
Fractional Ownerships
for Safe Memory Deallocation

Naoki Kobayashi and Kohei Suenaga

Tohoku University

Abstract. We propose a type system for a programming language with
memory allocation/deallocation primitives, which prevents memory-related
errors such as double-frees and memory leaks. The key idea is to augment
pointer types with fractional ownerships, which express both capabilities
and obligations to access or deallocate memory cells. Thanks to the use of
fractions as ownerships, the type system admits a polynomial-time type
inference algorithm, which serves as an algorithm for automatic verifi-
cation of lack of memory-related errors. A prototype verifier has been
implemented and tested for several programs manipulating lists, trees,
and doubly-linked lists.

1 Introduction

In programming languages with manual memory management (like C and C++),
a misuse of memory allocation/deallocation primitives often causes serious, hard-
to-find bugs. We propose a new type system for statically preventing such
memory-related errors. More precisely, the type system prevents memory leaks
(forgetting to deallocate memory cells), double frees (deallocating memory cells
more than once), and read/write accesses to deallocated memory. The type sys-
tem is equipped with a polynomial-time type inference algorithm, so that pro-
grams can be automatically verified.

The key idea of our type system is to assign fractional ownerships to pointer
types. An ownership ranges over the set of rational numbers in [0, 1], and ex-
presses both a capability (or permission) to access a pointer, and an obligation
to deallocate the memory referred to by the pointer. As in Boyland’s fractional
permissions [1], a non-zero ownership expresses a permission to dereference the
pointer, and an ownership of 1 expresses a permission to update the memory
cell referenced by the pointer. In addition, a non-zero ownership expresses an
obligation to eventually deallocate (the cell referenced by) the pointer, and an
ownership of 1 also expresses a permission to deallocate the pointer. (Therefore,
if one has an ownership of 0.5, one has to eventually combine it with other own-
erships to obtain an ownership of 1, to fulfill the obligation to deallocate the
pointer).

For example, int ref1 ref1 is the type of a pointer to an pointer to an
integer, such that both the pointers can be read/written, and must be deallocated
through the pointer. int ref0 ref1 is the type of a pointer to an pointer to

- - ... - -
#

##

Fig. 1. List-like structure

an integer, such that only the first pointer can be read/written, and must be
deallocated. To see how such types can be used, consider the following program,
written in an ML-like language (but with memory deallocation primitive free).

fun freeall(x) = freeall : µα.(α ref1) → µα.(α ref0)
if null(x) x : µα.(α ref1)
then skip x : µα.(α ref0)
else let y = *x in x : µα.(α ref1)

(freeall(y); x : (µα.(α ref0)) ref1, y : µα.(α ref1)
free(x) x : (µα.(α ref0)) ref1, y : µα.(α ref0)

) x : µα.(α ref0), y : µα.(α ref0)
The function freeall takes as an argument a pointer x to a list structure

shown in Figure 1, and deallocates all the pointers reachable from x. The right-
hand side shows the type of function freeall, as well as the types assigned to
x and y before execution of each line. (Our type system is flow-sensitive, so that
different types are assigned at different program points.) Here, µα.τ is a recur-
sive type. In the type of freeall on the first line, µα.(α ref1) and µα.(α ref0)
are the types of x before and after the call of the function. The type µα.(α ref1)
means that the argument x must hold the ownerships of all the pointers reach-
able from x when the function is called, while µα.(α ref0) means that x holds
no ownerships when the function returns (which implies that all the pointers
reachable from x will be deallocated inside the function).

The type assignment at the beginning of the function indicates that all the
memory cells reachable from x should be deallocated through variable x. In the
then-branch, x is a null pointer, so that all the ownerships are cleared to 0. In
the else-branch, let y = ∗x in · · · transfers a part of the ownerships held by x
to y; after that, x has type (µα.(α ref0)) ref1, indicating that x holds only the
ownership of the pointer stored in x. The other ownerships (of the pointers that
are reachable from x) are now held by y. After the recursive call to freeall, all
the ownerships held by y become empty. Finally, after free(x), the ownership
of x also becomes empty.

The type system with fractional ownerships prevents: (i) memory leaks by
maintaining the invariant that the total ownership for each memory cell is 1
until the cell is deallocated and by ensuring the ownerships held by a variable
are empty at the end of the scope of the variable, (ii) double frees by ensuring
that the ownership for a cell is consumed when the cell is deallocated, and
(iii) illegal access to deallocated cells by requiring that a non-zero ownership is
required for read/write operations.

Based on the type system, we have implemented a prototype verifier, and
tested it for programs manipulating lists, trees, and doubly-linked lists.

2

Ownerships are also used in Heine and Lam’s static analysis for detecting
memory leaks [3]. Major differences are:

– In their system [3], a variable can hold only the ownership of the pointer
stored in the variable, while in our type system, a variable can hold owner-
ships of any pointers reachable from the variable. In their system, therefore,
an ownership cannot be passed to a pointer to a pointer or an array of point-
ers; for the example above, they cannot express a type like µα.α ref1, which
holds all the ownerships of the reachable cells. Because of this restriction,
we believe their system cannot verify list-manipulating C programs like the
one given above.

– Their ownerships are integer-valued, while ours are fractions. Thus, the own-
ership (or type) inference is reduced to integer linear programming (which
is NP-hard in general) in their type system, while in our type system, it
is reduced to linear programming over rational numbers, which is solved in
polynomial time.

– Their system does not prevent illegal access to deallocated pointers (in fact,
no ownership is required for read/write operations in their system).

The rest of this paper is structured as follows. Section 2 introduces a sim-
ple imperative language that has only pointers as values. Section 3 presents
our type system with fractional ownerships, proves its soundness, and discusses
type inference issues. Section 4 discusses extensions to deal with data structures.
Section 5 reports a prototype implementation of our type-based verification al-
gorithm. Section 6 discusses related work and Section 7 concludes.

2 Language

This section introduces a simple imperative language with primitives for memory
allocation/deallocation. For the sake of simplicity, the only values are (possibly
null) pointers. See Section 4 for extensions of the language and the type system
to deal with other language constructs.

The syntax of the language is given as follows.

Definition 1 (commands, programs)

s (commands) ::= skip | ∗x ← y | s1; s2 | free(x) | let x = malloc() in s
| let x = null in s | let x = y in s | let x = ∗y in s
| ifnull(x) then s1 else s2 | f(x1, . . . , xn)
| assert(x = y) | assert(x = ∗y)

d (definitions) ::= f(x1, . . . , xn) = s

A program is a pair (D, s), where D is a set of definitions.

The command skip does nothing. ∗x ← y updates the target of x (i.e., the
contents of the memory cell pointed to by x) with the value of y. The command
s1; s2 is a sequential execution of s1 and s2. The command free(x) deallocates

3

(the cell referenced by) the pointer x. The command let x = e in s evaluates
e, binds x to the value of e, and executes s. The expression malloc() allocates
a memory cell and returns a pointer to it. The expression null denotes a null
pointer. ∗y dereferences the pointer y. The command ifnull(x) then s1 else s2

executes s1 if x is null, and executes s2 otherwise. The command f(x1, . . . , xn)
calls function f . We require that x1, . . . , xn are mutually distinct variables. (This
does not lose generality, as we can replace f(x, x) with let y = x in f(x, y).)
There is no return value of a function call; values can be returned only by
reference passing. The commands assert(x = y) and assert(x = ∗y) do nothing
if the equality holds, and aborts the program otherwise. These are used as guides
for our type-based analysis described in the next section. Usually, they can be
automatically inserted during the transformation from a surface language (like
C) into our language; for example, assert(x = y) is automatically inserted at
the end of a let-expression let x = y in · · ·. Separate pointer analyses may also
be used to insert assertions; in general, insertion of more assertions makes our
analysis more precise.

Remark 1. Notice that unlike in C (and like in functional languages), variables
are immutable; they are initialized in let-expressions, and are never re-assigned
afterwards. The declaration int x = 1; ... in C is expressed as:

let &x = malloc() in (∗&x ← 1; · · · ; free(&x))

in our language. Here, &x is treated as a variable name.

Operational Semantics We assume that there is a countable set H of heap ad-
dresses. A run-time state is represented by a triple 〈H,R, s〉, where H is a map-
ping from a finite subset of H to H∪{null}, R is a mapping from a finite set of
variables to H ∪ {null}. Intuitively, H models the heap memory, and R models
local variables stored in stacks or registers. The set of evaluation contexts is de-
fined by E ::= [] | E; s. We write E[s] for the command obtained by replacing
[] in E with s.

Figure 2 shows main rules for the transition of run-time states: See Ap-
pendix A for the other rules. In the figure, f{x 7→ v} denotes the function f ′

such that dom(f) = dom(f ′) ∪ {x}, f ′(x) = v, and f ′(y) = f(y) for every
y ∈ dom(f) \ {x}. [x′/x]s denotes the command obtained by replacing x in s
with x′. x̃ abbreviates a sequence x1, . . . , xn. In the rules for let-expressions, we
require that x′ 6∈ dom(R). In the rule for malloc, the contents v of the allocated
cell can be any value in H ∪ {null}. There are three kinds of run-time errors:
NullEx for accessing null pointers, Error for illegal read/write/free operations
on deallocated pointers, and AssertFail for assertion failures. The type system
in this paper will prevent only the errors expressed by Error.

Note that the function call f(x1, . . . , xn) is just replaced by the function’s
body. Thus, preprocessing is required to handle functions in C: A function call
x = f(y) in C is simulated by f(y, &x) in our language (where &x is a variable
name), and a C function definition f(y) {s; return v;} is simulated by:

f(y, r) = let &y = malloc() in (∗&y ← y; s; ∗r ← v; free(&y)).

4

R(x) ∈ dom(H)

〈H, R, E[∗x ← y]〉 −→D 〈H{R(x) 7→ R(y)}, R, E[skip]〉
R(x) ∈ dom(H) ∪ {null}

〈H, R, E[free(x)]〉 −→D 〈H \ {R(x)}, R, E[skip]〉

〈H, R, E[let x = y in s]〉 −→D 〈H, R{x′ 7→ R(y)}, E[[x′/x]s]〉

〈H, R, E[let x = ∗y in s]〉 −→D 〈H, R{x′ 7→ H(R(y))}, E[[x′/x]s]〉
h 6∈ dom(H)

〈H, R, E[let x = malloc() in s]〉 −→D 〈H{h 7→ v}, R{x′ 7→ h}, E[[x′/x]s]〉

〈H, R{x 7→ null}, E[ifnull(x) then s1 else s2]〉 −→D 〈H, R{x 7→ null}, E[s1]〉
f(ỹ) = s ∈ D

〈H, R, E[f(x̃)]〉 −→D 〈H, R, E[[x̃/ỹ]s]〉
R(x) = H(R(y))

〈H, R, E[assert(x = ∗y)]〉 −→D 〈H, R, E[skip]〉
R(x) = null

〈H, R, E[∗x ← y]〉 −→D NullEx

R(y) = null

〈H, R, E[let x = ∗y in s]〉 −→D NullEx

R(x) 6∈ dom(H) ∪ {null}
〈H, R, E[∗x ← y]〉 −→D Error

R(y) 6∈ dom(H) ∪ {null}
〈H, R, E[let x = ∗y in s]〉 −→D Error

R(x) 6∈ dom(H) ∪ {null}
〈H, R, E[free(x)]〉 −→D Error

R(y) 6∈ dom(H) ∨R(x) 6= H(R(y))

〈H, R, E[assert(x = ∗y)]〉 −→D AssertFail

Fig. 2. Main Transition Rules

Here, the malloc and free commands above correspond to the allocation and
deallocation of a stack frame.

3 Type System

This section introduces a type system that prevents memory leaks, double frees,
and illegal read/write operations.

3.1 Types

The syntax of types is given by:

τ (value types) ::= α | τ reff | µα.τ
σ (function types) ::= (τ1, . . . , τn) → (τ ′1, . . . , τ

′
n)

We often write > for µα.α. The metavariable f ranges over rational numbers in
[0, 1]. f , called an ownership, represents both a capability and an obligation to
read/write/free a pointer.

α is a type variable, which gets bound by the recursive type constructor µα.
The type τ reff describes a pointer whose ownership is f , and also expresses

5

the constraint that the value obtained by dereferencing the pointer should be
used according to τ . For example, if x has type > ref1 ref1, not only the pointer
x but also the pointer stored in the target of the pointer x must be eventually
deallocated through x.

Type (τ1, . . . , τn) → (τ ′1, . . . , τ
′
n) describes a function that takes n argu-

ments. The types τ1, . . . , τn, τ ′1, . . . , τ
′
n describe how ownerships on arguments

are changed by the function: the type of the i-th argument is τi at the beginning
of the function, and it is τ ′i at the end of the function.

The semantics of (value) types is defined as a mapping from the set {0}∗
(the set of finite sequences of the symbol 0) to the set of rational numbers.

Definition 2 The mapping [[·]] from the set of closed types to {0}∗ → [0, 1] is
the least function that satisfies the following conditions.

[[τ reff]](ε) = f [[τ reff]](0w) = [[τ]](w) [[µα.τ]] = [[[µα.τ/α]τ]]

(Here, the order between functions from S to T is defined by: f ≤S→T g if and
only if ∀x ∈ S.f(x) ≤T g(x).) We write τ ≈ τ ′, if [[τ]] = [[τ ′]].

Note that >(= µα.α) ≈ µα.(α ref0), and µα.τ ≈ [µα.τ/α]τ .
We write empty(τ) if all the ownerships in τ are 0. We say that a type τ

is well-formed if [[τ]](w) ≥ c × [[τ]](w0) for every w ∈ {0}∗. Here, we let c be
the constant 1/2, but the type system given below remains sound as long as c
is a positive (rational) number. In the rest of this paper, we consider only types
that satisfy the well-formedness condition. See Remark 2 for the reason why the
well-formedness is required.

3.2 Typing

A type judgment is of the form Θ; Γ ` s ⇒ Γ ′, where Θ is a finite mapping
from (function) variables to function types, Γ and Γ ′ are finite mappings from
variables to value types. Γ describes the ownerships held by each variable before
the execution of s, while Γ ′ describes the ownerships after the execution of s.
For example, we have Θ;x :> ref1 ` free(x) ⇒ x :> ref0. Note that a variable’s
type describes how the variable should be used, and not necessarily the status of
the value stored in the variable. For example, x :> ref0 does not mean that the
memory cell pointed to by x has been deallocated; it only means that deallocating
the cell through x (i.e., executing free(x)) is disallowed. There may be another
variable y of type τ ref1 that holds the same pointer as x.

Typing rules are shown in Figure 3. τ ≈ τ1 + τ2 and τ1 + τ2 ≈ τ ′1 + τ ′2 mean
[[τ]] = [[τ1]] + [[τ2]] and [[τ1]] + [[τ2]] = [[τ ′1]] + [[τ ′2]] respectively. In the rule for
assignment ∗x ← y, we require that the ownership of x is 1 (see Remark 2). The
ownerships of τ ′ must be empty, since the value stored in ∗x is thrown away by
the assignment. The ownerships of y (described by τ) is divided into τ1, which
will be transferred to x, and τ2, which remains in y.

6

In the rule for free, the ownership of x is changed from 1 to 0. τ must be
empty, since x can no longer be dereferenced. In the rule for malloc, the owner-
ship of x is 1 at the beginning of s, indicating that x must be deallocated. At the
end of s, we require that the ownership of x is 0, since x goes out of the scope.
Note that this requirement does not prevent the allocated memory cell from es-
caping the scope of the let-expression: For example, let x = malloc() in ∗y ← x
allows the new cell to escape through variable y. The ownership of x is empty
at the end of the let-expression, since the ownership has been transferred to y.

In the rule for dereferencing (let x = ∗y in · · ·), the ownership of y must be
non-zero. The ownerships stored in the target of the pointer y, described by τ ,
are divided into τ1 and τ2. At the end of the let-expression, the ownerships held
by x must be empty (which is ensured by empty(τ ′1)), since x goes out of scope.

In the rule for null, there is no constraint on the type of x, since x is a null
pointer. In the rule for conditionals, any type may be assigned to x in the then-
branch. Thanks to this, ifnull(x) then skip else free(x) is typed as follows.

Θ;x :> ref0 ` skip ⇒ x :> ref0 Θ; x :> ref1 ` free(x) ⇒ x :> ref0

Θ;x :> ref1 ` ifnull(x) then skip else free(x) ⇒ x :> ref0

The rules for assertions allow us to shuffle the ownerships held by the same
pointers.

Remark 2. The well-formedness condition approximates the condition: ∀w ∈
{0}∗.([[τ]](w) = 0 ⇒ [[τ]](w0) = 0). Types that violate the condition (like
(> ref1) ref0) make the type system unsound. For example, consider the fol-
lowing command s (here, some let-expressions are inlined):

let y = x in (∗y ← null;assert(x = y); free(∗x); free(x)).

If we ignore the well-formedness condition, we can derive Θ; x : (> ref1) ref1 `
s ⇒ x : (> ref0) ref0 from Θ;x : (> ref1) ref0, y : (> ref0) ref1 ` s′ ⇒
x:(> ref0) ref0, y:(> ref0) ref0 where s′ is the body of s. However, the judgment
is semantically wrong: the memory cell referenced by ∗x is not deallocated by s
(see Figure 4). The well-formedness condition ensures that if a variable (say, x)
has an ownership of a pointer (say, p) reachable from x, then the variable must
hold a fraction of ownerships for all the pointers between x and p, so that the
pointers cannot be updated through aliases.

Example 1. Recall the example in Section 1. The part let y = ∗x in (freeall(y); free(x))
is typed as follows.

Θ; x : τ, y : µα.(α ref1) ` freeall(y) ⇒ x : τ, y :> Θ; x : τ, y :> ` free(x) ⇒ x :>, y :>
Θ;x : (µα.(α ref0)) ref1, y : µα.(α ref1) ` (freeall(y); free(x)) ⇒ x :>, y :>

Θ;x : µα.(α ref1) ` let y = ∗x in (freeall(y); free(x)) ⇒ x :>

Here, τ = (µα.(α ref0)) ref1 and Θ = freeall : (µα.(α ref1)) → (>).

7

Θ; Γ ` skip ⇒ Γ
Θ; Γ ` s1 ⇒ Γ ′′ Γ ′′ ` s2 ⇒ Γ ′

Θ; Γ ` s1; s2 ⇒ Γ ′

τ ≈ τ1 + τ2 empty(τ ′)

Θ; Γ, x : τ ′ ref1, y : τ ` ∗x ← y ⇒ Γ, x : τ1 ref1, y : τ2

empty(τ)

Θ; Γ, x : τ ref1 ` free(x) ⇒ Γ, x : τ ref0

Θ; Γ, x : τ ref1 ` s ⇒ Γ ′, x : τ ′ ref0

empty(τ) empty(τ ′)

Θ; Γ ` let x = malloc() in s ⇒ Γ ′

Θ; Γ, x : τ1, y : τ2 ` s ⇒ Γ ′, x : τ ′1
τ ≈ τ1 + τ2 empty(τ ′1)

Θ; Γ, y : τ ` let x = y in s ⇒ Γ ′

Θ; Γ, x : τ1, y : τ2 reff ` s ⇒ Γ ′, x : τ ′1
f > 0 τ ≈ τ1 + τ2 empty(τ ′1)

Θ; Γ, y : τ reff ` let x = ∗y in s ⇒ Γ ′

Θ; Γ, x : τ ` s ⇒ Γ ′, x : τ ′

Θ; Γ ` let x = null in s ⇒ Γ ′
Θ; Γ, x : τ ′ ` s1 ⇒ Γ ′ Θ; Γ, x : τ ` s2 ⇒ Γ ′

Θ; Γ, x : τ ` ifnull(x) then s1 else s2 ⇒ Γ ′

τ1 + τ2 ≈ τ ′1 + τ ′2
Θ; Γ, x : τ1, y : τ2 ` assert(x = y) ⇒ Γ, x : τ ′1, y : τ ′2

τ1 + τ2 ≈ τ ′1 + τ ′2
Θ; Γ, x : τ1, y : τ2 reff ` assert(x = ∗y) ⇒ Γ, x : τ ′1, y : τ ′2 reff

Θ(f) = (τ̃) → (τ̃ ′)

Θ; Γ, x̃ : τ̃ ` f(x̃) ⇒ Γ, x̃ : τ̃ ′
Γ ≈ Γ1 Γ ′ ≈ Γ ′1 Θ; Γ1 ` s ⇒ Γ ′1

Θ; Γ ` s ⇒ Γ ′

Θ; x̃ : τ̃ ` s : x̃ : τ̃ ′ Θ(f) = τ̃ → τ̃ ′

(for each f(x̃) = s ∈ D)
dom(Θ) = dom(D)

` D : Θ

` D : Θ Θ; ∅ ` s ⇒ ∅
` (D, s)

Fig. 3. Typing Rules

Example 2. The following function destructively appends two lists p and q, and
stores the result in ∗r.

app(p, q, r) = ifnull(p) then ∗r ← q
else (∗r ← p; (let x = ∗p in app(x, q, p));assert(p = ∗r))

app has type (τ1, τ1,> ref1) → (>,>, τ1), where τ1 = µα.(α ref1). The else-part
is typed as follows.

Θ; Γ1 ` ∗r ← p ⇒ Γ1

Θ; Γ1 ` s ⇒ Γ2 Θ;Γ2 ` assert(p = ∗r) ⇒ p :>, q :>, r : τ1

Θ; Γ1 ` s;assert(p = ∗r) ⇒ p :>, q :>, r : τ1

Θ; Γ1 ` ∗r ← p; s;assert(p = ∗r) ⇒ p :>, q :>, r : τ1

Here, s = let x = ∗p in app(x, q, p), and Θ, Γ1, Γ2 are given by:
Θ = app : (τ1, τ1,> ref1) → (>,>, τ1)
Γ1 = p : τ1, q : τ1, r :> ref1 Γ2 = p : τ1, q :>, r :> ref1

8

x
y

-
- - x

y
-
-

#
##

Fig. 4. Snapshots of the heap during the execution of the program in Remark 2. The
lefthand side and the righthand side show the states before and after executing ∗y ←
null respectively. The rightmost cell will be leaked.

Θ; Γ1 ` s ⇒ Γ2 is derived from:

Θ; p :> ref1, q : τ1, r :> ref1, x : τ1 ` app(x, q, p) ⇒ Γ2, x :>

3.3 Type Soundness

The soundness of our type system is stated as follows.

Theorem 1. If ` (D, s), then the following conditions hold.

1. 〈∅, ∅, s〉 6−→∗
D Error.

2. If 〈∅, ∅, s〉 −→∗
D 〈H, R, skip〉, then H = ∅.

The first condition means that there is no illegal read/write/free access to deal-
located memory. The second condition means that well-typed programs do not
leak memory.

To prove the soundness, we need to show an invariant condition that the total
ownership for each (live) heap address is always 1. The invariant is expressed by
the relation Con(Γ, H,R) defined below. [[H, v]] is the mapping from {0}∗ to
the set Addr of addresses, defined by:

[[H, v]](ε) = v [[H, v]](w0) =
{

H(h) if [[H, v]](w) = h ∈ dom(H)
null otherwise

own(H, v, τ)(w) is defined by:

own(H, v, τ)(w) =
{{h 7→ [[τ]](w)} if [[H, v]](w) = h 6= null
∅ if v = null

We write ownall(H, v, τ) for
∑

w∈0∗ own(H, v, τ)(w).
(Here, the sum of two functions f0+f1 is defined by ∀x ∈ dom(f0)∩dom(f1).(f0+
f1)(w) = f0(w) + f1(w) and ∀x ∈ dom(fi) \ dom(f1−i).(f0 + f1)(w) = fi(w).
ownall(H, v, τ)(h) = ∞ if

∑
w∈0∗ own(H, v, τ)(w)(h) does not converge.) Intu-

itively, ownall(H, v, τ) describes all the ownerships for the heap H, held by the
value v of type τ .

A triple (Γ, H, R) is consistent, written Con(Γ,H, R), if the following condi-
tions hold:

1. dom(Γ) = dom(R)
2. Let F =

∑
x∈dom(Γ) .ownall(H,R(x), Γ (x)). F (h) = 1 for any h ∈ dom(H)

and F (h) = 0 for any h 6∈ dom(F) \ dom(H).

9

We write emptyR(Γ) if R(x) = null or empty(Γ (x)) holds for every x ∈
dom(Γ). The followings are key lemmas: See the extended version of this pa-
per [4] for the proofs.

Lemma 1 (lack of immediate error). If Θ;Γ ` s ⇒ Γ ′′ and ` D : Θ with
Con(Γ,H, R), then 〈H,R, s〉 6−→D Error.

Lemma 2 (lack of memory leak). If emptyR(Γ) and Con(Γ, H,R), then
H = ∅.

Lemma 3 (type preservation). Suppose Θ; Γ ` s ⇒ Γ ′′ and ` D : Θ, with
Con(Γ,H, R). If 〈H,R, s〉 −→∗

D 〈H ′, R′, s′〉 and (dom(R′)\dom(R))∩dom(Γ) =
∅, then there exist Γ ′ and Γ0 such that Θ; Γ ′ ` s′ ⇒ Γ ′′, Γ0 and Con(Γ ′,H ′, R′)
with emptyR′(Γ0).

We can now prove Theorem 1.

Proof of Theorem 1 Suppose ` (D, s). Then, ` D : Θ and Θ; ∅ ` s ⇒ ∅. We have
Con(∅, ∅, ∅). To show the first property of the theorem, assume 〈∅, ∅, s〉 −→∗

D

〈H, R, s′〉. By Lemma 3, we have Γ1 ` s′ ⇒ Γ ′, Γ0 with Con(Γ1,H, R). By
Lemma 1, we have 〈H,R, s′〉 6−→D Error.

To show the second property of the theorem, assume that 〈∅, ∅, s〉 −→∗
D

〈H, R, skip〉. By Lemma 3, we have Γ1 ` skip ⇒ Γ ′, Γ0 and Con(Γ1,H,R)
with emptyR(Γ ′, Γ0) for some Γ0 and Γ1. By the typing rules, it must be the
case that emptyR(Γ1). By the condition Con(Γ1,H, R) and Lemma 2, we have
H = ∅ as required. ut

3.4 Type Inference

By Theorem 1, for verifying lack of memory-related errors in a program, it suffi-
cies to check that the program is well-typed. For the purpose of automated type
inference, we restrict the syntax of types to those of the form (µα.α reff1) reff2 .
This restriction does not seem so restrictive for realistic programs: in fact, all
the correct programs we have checked so far (including those given in this paper)
are typable in the restricted type system.

Given a program written in our language, type inference proceeds as follows.

1. For each n-ary function f , prepare a type template

((µα.α refηf,1,1) refηf,1,2 , . . . , (µα.α refηf,n,1) refηf,n,2)
→ ((µα.α refη′f,1,1

) refη′f,1,2
, . . . , (µα.α refη′f,n,1

) refη′f,n,2
),

where ηf,i,j and η′f,i,j are variables to denote unknown ownerships. Also,
for each program point p and for each variable x live at p, prepare a type
template (µα.α refηp,x,1) refηp,x,2 .

2. Generate linear inequalities on ownership variables based on the typing rules
and the well-formedness condition.

10

3. Solve the linear inequalities. If the inequalities have a solution, the program
is well-typed.

The number of ownership variables and linear inequalities is quadratic in the
size of the input program. Since linear inequalities (over rational numbers) can
be solved in time polynomial in the size of the inequalities, the whole algorithm
runs in time polynomial in the size of the input program.

Remark 3. The main advatange of using fractions in the type system given above
is the exisitence of a polynomial-time algorithm for solving constraints. Fractions
also increase the expressive power of the type system (compared with 0-1 own-
erships). For example, consider the following program:

let f(x,y) = (let z=*x in let w=*y in skip) in f(p, p)

Our type system accepts the program above by assigning to f the type (> ref0.5,> ref0.5) →
(> ref0.5,> ref0.5). The program is not typable if we have only 0-1 ownerships
(note that non-zero ownerships must be passed to x and y).

4 Extensions and Limitations

We have so far considered a very simple language which has only pointers as
values. This section discusses extensions of the type system for other language
features (mainly of the C language).

It is straightforward to extend the type system to handle primitive types
such as integers and floating points. For structures with n elements (for the
sake of simplicity, assume that each element has the same size as a pointer),
we can introduce a type of the form (τ0 × · · · × τn−1) refw0,...,wn−1,f as the
type of a pointer to a structure. Here, τi is the type of the i-th element of
the structure, f denotes the obligation to deallocate the structure, and wi is
a capability to read/write the i-th element; thus, an ownership has been split
into a free obligation and read/write capabilities. Then the rules for pointer
dereference and pointer arithmetics are given by:

Θ;Γ, x : τ0,x, y : (τ0,y × τ1 × · · · × τn−1) refw0,...,wn−1,f ` s ⇒ Γ ′, x : τ ′

w0 > 0 τ0 ≈ τ0,x + τ0,y empty(τ ′)
Θ; Γ, y : (τ0 × τ1 × · · · × τn−1) refw0,...,wn−1,f ` let x = ∗y in s ⇒ Γ ′

Θ;Γ, x : (τi,x × · · · × τn−1,x,>, . . . ,>) refwi,x,...,wn−1,x,0,...,0,0,
y : (τ0,y × · · · × τn−1,y) refw0,y,...,wn−1,y , f ` s ⇒ Γ ′, x : τx

∀j ∈ {0, . . . , i− 1}.(τj,y ≈ τj ∧ wj = wj,y)
∀j ∈ {i, . . . , n− 1}.(τj ≈ τj,y + τj,x ∧ wj = wj,x + wj,y) empty(τx)

Θ; Γ, y : (τ0 × · · · × τn−1) refw0,...,wn−1,f ` let x = y + i in s ⇒ Γ ′

For example, consider the function delnext in Figure 5. It takes a doubly-
linked list as shown in Figure 6, and deletes the next element of p. The func-
tion is given the type (τP × τN) ref1,1,1 → (τP × τN) ref1,1,1, where τP =

11

fun delnext(p) =

let nextp = p+1 in let next = *nextp in

let nnp = next+1 in nn = *nnp in

*nn <- p; *nextp <- nn; assert(nnp=next+1);

free(next); assert(nextp=p+1);

Fig. 5. A function manipulating a doubly-linked list.

...

p

-
¾

next nn

-
¾

-
¾

-
¾ ...

Fig. 6. A doubly-linked list given as an input of delnext. The cell next is removed
and deallocated.

µα.((α×>) ref1,1,1) and τN = µα.((>× α) ref1,1,1). The type (τP×τN) ref1,1,1

means that the first element of p holds the capabilities and obligations on the
cells reachable through the backward pointers, and the second element holds
those on the cells reachable through the forward pointers. The types of variables
at each program point are given in Appendix B.

An array of primitive values can be treated as one big reference cell, assuming
that array boundary errors are prevented by other methods (such as dynamic
checks or static analyses). At this moment, however, we do not know how to
deal with arrays of pointers.

A dereference of a function pointer in C can be replaced with a non-deterministic
choice of the functions it may point to, by using a standard flow analysis. It is not
clear, however, how to deal with higher-order functions in functional languages,
especially those stored in reference cells.

Cast operations can be handled in a conservative manner. For example, a
pointer to a structure of type (τ0 × · · · × τn−1) refw0,...,wn−1,f can be casted to
a pointer of type (τ0 × · · · × τm−1) refw0,...,wm−1,f ′ (if m ≤ n). An integer can
be casted to a pointer with 0 ownership (but it is useless).

Besides arrays of pointers and higher-order functions, one of the major limi-
tations of our type system is that it cannot deal with cyclic structures well. For
example, consider a cyclic list shown on the lefthand side of Figure 7. The only
type that can be assigned to cycles of an arbitrary length is >: Notice that if
we assign µα.(α reff) to the cycle, then an ownership f can be extracted for
each path (e.g., ε, 00, 0000, . . . for the cell on the lefthand side). We have to
maintain the invariant that f + f + f + · · · ≤ 1, so that f must be 0. Thus,
although a cyclic list can be constructed, it is useless as there is no ownership.
Note, however, that this limitation does not apply to the case of doubly-linked
lists discussed above, since cycles in doubly-linked lists are formed by two kinds
of pointers; forward and backward pointers.

If we give up detecting illegal read operations (but still prevent illegal write/free
operations), then cyclic lists can be constructed and used in a restricted manner,
as shown on the righthand side of Figure 7. Here, y holds the ownerships of all
the cells, but x can use the cylic list in a read-only manner.

12

- -
?

-x -
?

-y -
6 6

¢
¢

Fig. 7. Cyclic Lists

benchmark IC TOTAL GEN LP SOLVE LP NASSERT

ll-app 36 269.4 144.1 124.9 8

ll-reverse 29 139.9 70.79 68.64 4

ll-search 27 115.7 56.66 58.73 5

ll-merge 40 303.6 171.0 59.18 7

dl-insert 53 715.8 387.4 327.9 14

dl-delete 47 505.9 271.5 234.0 10

bt-insert 41 256.0 138.0 117.3 6

Fig. 8. Benchmark result. Columns IC, TOTAL, GEN LP, SOLVE LP and NASSERT
are the number of instructions, total execution time (msec), execution time for reducing
constraints into linear inequalities (msec), execution time for solving linear inequalities
(msec) and the number of manually-inserted assertions.

5 Experiments

We have implemented a prototype verifier for an extension of the language of Sec-
tion 2 with cons cells (structures of size 2, as discussed in Section 4), and tested
it for programs manipulating lists, doubly-linked lists and trees. The implemen-
tation, written in Objective Caml, is available at http://www.kb.ecei.tohoku.
ac.jp/~suenaga/mallocfree/. As a linear programming solver, we used GLPK
4.15 wrapped by ocaml-glpk 0.1.5.

Figure 8 shows the result of the experiments. We used a machine with an
Intel Core 2 1.06GHz CPU, 2MB cache and 2GB memory. The programs used
for the experiments are:

– ll-app, ll-reverse and ll-search: create lists, perform specific operations
on the lists (append for ll-app, reverse for ll-reverse, and list search for
ll-search), and deallocate the lists.

– dl-insert and dl-remove: create doubly-linked lists, insert or delete a cell,
and deallocating the doubly-linked lists.

– bt-insert: creates a binary tree, inserts a node, and then deallocates the
tree.

All the programs have been verified correctly. It is worth noting that the pro-
grams manipulating doubly-linked lists could be verified. The benchmark results
show that our analysis is reasonably fast, despite that our current implementa-
tion is rather naive.

Limitations of the current implementation are as follows.

13

– Requirement for insertion of appropriate assertions. Judging from the ex-
periments, however, an extremely simple intra-procedural analysis is suffi-
cient for inserting the assertions automatically, except the case for doubly-
linked lists, for which assertions on the structure of doubly-linked lists (like
p->next->prev = p) are required.

– Poor error messages. Given an ill-typed program, the current system does
produce some diagnostic information to indicate a possible location of a bug,
but more helpful messages are needed for end-users.

6 Related Work

There are a lot of studies and tools to detect or prevent memory-related errors.
They are classified into static and dynamic analyses. We focus here on static
analysis techniques. In general, dynamic analysis can only detect errors that
occur in particular runs.

We have already discussed Heine and Lam’s work [3] in Section 1. They use
polymorphism on ownerships to make the analysis context-sensitive. The same
technique would be applicable to our type system. Dor, Rodeh, and Sagiv [2]
use shape analysis techniques to verify lack of memory-related errors in list-
manipulating programs. Unlike ours, their analysis can also detect null-pointer
dereferences. Advantages of our type system over their analysis are probably
efficiency and simplicity. It is not clear whether their analysis can be easily
extended to handle procedure calls and data structures (e.g., trees and doubly-
linked lists) other than singly-linked lists in a efficient manner. Orlovich and
Rugina [5] proposed a backward dataflow analysis to detect memory leaks. Their
analysis does not detect double-frees and illegal accesses to deallocated memory.
Xie and Aiken [9] use a SAT solver to detect memory leaks. Their analysis is
unsound for loops and recursion.

Other potential advantages of our type-based approach are: By allowing pro-
grammers to declare ownership types, they may serve as good specifications of
functions or modules, and also enhance modular verification. Our approach can
be probably extended to deal with multi-threaded programs, along the line of
previous work using fractional capabilities [1, 7, 8].

A main limitation of our approach is that our type system cannot handle cy-
cles (recall the discussion in Section 4) and value-dependent (or, path-sensitive)
behaviors. In practice, therefore, a combination of our technique with other
techniques would be useful (e.g., shape analysis or separation logic for handling
cycles, SAT-solver-based analysis [9] for handling value-dependent behaviors).

Boyland [1] is the pioneer who introduced fractions in the context of type-
based program analysis. He used fractional permissions (for read/write opera-
tions) to prevent race conditions in multi-threaded programs. Terauchi [7, 8] later
found another advantage of using fractions: inference of fractional permissions
(or capabilities) can be reduced to a linear programming problem (rather than
integer linear programming), which can be solved in polynomial time. The type
system of this paper mainly exploits the latter advantage. In their work [1, 7, 8],

14

a fractional capability is assigned to an abstract location (often called a region),
while our type system assigns a fractional ownership to each access path from a
variable. The former approach is not suitable for the purpose of our analysis: for
example, all the elements in a list are abstracted to the same location, so that a
separate ownership cannot be assigned to each element of the list.

Swamy et al. [6] developed a language with safe manual memory manage-
ment. Unlike C, their language requires programmers to provide various anno-
tations (such as whether a pointer is aliased or not).

7 Conclusion

We have proposed a new type system that guarantees lack of memory-related
errors. The type system is based on the notion of fractional ownerships, and is
equipped with a polynomial-time type inference algorithm. The type system is
quite simple (especially compared with previous techniques for analyzing similar
properties), yet it can be used to verify tricky pointer-manipulating programs.

Acknowledgment

We would like to especially thank Toshihiro Wakatake and Kensuke Mano. Some
of the ideas in this paper came from discussions with them. We would also like
to thank members of our research group for comments and discussions.

References

1. J. Boyland. Checking interference with fractional permissions. In Proceedings of
SAS 2003, volume 2694 of LNCS, pages 55–72. Springer-Verlag, 2003.

2. N. Dor, M. Rodeh, and S. Sagiv. Checking cleanness in linked lists. In Proceedings
of SAS 2000, volume 1824 of LNCS, pages 115–134. Springer-Verlag, 2000.

3. D. L. Heine and M. S. Lam. A practical flow-sensitive and context-sensitive c and
c++ memory leak detector. In Proc. of PLDI, pages 168–181, 2003.

4. N. Kobayashi and K. Suenaga. Fractional ownerships for safe memory deallocation.
An extended version, available from http://www.kb.ecei.tohoku.ac.jp/~koba/

papers/malloc.pdf, 2008.
5. M. Orlovich and R. Rugina. Memory leak analysis by contradiction. In Proceedings

of SAS 2006, volume 4134 of LNCS, pages 405–424. Springer-Verlag, 2006.
6. N. Swamy, M. W. Hicks, G. Morrisett, D. Grossman, and T. Jim. Safe manual

memory management in cyclone. Sci. Comput. Program., 62(2):122–144, 2006.
7. T. Terauchi. Checking race freedom via linear programming. In Proc. of PLDI,

pages 1–10, 2008.
8. T. Terauchi and A. Aiken. A capability calculus for concurrency and determinism.

ACM Trans. Prog. Lang. Syst., 30(5), 2008.
9. Y. Xie and A. Aiken. Context- and path-sensitive memory leak detection. In ACM

SIGSOFT International Symposium on Foundations of Software Engineering, pages
115–125, 2005.

15

Appendix

A The Transition Rules Omitted in Section 2

〈H,R, E[skip; s]〉 −→D 〈H,R, E[s]〉
x′ 6∈ dom(R)

〈H, R, E[let x = null in s]〉 −→D 〈H,R{x′ 7→ null}, E[[x′/x]s]〉
R(x) 6= null

〈H,R, E[ifnull(x) then s1 else s2]〉 −→D 〈H, R, E[s2]〉
R(x) = R(y)

〈H,R, E[assert(x = y)]〉 −→D 〈H,R, E[skip]〉
R(x) 6= R(y)

〈H,R, E[assert(x = y)]〉 −→D AssertFail

B Typing for delnext

For the function delnext discussed in Section 4, the following types are given
at each program point. (τ1 × τ2 refw1,w2,f should be read (τ1 × τ2) refw1,w2,f .)
fun delnext(p) =

p : τP × τN ref1,1,1
let nextp = p+1 in

p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0

let next = *nextp in
p : τP ×> ref1,0,1, nextp :>×> ref1,0,0, next : τN

let nnp = next+1 in
p : τP ×> ref1,0,1, nextp :>×> ref1,0,0,
next :>×> ref1,0,1, nnp : τN ×> ref1,0,0

let nn = *nnp in
p : τP ×> ref1,0,1, nextp :>×> ref1,0,0,
next :>×> ref1,0,1, nnp :>×> ref1,0,0, nn : τN

*nn <- p;
p : τP ×> ref1,0,1, nextp :>×> ref1,0,0,
next :>×> ref1,0,1, nnp :>×> ref1,0,0, nn : τN

*nextp <- nn
p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0,
next :>×> ref1,0,1, nnp :>×> ref1,0,0, nn :>

assert(nnp=next+1);
p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0,
next :>×> ref1,1,1, nnp :>×> ref0,0,0, nn :>

free(next)
p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0,
next :>×> ref0,0,0, nnp :>×> ref0,0,0, nn :>

assert(nextp=p+1);
p : τP × τN ref1,1,1, nextp :>×> ref0,0,0,
next :>×> ref0,0,0, nnp :>×> ref0,0,0, nn :>

16

