) and x 6∈ S

disabled(ac.A, S) if disabled(A, S)
disabled(a∅.A, S)
disabled(τc.A, S) if disabled(A, S)
disabled(τ∅.A, S)

disabled(A1 |A2, S) if disabled(A1, S) and disabled(A2, S)
disabled(A1 ⊕A2, S) if disabled(A1, S) or disabled(A2, S)

disabled(∗A, S) if disabled(A, S)
disabled((νx)A, S) if disabled(A, S\{x})

disabled(A↑S′ , S) if disabled(A, S\S′)
disabled(A↓S′ , S) if disabled(A, S ∩ S′)

disabled(〈ỹ/x̃〉A, S) if disabled(A, {z | [ỹ/x̃]z ∈ S})
disabled(µα.A, S) if disabled([µα.A/α]A,S)

Intuitively, disabled(A,S) means that A describes a process that may get blocked
without accessing any resources in S.

The set etracesx(A) defined below is the set of possible access sequences on
x described by A.

Definition 3 (extended traces) The set etracesx(A) of extended traces is:

{ξ1 · · · ξn ↓ |∃B.A↓{x} xξ1
=⇒ · · · xξn

=⇒ B ∧ disabled(B, {x})}
∪{ξ1 · · · ξn|∃B.A↓{x} xξ1

=⇒ · · · xξn

=⇒ B}

We define the subtyping relation A1 ≤ A2 below. Intuitively, A1 ≤ A2

means that a process behaving according to A1 can also be viewed as a process
behaving according to A2. To put in another way, A1 ≤ A2 means that A2

7

simulates A1.4 We define ≤ for only closed types, i.e., those not containing free
type variables.

Definition 4 (subtyping) The subtyping relation ≤ on closed behavioral types
is the largest relation that satisfies the following properties:

– A1 ≤ A2 and A1
l−→ A′1 implies A2

l=⇒ A′2 and A′1 ≤ A′2 for some A′2.
– disabled(A1, S) implies disabled(A2, S) for any set S of variables.

We often write A1≥A2 for A2≤A1, and write A1 ≈ A2 for A1≤A2 ∧A2≤A1.

3.3 Typing

We consider two kinds of judgments, Γ . v : σ for values, and Γ . P : A for
processes. Γ is a mapping from a finite set of variables to value types. In
Γ .P : A, the type environment Γ describes the types of the variables, and A de-
scribes the possible behaviors of P . For example, x : chan〈(b :bool)0〉 . P : x |x
implies that P may send booleans along the channel x twice. The judgment
y : chan〈(x : chan〈(b :bool)0〉)x〉 . Q : y means that Q may perform an input on
y once, and then it may send a boolean on the received value. Note that in the
judgment Γ . P : A, the type A is an approximation of the behavior of P on free
channels. P may do less than what is specified by A, but must not do more; for
example, x : chan〈()0〉.x〈 〉 : x |x holds but x : chan〈()0〉.x〈 〉. x〈 〉 : x does not.
Because of this invariant, if A does not perform any invalid access, neither does
P .

We write dom(Γ) for the domain of Γ . We write ∅ for the empty type environ-
ment, and write x1 : τ1, . . . , xn : τn (where x1, . . . , xn are distinct from each other)
for the type environment Γ such that dom(Γ) = {x1, . . . , xn} and Γ (xi) = τi

for each i ∈ {1, . . . , n}. When x 6∈ dom(Γ), we write Γ, x : τ for the type envi-
ronment ∆ such that dom(∆) = dom(Γ) ∪ {x}, ∆(x) = τ , and ∆(y) = Γ (y)
for y ∈ dom(Γ). We define the value judgment relation Γ . v:σ to be the least
relation closed under

Γ, x:σ . x:σ Γ . true:bool Γ . false:bool.

We write Γ . ṽ:σ̃ as an abbreviation for (Γ . v1:σ1) ∧ · · · ∧ (Γ . vn:σn).
Figure 3 gives the rules for the relation Γ .P :A. We explain key rules below.

In rule (T-Out), the first premise Γ .P : A2 implies that the continuation of the
output process behaves like A2, and the second premise Γ . x : chan〈(ỹ : σ̃)A1〉
implies that the tuple of values ṽ being sent may be used by an input process
according to 〈ṽ/ỹ〉A1. Therefore, the whole behavior of the output process is
described by x. (〈ṽ/ỹ〉A1 |A2). Note that, as in previous behavioral type sys-
tems [3, 8], the resource access and communications made on ṽ by the receiver
of ṽ are counted as the behavior of the output process. In rule (T-In), the first

4 Note that the subtyping relation defined here is the converse of the one used in
Igarashi and Kobayashi’s generic type system [8].

8

Γ . P : A2 Γ . x : chan〈(ey : eσ)A1〉 Γ . ev : eσ
Γ . xt〈ev〉. P : xt. (〈ev/ey〉A1 |A2)

(T-Out)

Γ, ey : eσ . P : A2 Γ . x : chan〈(ey : eσ)A1〉 A2↓{ey} ≤ A1

Γ . xt(ey). P : xt. (A2↑{ey})
(T-In)

Γ . P1 : A1 Γ . P2 : A2

Γ . P1 |P2 : A1 |A2

(T-Par)

Γ . P : A

Γ . ∗P : ∗A (T-Rep)

Γ . v :bool Γ . P : A Γ . Q : A

Γ . if v then P else Q : A
(T-If)

Γ, x : chan〈(ey : eσ)A1〉 . P : A2

Γ . (νx) P : (νx) A2

(T-New)

Γ . 0 :0 (T-Zero)

Γ . P : A Γ . x : res

Γ . accξ(x).P : xξ.A
(T-Acc)

Γ, x : res . P : A etracesx(A) ⊆ Φ

Γ . (NΦx)P : A↑{x}
(T-NewR)

Γ . P : A′ A′ ≤ A

Γ . P : A
(T-Sub)

Fig. 3. Typing Rules

premise implies that the continuation of the input process behaves like A2. Fol-
lowing previous behavioral type systems [3, 8], we split A2 into two parts: A2↓{ey}
and A2↑{ey}. The first part describes the behavior on the received values ỹ and is
taken into account in the channel type. The second part describes the resource
access and communications performed on other values, and is taken into account
in the behavioral type of the input process. The condition A2↓{ey} ≤ A1 requires
that the access and communication behavior on ỹ conforms to A1, the channel
arguments’ behavior. In (T-New), the premise implies that P behaves like A, so
that (νx) P behaves like (νx)A. Here, we only require that x is a channel, unlike
in the previous behavioral type systems for the π-calculus [8, 10]. That is be-
cause we are only interested in the resource access behavior; the communication
behavior is used only for accurately inferring the resource access behavior. In
(T-NewR), we check that the process’s behavior A conforms to the resource us-
age specification Φ. Rule (T-Sub) allows the type A′ of a process to be replaced
by its approximation A.

Example 2. Consider the process P = (νs) (∗s(n, x, r). P1 | (NΦx)P2), where:

P1=if n = 0 then r〈〉 else (νr′) (s〈n− 1, x, r′〉 | r′c(). read(x).r〈〉)
P2=(νr) (init(x).s〈100, x, r〉 | rc(). close(x)) Φ = (IR∗C ↓)#

Let A1 = µα.(r ⊕ (νr′) (〈r′/r〉α|r′c. xR.r) and
let Γ = s:chan〈(n:int, x:res, r:chan〈〉)A1〉. Then

Γ, n:int, x:res, r:chan〈〉 . P1 : A1 Γ . ∗s(n, x, r). P1 : ∗s. (A1↑{n,x,r}) ≈ ∗s
Γ . P2 : (νr) (xI .A1|rc. xC)

9

So long as etracesx((νr) (xI .A1|r. xC)) ⊆ Φ, we obtain ∅ . P :0. See Section 4.1
for the algorithm that establishes etracesx(·) ⊆ Φ. 2

Remark 2. The type A1 in the example above demonstrates how recursion,
hiding, and renaming are used together. In general, in order to type a recur-
sive process of the form ∗s(x). (νy) (· · · s〈y〉 · · ·), we need to find a type that
satisfies (νy) (· · · 〈y/x〉A · · ·) ≤ A. Moreover, for the type inference (in Sec-
tion 4), we must find the least such A. Thanks to the type constructors for
recursion, hiding, and renaming, we can always do that: A can be expressed by
µα.(νy) (· · · 〈y/x〉α · · ·).

The following theorem states that no well-typed process performs an invalid
access to a resource.

Theorem 1 (type soundness (safety)). Suppose that P is safe. If Γ . P : A
and P −→∗ Q, then Q is safe.

Theorem 2 below states that well-typed programs eventually perform all the
necessary resource accesses (unless the whole process diverges).

Definition 5 (well-annotatedness) P is active if P ¹ (ν̃Ñ)(xc〈ṽ〉. Q |R) or
P ¹ (ν̃Ñ)(xc(ỹ). Q |R). P is well-annotated if for any P ′ such that P −→∗ P ′

and active(P ′), there exists P ′′ such that P ′ −→ P ′′.

Theorem 2. If well annotated(P) and ∅ . P : A, then P is partially live.

4 Type Inference Algorithm

This section discusses an algorithm which takes a closed process P as an input
and checks whether ∅.P :0 holds. The algorithm consists of the following steps.

1. Extract constraints on type variables based on the (syntax-directed version
of) typing rules.

2. Reduce constraints to trace inclusion constraints of the form
{etracesx1(A1) ⊆ Φ1, . . . , etracesxn(An) ⊆ Φn}

3. Decide whether the trace inclusion constraints are satisfied.

The algorithm for Step 3 is sound but not complete.
The first two steps are fairly standard [9, 10]. Based on the typing rules, we

can transform ∅ . P :0 to equivalent constraints of the form:

{α1 ≥ A1, . . . , αn ≥ An, etracesx1(B1) ⊆ Φ1, . . . , etracesxm(Bm) ⊆ Φm}
where α1, . . . , αn are different from each other. Each subtype constraint α ≥ A
can be replaced by α ≥ µα.A. Therefore, the above constraints can be further
reduced to:

{etracesx1([Ã
′/α̃]B1) ⊆ Φ1, . . . , etracesxm([Ã′/α̃]Bm) ⊆ Φm}

Here, A′1, . . . , A
′
n are the least solutions for the subtype constraints. Thus, we

have reduced type checking to the validity of trace inclusion constraints of the
form etracesx(A) ⊆ Φ.

10

Example 3. Recall Example 2. We obtain the constraint etracesx(A1) ⊆ (IR∗C)#

where
A1 = (νr) (xI .s. A2 | r. xC) A3 = µα2.α2

A2 = µα1.r. A3 ⊕ (νr′) (s. 〈r′/r〉α1 | r′. xR.r. A3)↓{n,x,r}.

4.1 Step 3: Constraint Solving

We present an approximate algorithm for checking how to check a trace inclusion
constraint etracesx(A) ⊆ Φ when the trace set Φ is a regular language. (Actu-
ally, we can extend the algorithm to deal with the case where Φ is a deterministic
Petri net language: see the full version [15].)

The algorithm consists of the following three steps.

– Approximate the behavior of A↓{x} by a (labeled) Petri net NA1,x.
– Construct a Petri net NA′1,x ‖MΦ that simultaneously simulates NA1,x and

a minimized deterministic automaton MΦ that accepts Φ.
– Check that NA′1,x ‖MΦ does not reach any invalid state. Here, the set of

invalid states consists of (1) states where NA1,x can make a ξ-transition
while MΦ cannot, and (2) states where NA1,x is disabled (in other words,
can make a ↓-transition) while MΦ cannot make a ↓-transition.

The last part amounts to solving a reachability problem of Petri nets. In the
implementation, we further approximate the Petri net by a finite state machine.

We sketch the first step of the algorithm with an example below. Attributes
are omitted below for simplicity. Please consult the full version [15] for more
details and the other two steps. In Example 3 above, we have reduced the ty-
pability of the process to the equivalent constraint etracesx(A1) ⊆ Φ where
Φ = (IR∗C ↓)# and

A1↓{x} ≈ (νr) (xI .A′′2 | r. xC) A′′2 = r ⊕ (νr′) (〈r′/r〉A′′2 | r′. xR.r)

Here, we have omitted A3 = µα.α since it is insignificant.
Approximate the behavior of A1↓{x} by a Petri net [19] NA1,x. This part

is similar to the translation of usage expressions into Petri nets in Kobayashi’s
previous work [10, 11, 14]. Since the behavioral types are more expressive (having
recursion, hiding, and renaming), however, we need to approximate the behavior
of a behavioral type unlike in the previous work. In this case A1↓{x} is infinite.
To make it tractable we make a sound approximation A′1 by pushing (ν) to top
level, and we eliminate 〈r′/r〉:

A′1 = (νr, r′) (xI .A′2 | r. xC) A′2 = r ⊕ (A′3 | r′. xR.r) A′3 = r′ ⊕ (A′3 | r′. xR.r′)

Then NA′1,x is as pictured in Figure 4. (Here we treat A1 ⊕ A2 as τ.A1 ⊕ τ.A2

for clarity. We also use a version of Petri nets with labeled transitions.) The
rectangles are the places of the net, and the dots labeled by τ, xR, etc. are the
transitions of the net. Write ix for the number of tokens at node Bx. The behavior
A′1 corresponds to the initial marking {i1=1, i10=1}. We say that the nodes B̃

11

xI .A′2xI .A′2 r.xCr.xC

τ.r⊕ τ.(A′3|r′.xR.r)τ.r⊕ τ.(A′3|r′.xR.r)

τ.r′ ⊕ τ.(A′3|r′.xR.r′)τ.r′ ⊕ τ.(A′3|r′.xR.r′)

rr xCxC

xR.rxR.r

r′.xR.rr′.xR.r

r′r′

xR.r′xR.r′r′.xR.r′r′.xR.r′

I

R

R

τ

τ
τ

τ

C

τ

τ

τ

τ

B1

B2

B3

B4

B5

B6 B7

B8

B9

B10

B11

Fig. 4. NA′1,x

together with the restricted names (r, r′) constitute a basis for A′1. Note here that
etracesx(A1) ⊆ etracesx(A′1) = ptraces(NA′1,x) where ptraces(NA′1,x) is the
set of traces of the Petri net. Thus, ptraces(NA′1,x) ⊆ Φ is a sufficient condition
for etracesx(A1) ⊆ Φ . The key point here is that A′1 still has infinite states, but
all its reachable states can be expressed in the form (νr, r′) (i1B1 | · · · | i11B11)
(where ikBk is the parallel composition of ik copies of Bk), a linear combination
of finitely many processes B̃. That is why we could express A′1 by the Petri net
as above.

5 Implementation

We have implemented a prototype resource usage analyzer based on the type sys-
tem proposed in this paper. We have tested all the examples given in the present
paper. The implementation can be tested at http://www.yl.is.s.u-tokyo.ac.
jp/∼kohei/usage-pi/.

The analyzer takes a pi-calculus program as an input, and uses TyPiCal[11]
to annotate each input or output action with an attribute on whether the action
is guaranteed to succeed automatically. The annotated program is then analyzed
based on the algorithm described in Section 4.

The followings are some design decisions we made in the current implemen-
tation. We restrict the resource usage specification (Φ) to the regular languages
although in future we may extend it to deterministic Petri net languages. In the
algorithm for checking etracesx(A) ⊆ Φ, we blindly approximate A by pushing
all of its ν-prefixes to the top-level. In future we might utilize an existing model
checker to handle the case where A is already finite. To solve the reachability
problems of Petri nets, we approximate the number of tokens in each place by an
element of the finite set {0, 1, 2, “3 or more”}. That approximation reduces Petri
nets to finite state machines, so we can use BDD to compute an approximation
of the reachable states.

Figure 5 shows a part of a successful run of the analyzer. The first process (on
the second line) of the input program runs a server, which returns a new, initial-
ized resource. We write ! and ? for output and input actions. The resource access

12

Input:

new create,s in

*(create?(r).newR {init(read|write)*close }, x in acc(x,init).r!(x))

| *(new r in create!(r) | r?(y).new c in s!(false,y,c)

| s!(false,y,c) | c?().c?().acc(y,close))

| *(s?(b,x,r).if b then r!() else acc(x,read).s!(b,x,r))

Output:

(*** The result of lock-freedom analysis ***)

new create, s in

*create??(r). newR {init(read|write)*close}, x in acc(x, init). r!!(x)

| *(new r in create!!(r) | r??(y).new c in s!!(false,y,c)

| s!!(false,y,c) | c??().c??().acc(y,close))

...

No error found

Fig. 5. A Sample Run of the Analyzer.

specification is here expressed by a regular expression init(read|write)*close.
The second process runs infinitely many client processes, each of which sends
a request for a new resource, and after receiving it, reads and closes it. The
third process (on the 6th line) is a tail-recursive version of the replicated service
in Example 2. Here, a boolean is passed as the first argument of s instead of
an integer, as the current system is not adapted to handle integers; it does not
affect the analysis, since the system ignores the value and simply inspects both
branches of the conditional. Note that the program creates infinitely many re-
sources and has infinitely many states. The first output is the annotated version
of the input program produced by TyPiCal, where !! and ?? are an output and
an input with the attribute c.

6 Related Work

Resource usage analysis and similar analyses have recently been studied exten-
sively, and a variety of methods from type systems to model checking have been
proposed [1, 5–7, 9, 16, 20]. However, only a few of them deal with concurrent lan-
guages. To our knowledge, none of them deal with the partial liveness property.
Nguyen and Rathke [18] propose an effect-type system for a kind of resource
usage analysis for functional languages extended with threads and monitors. In
their language, neither resources nor monitors can be created dynamically. On
the other hand, our target language is π-calculus, so that our type system can
be applied to programs that may create infinitely many resources (due to the
existence of primitives for dynamic creation of resources: recall the example in
Figure 5), and also to programs that use a wide range of communication and
synchronization primitives.

13

Model checking technologies [2, 4, 21, 22] can of course be applicable to con-
current languages, but naive applications of model checking technologies would
suffer from the state explosion problem, especially for expressive concurrent lan-
guages like π-calculus, where resources and communication channels can be dy-
namically created and passed around. Actually, our type-based analysis can be
considered as a kind of abstract model checking. The behavioral types extracted
by (the first two steps of) the type inference algorithm are abstract concurrent
programs, each of which captures the access behavior on each resource. Then,
conformance of the abstract program with respect to the resource usage speci-
fication is checked as a model checking problem. From that perspective, a nice
point about our approach is that our type, which describes a resource-wise be-
havior, has much smaller state space than the whole program. In particular, if
infinitely many resources are dynamically created, the whole program has in-
finite states, but it is often the case that our behavioral types are still finite
(indeed so for the example in Figure 5).

Technically, closest to our type system are that of Igarashi and Kobayashi [8]
and that of Chaki, Rajamani, and Rehof [3]. Those type systems are developed
for checking the communication behavior of a process, but by viewing a set of
channels as a resource, it is possible to use those type systems directly for the
resource usage analysis. As mentioned in Section 1, the main contributions of
the present work with respect to those type systems are realization of automatic
verification while keeping enough precision, and verification of the partial live-
ness. The parameterization of the type system with an arbitrary mechanism to
guarantee deadlock-freedom opens a new possibility of integrating type-based
techniques with other verification techniques (the current implementation uses
another type-based analyzer to infer deadlock-freedom, but one can replace that
part with a model checker or an abstract interpreter).

7 Conclusion

We have presented a type-based technique for verifying resource usage of concur-
rent programs. Future work includes more serious assessment of the effectiveness
of our analysis and extensions of the type system to deal with other typical syn-
chronization primitives like join-patterns and external choice.

Acknowledgments

We would like to thank Andrew Gordon, Jakob Rehof, and Eijiro Sumii for useful
discussions and comments. We would also like to thank anonymous referees for
useful comments and suggestions.

References

1. T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static driver veri-
fier: Technology transfer of formal methods inside microsoft. In Integrated Formal
Methods 2004, volume 2999 of LNCS, pages 1–20. Springer-Verlag, 2004.

14

2. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Proc. of POPL, pages 1–3, 2002.

3. S. Chaki, S. Rajamani, and J. Rehof. Types as models: Model checking message-
passing programs. In Proc. of POPL, pages 45–57, 2002.

4. M. Dam. Model checking mobile processes. Information and Computation,
129(1):35–51, 1996.

5. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software.
In Proc. of PLDI, pages 59–69, 2001.

6. R. DeLine and M. Fähndrich. Adoption and focus: Practical linear types for im-
perative programming. In Proc. of PLDI, 2002.

7. J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Proc. of
PLDI, pages 1–12, 2002.

8. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theor.
Comput. Sci., 311(1-3):121–163, 2004.

9. A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans. Prog. Lang.
Syst., 27(2):264–313, 2005. Preliminary summary appeared in Proceedings of
POPL 2002.

10. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica. to appear.

11. N. Kobayashi. TyPiCal: A type-based static analyzer for the pi-calculus. Tool
available at http://www.kb.ecei.tohoku.ac.jp/∼koba/typical/.

12. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Trans. Prog.
Lang. Syst., 20(2):436–482, 1998.

13. N. Kobayashi. A type system for lock-free processes. Info. Comput., 177:122–159,
2002.

14. N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free pro-
cess calculus. In Proc. of CONCUR2000, volume 1877 of LNCS, pages 489–503.
Springer-Verlag, August 2000.

15. N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the pi-
calculus. Full version, 2005. http://www.kb.ecei.tohoku.ac.jp/∼koba/papers/
usage-pi.pdf.

16. K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In
Proceedings of the First Asian Symposium on Programming Languages and Systems
(APLAS 2003), volume 2895 of LNCS, pages 212–229, 2003.

17. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
18. N. Nguyen and J. Rathke. Typed static analysis for concurrent, policy-based,

resource access control. draft.
19. J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.
20. C. Skalka and S. Smith. History effects and verification. In Proceedings of the

First Asian Symposium on Programming Languages and Systems (APLAS 2004),
volume 3302 of LNCS, pages 107–128, 2004.

21. B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus.
In CAV’94: Computer Aided Verification, volume 818 of LNCS, pages 428–440.
Springer-Verlag, 1994.

22. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding of the pi-
calculus: Model checking mobile processes using tabled resolution. In Proceedings
of VMCAI 2003, volume 2575 of LNCS, pages 116–131. Springer-Verlag, 2003.

15

