
Assigning Meanings to Symbolic Objects
– A Constructive Theory of Objects –

Masahiko Sato
Graduate School of Informatics

Kyoto University
masahiko@kuis.kyoto-u.ac.jp

Abstract

We present a constructive theory of objects in which a
Turing complete functional programming language, named
Z, can be formally specified. Our theory is developed in two
stages. In the first stage, we introduce a set of symbolic ex-
pressions generated from two initial objects by two binary
operators. This set is used as the meta-level universe in
which the object language defined in the second stage is in-
terpreted. In the second stage, we define the syntax of Z, by
inductively defining a set of symbolic objects. Z is Lisp-like
in the sense that both data and programs of Z are symbolic
objects. We give both operational and denotational seman-
tics to Z by interpreting Z data and programs as symbolic
expressions.

1. Introduction

The purpose of this paper is (1) to present a simple the-
ory of symbolic expressions by defining the class 〈Sexpr〉
of symbolic expressions, (2) to develop a theory of sym-
bolic objects by defining the class 〈Object〉 of symbolic ob-
jects, and (3) to define a functional programming language
Z by assigning meanings to symbolic objects. Both oper-
ational and denotational semantics will be given to Z by
using 〈Sexpr〉 as the semantic domain to interpret the Z pro-
grams, i.e., symbolic objects.

All members of 〈Sexpr〉 and 〈Object〉 are created follow-
ing the principle which we call the fundamental principle of
object creation:

Every object o is created from already created n
objects o1, . . . , on (n ≥ 0) by applying a creation
method M .

We can visualize this act of creation by the following figure:

o1 · · · on
o M

or, by the equation:

o = M (o1, . . . , on)

As these visualizations suggest, we consider the method M
as a rule and also as a function. Here, we require that each
creation method must satisfy the freeness conditions, that
is, (1) the method must be injective, and (2) objects created
by the method must be disjoint from objects created by any
other method. The first condition is a local condition which
depends only on the method while the second condition is
a global condition which depends on all creation methods
available for creating objects.

If we create objects following the fundamental principle
augmented by the freeness conditions, then we can uniquely
recover M , n and o1, . . . , on by analyzing the created ob-
ject o. This fact implies that any object carries in itself a
complete history of how it is created. So, we define two ob-
jects to be equal if and only if they are created exactly in the
same way, and this equality makes our theory an intensional
one (§??). We can also attach the scheme of proof-by-
induction based on our inductive creation of objects and use
it to prove that every object enjoys a certain property. Simi-
larly, we can inductively define functions on objects, that is,
we can attach a value to an object o = M (o1, . . . , on) using
the values attached to oi.

Our fundamental principle is a natural generalization of
the principle that is used to define the set of natural numbers
inductively. However, as far as we know, the present work
is the first systematic application of the principle to create
basic data structures (including functions and classes) that
are necessary to develop a constructive theory of objects.

In §??, we follow the fundamental principle to define
the class 〈Sexpr〉 of symbolic expressions by means of 4
creation methods Nil, T, Cons and Snoc. Here, the class
〈Sexpr〉 is defined as the set of those objects that can be cre-
ated by the 4 methods, and simultaneously, we define the
concept Sexpr (we use ‘Sexpr’ as an abbreviation of ‘sym-
bolic expression’) by stipulating that an object o falls under

the concept Sexpr (or, o is an Sexpr) iff o is a member (or, an
instance) of the class 〈Sexpr〉 (which we write o : 〈Sexpr〉).
Following Frege [?], we view a concept as a function which,
when applied to an object, returns the judgement asserting
that the object falls under the concept. In this view, for ex-
ample, we can write Sexpr(o) for the application of the con-
cept Sexpr to an object o, and read it: o is an Sexpr.

In §??, we define the class 〈Object〉 of symbolic objects,
as well as its subclasses necessary to define 〈Object〉. In
order to satisfy the freeness conditions, the construction is
done independently from the construction in §??. As in §??,
a class c is defined simultaneously with a concept C and
they are related by the property: for any symbolic object
o, o is a C iff o : c holds. We will say that c the asso-
ciated class of C . The concepts introduced in this section
are selected so that they form a minimal collection of con-
cepts necessary to make 〈Object〉 a Turing complete pro-
gramming language we define in §??.

In §??, we give operational and denotational semantics
of Z in the domain 〈Sexpr〉. Our denotational semantics is
unique in that with each Z expression e we assign four de-
notations JeKp (denotation of e as a program), JeKd (as a
datum), JeKf (as a function) and JeKc (as a class), where, de-
pending on e some of these denotations may be undefined.

§?? gives concluding remarks comparing our work with
related works. Philosophical motivation for this work is also
discussed there.

2. Symbolic Expressions

In this section, we define the class 〈Sexpr〉 of symbolic
expressions by creating its members following the funda-
mental principle. The concept Sexpr is defined by saying
that any member of 〈Sexpr〉 is an Sexpr. Now, we define the
class 〈Sexpr〉 by the signature:

Nil : → 〈Sexpr〉
Cons : 〈Sexpr〉 〈Sexpr〉 → 〈Sexpr〉

T : → 〈Sexpr〉
Snoc : 〈Sexpr〉 〈Sexpr〉 → 〈Sexpr〉

where each of the creation methods Nil and T creates a
new Sexpr from zero already created Sexprs, and each of
the creation methods Cons and Snoc creates a new Sexpr
from two already created Sexprs. Have we really defined
the class 〈Sexpr〉 and the concept Sexpr? No! We have only
specified the signature of 〈Sexpr〉, written Σ〈Sexpr〉. So, we
have to explicitly show the existence of 4 methods having
the signature Σ〈Sexpr〉 and satisfying the freeness conditions
(§??). We do this by implementing these methods as con-
crete methods of placing the 5 kinds of tokens ‘[’, ‘]’, ‘(’,
‘)’ and ‘|’, from left to right, where we assume that there

are infinite supply of tokens for each kind. We can imple-
ment these methods either by the rules:

[] Nil
s t
[s|t]

Cons
() T

s t
(s|t)

Snoc

or, equivalently, by the defining equations:

Nil() := [], Cons(s, t) :=[s|t],

T() := (), Snoc(s, t) :=(s|t).

In the creation methods Cons and Snoc above, s and t must
be Sexprs already created. It is easy to verify the freeness
of these methods. We have thus completed the definitions
of the class 〈Sexpr〉 and the concept Sexpr. The class we
defined is categorical in the sense that any two algebraic
systems having the given signature and satisfying the free-
ness conditions are isomorphic. Thus Σ〈Sexpr〉 specifies the
class abstractly but uniquely (up to isomorphism).

We write S for the class 〈Sexpr〉 when we view it as a
concrete set of token sequences we have just implemented,
and call it the universe of symbolic expressions. Thus S
becomes a concrete algebra having signature Σ〈Sexpr〉 and
satisfying the domain equation:

S = Nil() + T() + Cons(S,S) + Snoc(S,S)

where all the 4 creating methods are injective. We will also
call these 4 methods constructors of Sexprs. In order to
analyze Sexprs constructed thus, we introduce recognizers
and selectors as follows.

We introduce the four recognizers:

Nil? : 〈Sexpr〉 → 〈Sexpr〉
Cons? : 〈Sexpr〉 → 〈Sexpr〉

T? : 〈Sexpr〉 → 〈Sexpr〉
Snoc? : 〈Sexpr〉 → 〈Sexpr〉

where each recognizer returns () (true) if the given Sexpr is
created by the method in question and [] (false) otherwise.
Following Lisp’s convention, we write t for () and nil
for []. For example, we have Cons?([t|nil]) = t and
Nil?(t) = nil.

As for selectors, we have:

Car : 〈Sexpr〉 99K 〈Sexpr〉
Cdr : 〈Sexpr〉 99K 〈Sexpr〉

Head : 〈Sexpr〉 99K 〈Sexpr〉
Tail : 〈Sexpr〉 99K 〈Sexpr〉

We used the dash arrow symbol ‘99K’ to indicate that these
functions are partial functions from 〈Sexpr〉 to 〈Sexpr〉. The
selectors Car and Cdr are used to select Sexprs that are used
to create an Sexpr by the creation method Cons. That is,

2

Car(s) (Cdr(s)) selects the first (second, respectively) Sexpr
that is used to construct s and they are defined only when
Cons?(s) = t. Similarly, the selectors Head and Tail are
used to select Sexprs from an Sexpr created by the Snoc
method. There are no selectors for nil and t since they
are created from zero previously created Sexprs.

We have thus introduced 12 functions (4 constructors,
4 recognizers and 4 selectors) on 〈Sexpr〉. By adding the
mechanism of conditional computation and the mechanism
of defining a new function by recursion we can define the
class of computable functions on 〈Sexpr〉 in an analogous
way as we define computable functions on natural numbers.

Let us introduce a form of conditional computation:

e[a; b; c; d]

which is computed as follows. First, we compute e. If e
does not have a value, then the value of the form is unde-
fined. If e has a value, then e’s value is either (1) nil, (2) a
Consed object, (3) t, or (4) a Snoced object. We then com-
pute a in case (1), b in case (2), c in case (3) and d in case
(4). We call this form a case-form. We also introduce an
if-form e〈a; b〉 (read: if e then a else b) by putting:

e〈a; b〉 := e[b; a; a; a]

The value of this if-form is: the value of a if e has a non-
nil value, the value of b if e has value nil, and undefined
otherwise.

As an example of a recursive definition of a function, we
define the function Eq? which decides for given two objects
whether they are equal:

Eq?(x, y) :=

x[y〈nil;t〉;
y[nil;nil;

Eq?(Car(x),Car(y))〈Eq?(Cdr(x),Cdr(y));nil〉;
nil];

y〈t;nil〉;
y[nil;nil;nil;

Eq?(Head(x),Head(y))〈Eq?(Tail(x), Tail(y));nil〉]]

We have the following theorem which shows that Eq?
computes the equality relation correctly.

Theorem 1. For any Sexprs s and t, we have Eq?(s, t) = t
if and only if s = t.

Proof. First we can show by the double induction on cre-
ations of s and t that Eq? is a total function and always
return either nil or t. Then, again by the double in-
duction on creations of s and t, we can show that (1) if
Eq?(s, t) = t, then s = t and (2) if Eq?(s, t) = nil, then
s 6= t.

〈Object〉
〈List〉
〈Tuple〉

〈pattern〉
〈symbol〉

〈Constant〉
〈class-name〉
〈fun-name〉

〈Variable〉
〈atom〉

〈Class〉
〈Nat〉
〈Env〉
〈Function〉

Figure 1. 〈Object〉 and its subclasses

We conclude this section by introducing a number of no-
tational conventions that we will use in the coming sections.

• [s] := [s|[]]

• [s1 · · · sn] := [s1|[s2 · · · sn]](n ≥ 2)

• (s) := (s|())

• (s1 · · · sn) := (s1|(s2 · · · sn))(n ≥ 2)

We also abbreviate [s|[t|u]] ((s|(t|u))) to [s t|u]
((s t|u), respectively), etc.

3. Symbolic Objects

In this section, we define the class 〈Object〉 of symbolic
objects together with its 13 subclasses. Figure 1 shows the
subclass relation among these 14 classes. We call a class
basic class if it is the collection of all the objects which can
be created by one or more specified creation methods. Thus
a basic class is defined by specifying its creation methods.
A non-basic class is called a derived class and it is defined
either as a union of two or more classes or as a subclass
of another class. When we name a class, we follow the
convention of capitalizing the first letter of the name of a
basic class and use lower-case letters for a derived class1.
So, for example, 〈List〉 is a basic class and 〈symbol〉 is a
derived class.

As in §??, classes and concepts are defined in three steps:
specification, implementation and verification. However, to
save space, we skip the specification step here2 and directly

1An exception is the derived class 〈Object〉. We capitalize the initial
letter since this class forms the universe of symbolic objects.

2See Appendix ?? for the specification.

3

implement the specified classes as a set of sequences of the
five tokens we used in §??. The verification that our imple-
mentation satisfies the freeness conditions is easy and we
remark on this only in §??. This implementation determines
the concrete syntax of our programming language Z.

3.1. Object

We define the class 〈Object〉 as the union of 4 disjoint
classes:

〈Object〉 := 〈Tuple〉+ 〈List〉+ 〈symbol〉+ 〈atom〉

where 〈symbol〉 is defined as the union of 2 disjoint basic
classes (§??) and 〈atom〉 is defined as the union of 4 disjoint
basic classes (§??). Thus 〈Object〉 becomes the union of 8
disjoint basic classes. We define the mother class of an Ob-
ject as the unique basic class to which the Object belongs.

We write U for the class 〈Object〉 when we view it as a
concrete set of token sequences, and call it the universe of
symbolic objects. Actually, we implement 〈Object〉 in such
a way that each Object as a token sequence belongs to the
set S. Thus, we will have U ⊆ S. Note that this is an ac-
cidental fact that depends on our particular implementation
of 〈Sexpr〉 and 〈Object〉. Hence, this fact does not mean
that 〈Object〉 is a subclass of 〈Sexpr〉. Rather, these two
classes are conceptually independent, and we could imple-
ment these two classes so that they become mutually dis-
joint.

As we are following the fundamental principle, any Ob-
ject o is created by its creation method from already created
Objects: o = M (o1, . . . , on). Here, we call M the creation
method of o, and oi (1 ≤ i ≤ n) the i-th component of o3.
In order to be able to completely and uniformly analyze o,
we introduce the 5 primitive functions below:

method : 〈Object〉 → 〈fun-name〉
1st : 〈Object〉 99K 〈Object〉

2nd : 〈Object〉 99K 〈Object〉
3rd : 〈Object〉 99K 〈Object〉
=? : 〈Object〉 〈Object〉 → 〈Object〉

The function method computes the creation method M of
o. As M itself can never be an Object (a method is some-
thing the operates on Objects at meta-level) the function
method cannot directly return M , so it returns instead the
name of the creation method M (see §??). The functions
1st, 2nd and 3rd respectively compute the first, second and
third component of o. Finally, =? is a binary function which
decides whether given two Objects are equal or not. Thus
=? returns () (true) if they are equal, and [] (false) other-
wise.

3In our construction of 〈Object〉, n is at most 3.

Just as we could define all the computable functions on
〈Sexpr〉 by the 12 primitive functions defined in §??, we
can define all the computable functions on 〈Object〉 using
these 5 primitive functions and the 14 creation methods we
introduce in §??–§??.

3.2. List

We define the class 〈List〉 as a basic class whose mem-
bers are created by the methods:

[] : 〈List〉 nil
a : 〈Object〉 b : 〈List〉

[a|b] : 〈List〉
cons

We have the following recognizers and selectors.

nil? : 〈Object〉 → 〈Object〉
cons? : 〈Object〉 → 〈Object〉

car : 〈List〉 99K 〈Object〉
cdr : 〈List〉 99K 〈List〉

The recognizer cons?, for instance, is defined by:

cons?(x) := =?(method(x), cons)

where cons is the function name (§??) for the function
cons. This recognizer decides if x is created by the cre-
ation method cons. We can similarly define the recognizer
M? for every creation method M . Using these recognizers,
we can define the recognizer C? for every class C . For
instance, the recognizer List? : 〈Object〉 → 〈Object〉 is de-
fined by:

List?(x) := or(nil?(x), cons?(x))

where or decides if one of its arguments is (). The selector
car is defined by 1st but differs from 1st in that car is defined
only on 〈List〉. For example, car of a Tuple (a|b) (§??) is
undefined (since a Tuple is not a List) while 1st returns a.
cdr is defined similarly.

3.3. Tuple

The class 〈Tuple〉 is defined as a basic class whose struc-
ture is isomorphic to the structure of 〈List〉. Although
〈Tuple〉 and 〈List〉 share the same mathematical structure,
it is useful to have both classes and distinguish them con-
ceptually. In general, we will use Tuples to encode Carte-
sian products of several classes, and use Lists to encode se-
quences of the the same or similar classes.

The creation methods for 〈Tuple〉 are:

() : 〈Tuple〉 t
a : 〈Object〉 b : 〈Tuple〉

(a|b) : 〈Tuple〉
snoc

4

We have the following functions for tuples.

t? : 〈Object〉 → 〈Object〉
snoc? : 〈Object〉 → 〈Object〉
head : 〈Tuple〉 99K 〈Object〉

tail : 〈Tuple〉 99K 〈Tuple〉

3.4. Symbol

The derived class 〈symbol〉 is defined as the union of two
disjoint basic classes 〈Constant〉 and 〈Variable〉.

3.5. Constant

The basic class 〈Constant〉 is defined by the following
creation method:

o : 〈Object〉
[o|()] : 〈Constant〉 constant

We introduce a notational convention for express-
ing some Constants in typewriter font. For exam-
ple, the convention allows us to write ab for the Con-
stant [[(()()[][][][]())(()()[][][]()[])]|()].
Here, we used 7-bit ASCII code for encoding ASCII char-
acters.

3.6. Variable

The basic class 〈Variable〉 is defined by:

o : 〈Object〉
[o|(())] : 〈Variable〉 variable

As a notational convention, we will write a Variable in
slant typewriter font. For example, x denotes the Variable
[(()()()()[][][])|(())].

3.7. Atom

The class 〈atom〉 is defined as the union of 4 disjoint
basic classes:

〈atom〉 := 〈Class〉+ 〈Nat〉+ 〈Env〉+ 〈Function〉

Each subclass C of 〈atom〉 will be defined in such a way
that any Object o in C will be of the form (a|c) where
c is a Constant which is the class-name (§??) of C , and
a is an Object which together with c enables us to recover
from o the components and the creation method of o. It then
follows that all subclasses of 〈atom〉 are mutually disjoint
as well as that 〈atom〉 is disjoint from 〈List〉, 〈Tuple〉 and
〈symbol〉.

3.8. Class

A Constant is said to be a class-name if it is <Object>,
<List>, . . . , or <Function>, namely, if it corresponds to
a name of the 14 classes listed in Figure 1.

The class 〈Class〉 is a basic class and it has the creation
method class:

c : 〈class-name〉
(c|<Class>) : 〈Class〉 class

This method creates a Class which, in Z, internalizes the
(meta-level) class whose class-name is c. So, we can define
the following function:

in? : 〈Object〉 〈Class〉 → 〈Object〉

with the property: in?(o,(c|<Class>)) = t iff o : C ,
where C is the meta-level class whose class-name is c.

3.9. Natural Number

The class 〈Nat〉 is defined by the two creation methods:

(zero|<Nat>) : 〈Nat〉
zero

(n|<Nat>) : 〈Nat〉
((succ n)|<Nat>) : 〈Nat〉

succ

We use decimal notation to denote Nats. For instance, 0 =
(zero|<Nat>) and 1 = ((succ zero)|<Nat>).

We have the following selector for natural numbers:

pred : 〈Nat〉 99K 〈Nat〉

which returns the predecessor of n for n 6= 0.

3.10. Environment

We define the basic class 〈Env〉 by the following two cre-
ation methods:

([]|<Env>) : 〈Env〉
empty

s : 〈symbol〉 v : 〈Object〉 (E|<Env>) : 〈Env〉
([(s v)|E]|<Env>) : 〈Env〉

put

For the sake of notational convenience, we abbreviate
([b1 · · · bn]|<Env>) to {b1 · · · bn}, where each bi is
a pair of a symbol and an Object. We also write E[v/s] for
put(s, v, E).

An Env is global (local) if each si is a Constant (Vari-
able, respectively). We use the meta-variables Γ and ∆ for
global Envs and Λ and Π for local Envs. A pair of global
and local Envs is used to provide a context in which Con-
stants and Variables are evaluated (§??).

5

We define the following functions:

get : 〈symbol〉 〈Env〉 99K 〈Object〉
conc : 〈Env〉 〈Env〉 → 〈Env〉

The value of get(s,E) is defined only if E contains a Tuple
of the form (s v), and in this case, get returns the v of the
leftmost such Tuple. We will write E(s) for get(s,E). We
define the size of an Env E, written |E|, to be the number
of symbols s for which E(s) is defined. The function conc
concatenates two Envs in an obvious way. For instance, we
have conc({a b},{c d}) = {a b c d}. We write E,E′ for
conc(E,E′).

3.11. Pattern

A Tuple d is said to be a declaration if it is of the form x,
(c x) or of the form (&rest c x) where c is a class-name
(§??) and x is a Variable. If d is of the third form, it is called
a special declaration. A pattern is defined to be a Tuple of
the form (d1 · · · dn) where each di is a declaration.

A pattern is used to match a Tuple against it. So we
define the binary partial function

match : 〈Tuple〉 〈pattern〉 99K 〈Env〉

which matches a Tuple e against a pattern p, and re-
turns an Env if the matching succeeds. For the pattern
p = ((<List> x) (<Nat> y)), for instance, we have
match(([] 1), p) = {(x []) (y 1)}. On the other
hand, match((() 1), p) is undefined since () is not a
〈list〉. But we have match((()), (x)) = {(x ())}
since the declaration x is treated as an abbreviation of
(<Object> x). Just as in Lisp, a special declaration is
used to bind a Tuple of Objects to a single Variable, but we
skip the details.

3.12. Function

The class 〈Function〉 is a basic class and it has the cre-
ation methods function, defun and defmacro.

c : 〈fun-name〉
(c|<Function>) : 〈Function〉 function

In this method, c must be a fun-name (function name), that
is, it must be one of the following Constants:

set! defun defmacro progn let if quote

method 1st 2nd 3rd =? cons snoc

constant variable class zero succ

empty put function

The first 7 fun-names in the above list create macro Func-
tions and the remaining 14 fun-names create call-by-value
Functions.

The creation method defun is defined by the rule:

g : 〈Constant〉 p : 〈pattern〉 b : 〈Tuple〉
((f g p|b)|<Function>) : 〈Function〉 defun

This rule, as well as the next rule for defmacro, must satisfy
a special side condition on g. We explain the condition in
Case 1.2 and Case 1.3 of §??. The Tuple b is the body of
the defined Function. After the method is invoked, the value
of the Constant g becomes the Function created by defun
(§??). So, the method defun not only creates a new Function
but also assigns the name g to the created function.

The creation method defmacro is defined by the rule:

g : 〈Constant〉 p : 〈pattern〉 b : 〈Tuple〉
((m g p|b)|<Function>) : 〈Function〉 defmacro

In §??, we explain how we can dynamically extend the
open-ended universe 〈Object〉 using defun and defmacro.

4. Meanings of Symbolic Objects

In §?? we defined the universe of symbolic objects U as
a subset of the universe of symbolic expressions S. In this
section we assign meanings to Objects by treating Objects
as Sexprs and by viewing them as programs, data, functions
and classes.

First we give a meaning of the Z language by viewing
each Object as a program. To this end, we define a bi-
nary evaluation relation e ⇓ v (read: e evaluates to v, or
e has value v, or e denotes v) between two Objects e (which
we call a program) and v (which we call a value). To be
more precise, the evaluation of a program is done in a con-
text determined by two Envs of which one is global and the
other is local. So the evaluation relation depends on these
two Envs. Moreover, the context itself sometimes changes
after the evaluation since our language supports dynamic
extension of the universe by Function definitions.Thus, in
general, an evaluation relation is not a binary relation but a
relation on 6 Objects, which we write:

Γ;Λ ` e⇓v a ∆;Π

where Γ;Λ is the context before the evaluation and ∆;Π is
the context after the evaluation. However, we will continue
to express the relation as a binary relation leaving Envs im-
plicit. Or, we will write Γ ` e ⇓ v a ∆ (Λ ` e ⇓ v a Π)
when we can leave local (global, resp.) Envs implicit. We
define the relation e⇓v inductively on how e is created.

A List is evaluated by the two rules below:

[]⇓[]
a⇓u b⇓v

[a|b]⇓[u|v]

In order to guarantee the deterministic evaluation (Theorem
??), we understand that the premises of each evaluation rule

6

are evaluated from left to right. Thus the second rule above,
written in full, is:

Γ;Λ ` a⇓u a Γ′; Λ′ Γ′; Λ′ ` b⇓v a Γ′′; Λ′′

Γ;Λ ` [a|b]⇓[u|v] a Γ′′; Λ′′

A symbol is evaluated by retrieving its value from the
current global or local Env. The value is undefined if the
value is not found in the Env.

c : 〈Constant〉 Γ(c) = v

Γ ` c⇓v a Γ

x : 〈Variable〉 Λ(x) = v

Λ ` x⇓v a Λ

An atom evaluates to itself.

e : 〈atom〉
e⇓e

From Figure 1, we see that the only remaining case to be
covered by the evaluation rules is the case where the pro-
gram to be evaluated is a Tuple. To cover this case, it is
necessary to introduce an auxiliary ternary relation e 7→f v
(read: the result of applying f to its argument e is v, or f
maps e to v) among a Function f , a Tuple e and an Object
v. This relation also depends on contexts which we leave
implicit as much as possible. Using this application rela-
tion, we can define the following two evaluation rules for a
Tuple:

()⇓()
f ⇓g g : 〈Function〉 e 7→g v

(f|e)⇓v

The first rule is for evaluating (). The second is for eval-
uating a Tuple which is not (). This rule says that (f|e)
has value v if and only if f evaluates to a Function g and
the result of applying g to e is v.

The application relation e 7→f v is defined by case anal-
ysis (case 1 to case 4 below) on the creation of Function
f .

Case 1: In this case we give evaluation rules for the
primitive call-by-name Functions we introduced in §??.
The first 3 functions (1.1–1.3) are used to change the sur-
rounding contexts and the values returned by these func-
tions are less significant.
1.1 The rules for f = (set!|<Function>) are:

c : 〈Constant〉 Γ ` a⇓v a ∆

Γ ` (c a) 7→f v a ∆[v/c]

x : 〈Variable〉 Λ ` a⇓v a Π

Λ ` (x a) 7→f v a Π[v/x]

In the left rule above, c must be a Constant which does not
have a value in ∆. In the right rule above, on the other hand,
x must be a Variable which does have a value in Π. We have
|∆| = |Γ|+ 1 and |Π| = |Λ| when these rules are applied.
1.2 The rule for f = (defun|<Function>) is:

g : 〈Constant〉 p : 〈pattern〉 b : 〈Tuple〉
Γ ` (g p|b) 7→f () a Γ[((f g p|b)|<Function>)/g]

where g must be a Constant whose value is undefined in Γ.
Note that when g satisfies this side-condition, we can invoke
the (meta-level) method defun and can extend the universe
U dynamically by adding a new Function to the universe.
1.3 The rule for f = (defmacro|<Function>) is:

g : 〈Constant〉 p : 〈pattern〉 b : 〈Tuple〉
Γ ` (g p|b) 7→f () a Γ[((m g p|b)|<Function>)/g]

where g must be a Constant whose value is undefined in Γ.
1.4 The rules for f = (progn|<Function>) are:

a⇓v
(a) 7→f v

a⇓u b 7→f v

(a|b) 7→f v

In the second rule, b must be a non-() Tuple. The Function
progn evaluates members of its argument one by one and
return the value of the last member.
1.5 To define the rule for f = (let|<Function>), we
introduce an auxiliary binary relation Π ⇓Env Π′ on local
Envs as follows.

Π : 〈Env〉 a1⇓v1 · · · an⇓vn
Π⇓EnvΠ

′

where Π = {(x1 a1) · · · (xn an)}. and Π′ =
{(x1 v1) · · · (xn vn)} (n ≥ 0).

Using this relation, we give the rule for f =
(let|<Function>) as follows.

Λ ` Π⇓EnvΠ
′ a Λ′ Π′,Λ′ ` e 7→g v a Π′′,Λ′′

Λ ` (Π|e) 7→f v a Λ′′

where g = (progn|<Function>) and Λ′ (Π′) and Λ′′

(Π′′, resp.) must be of the same length. Here, Π is used
to create a temporarily extended local Env Π′,Λ′, and the
body e of the let-form is evaluated in the extended local
Env. The extended part of the Env is thrown away after the
evaluation.
1.6 The rules for f = (if|<Function>) are:

c⇓() a⇓v
(c a b) 7→f v

c⇓[] b⇓v
(c a b) 7→f v

1.7 The rule for f = (quote|<Function>) is:

(e) 7→f e

Case 2: We now give rules for call-by-value primitive
Functions. In call-by-value Function application, a Func-
tion’s argument is evaluated before application. To define
the rule for this case, we introduce two auxiliary binary re-
lations. The first one is e ⇓Tup v on Tuples defined as fol-
lows.

e1⇓v1 · · · en⇓vn
(e1 · · · en)⇓Tup(v1 · · · vn)

(n ≥ 0)

7

The second relation e Bf v is a ternary relation among a
Function f , Tuple e and Object v. The relation is defined as
follows.

f (v1, . . . , vn) = v

(v1 . . . vn)Bf v
(n ≥ 0)

where f is the meta-level function that corresponds to f
whose computation rule we gave in §??. For example, if
f is (car|<Function>), then f is car defined in §??.

Now, the general rule for such a Function f is:

e⇓Tupu uBf v
e 7→f v

Case 3 f = ((f g p|b)|<Function>): This is the
case where f is defined by the defun method.

Λ ` e⇓Tupu a Λ′ match(u, p) = Π Π ` b 7→h v a Π′

Λ ` e 7→f v a Λ′

where h = (progn|<Function>). Here, the argument e
is evaluated as a Tuple in the surrounding local Env Λ, and
the result is used to create a local Env Π. Then, the body b
of f is evaluated in Π.

Case 4 f = ((m g p|b)|<Function>): This is the
case where f is defined by the defmacro method. In this
case f is intended to work as a macro (in the sense of Lisp).

match(e, p) = Π Π ` b 7→h b′ a Π′ Λ ` b′⇓v a Λ′

Λ ` e 7→f v a Λ′

where h = (prog|<Function>). Here, the body b of f
is evaluated in the temporal local Env Π, and the result b′ is
evaluated in the surrounding local Env Λ.

We have thus completed the definition of the evaluation
relation. We now give a few examples of evaluation in Z.
If the global Env is Γ0 = {} in which no Constant has a
value, what would be the first program we wish to evaluate?
Our recommendation is:

((set!|<Function>) set! (set!|<Function>))

By evaluating this program, the Constant set! is set to
have the function s = (set!|<Function>) as its value,
and we get a new Env Γ1 in which we have set!⇓ s . So
in Γ1 (and afterwards) we can use set! as a shorthand for
s , and both (set! x a) and (s x a) have the same
value (if any) for any a. We can continue to set values
for Constants as we like in this way. In particular, we set
quote to (quote|<Function>) and, as in Lisp, write ’e
for (quote e). We also set values to Constants which cor-
respond to primitive functions and classes as well as [] to
nil and () to t.

Having done this, we can extend our universe by
defmacro and defun as shown in Figure 2. There, we
first define the macro Function while. Then, after defining

(defmacro tuple (&rest a)
(if (t? a) a

(snoc snoc
(snoc (head a)
(snoc (snoc tuple (tail a)) t))))))

(defmacro while (c &rest b)
(tuple if c

(tuple progn (snoc progn b)
(snoc while (snoc c b)))

nil))
(defun + ((<nat> m) (<nat> n))

(if (=? n 0) m (succ (+ m (pred n)))))
(defun * ((<nat> m) (<nat> n))

(if (=? n 0) 0 (+ (* m (pred n)) m)))
(defun factr ((<nat> n))

(if (=? n 0) 1 (* n (factr (pred n)))))
(defun facti ((<nat> n))
(let {(result 1)}
(while (not (=? n 0))
(set! result (* n result))
(set! n (pred n)))

result))

Figure 2. Example of Function Definitions

addition (+) and multiplication (*) on 〈Nat〉, the factorial
Function is defined by recursion (factr) and by iteration
(facti). All of these Functions were tested on a prototype
Z interpreter which we implemented in Emacs Lisp. The
evaluation relation enjoys the following properties.

Theorem 2. If Γ;Λ ` e ⇓ v a ∆;Π and Γ;Λ ` e ⇓ v′ a
∆′; Π′, then v = v′, ∆ = ∆′, Π = Π′, |Γ| ≤ |∆| and
|Λ| = |Π|.

Corollary 1. If Γ;{} ` e⇓v a ∆;Π, then Π = {}.

Theorem ?? shows that evaluation is deterministic.
Corollary ?? characterizes the top-level of a Z interpreter.
Namely, the interpreter sets the local Env to be empty be-
fore the evaluation of a program, and only the global Env Γ
might change to ∆ after the evaluation either by the set!
command on a Constant, by the defun command, or by
the defmacro command. The interpreter then evaluates
the next program input by the user in the new global Env ∆.

We can see this cycle of evaluation as a process of dy-
namically changing the universe U of symbolic objects. To
analyze this process, we take advantage of the fact that we
have implemented U as a subset of S. So, we will work in
S and see how U can be extended within S. We say that
a global Env ∆ is realizable if either (1) ∆ = {} or (2)
∆ = Γ[o/c], where Γ is realizable, c is a Constant, and ∆
is obtained by applying a function f in Case 1.1–1.3. So,
a realizable Env can actually be obtained by evaluating Z
programs appropriately. It is easy to see that we can decide,
for any Sexpr, if it is a realizable Env.

8

Let Γ be a realizable Env. We say that a Function f is a
Γ-defined Function if f = Γ(g) for some Constant g. We
define UΓ to be the smallest subset X of S such that (1) X
contains all the Γ-defined Functions and (2) X is closed un-
der all the creation methods other than defun and defmacro.
It is easy to see that UΓ is a decidable subset of S. We define
the partial function:

evalΓ : UΓ 99K S

by putting evalΓ(e) = v iff Γ;{} ` e ⇓ v a Γ′;{} for
some Γ′. We also write ΓJeKp for evalΓ(e). ΓJeKp gives the
denotation (in S) of e viewed as a program.

Let us now turn to other views of Z Objects. We can
view an Object o ∈ UΓ as a datum simply by viewing it
as o ∈ S. So, we define the denotation of o as a datum by
ΓJoKd := o. The datum-view and program-view are related
by the equality: ΓJoKd = ΓJ’oKp, which holds for any o ∈
UΓ.

The denotation of an Object as a function is given only
when it is a Function (§??). Given a realizable Env Γ and a
Function f ∈ UΓ, we can define a meta-level function:

f : S 99K S

by putting f (x) = v iff Γ ` (x) 7→f v a Γ′ for some
Γ′. (To simplify the argument, we assume that f is de-
fined by defun with the pattern p = (x).) We write ΓJfKf
for f and call it the denotation of f as a function. The
function-view and program-view are related by the equality:
ΓJfKf(ΓJxKp) ' ΓJ(f x)Kp which holds for any x ∈ UΓ,
where ‘'’ means that if one side of the equation has a defi-
nite value, the other side also has the same value.

The class-view is given only to a Z Class (§??). For
a Class C, its denotation as a class (written ΓJCKc) is the
meta-level class that corresponds to C. For example, we
have (<Class>|<Class>) ∈ 〈Class〉. The class-view
and program-view are related by the equivalence: ΓJxKp ∈
ΓJCKc ⇔ ΓJ(in? x C)Kp = () (x ∈ UΓ).

In summary, among the four views, the program-view is
the most basic since the other three views can be character-
ized by the program-view as we have just seen.

5. Conclusions

We have developed a constructive theory of objects
based on the fundamental principle of object creation. The
fundamental principle we proposed in this paper is inspired
by a similar principle proposed by Conway [?] to develop
a theory of numbers and games. The difference is that we
have created our universe based on a constructive view of
objects, while Conway created his universe based on a pla-
tonistic view without imposing the freeness conditions. An

application of our principle to λ-calculus can be found in
[?].

The development of our open-ended class 〈Object〉 is in-
fluenced by Martin-Löf’s development of dependent type
theories (see, e.g., [?, ?]), but the crucial difference between
these developments is that we view any object as an instance
of its mother Class while Martin-Löf views any object as an
element of a type. We believe that, from a foundational
point of view, the notion of class is more basic than that of
type since, in our theory, a Class is always associated with
a concept.

We have given a big-step operational semantics of the
language Z by defining an evaluation relation on Z Objects.
We already gave a big-step semantics of Hyperlisp in [?, ?],
but here the rules are more elaborate since Z admits dy-
namic changes of both global and local Envs. We have also
given a denotational semantics of Z, by providing 4 differ-
ent views of Z Objects.

Our theory of object is intensional since our universe
must be created following the fundamental principle with
the freeness conditions. By taking this view, however,
equality of two Functions can be easily decided in Z. We
also remark that, at meta-level, we can view Z Functions
extensionally by taking the program-view. For example,
let Γ be the Env we obtained, in §??, after we defined
the two factorial Functions f and g where f (g) computes
the factorial by recursion (iteration, resp.). Then, we have
ΓJfKp 6= ΓJgKp, but ΓJfKf = ΓJgKf as a meta-level func-
tion on 〈Nat〉. Our theory is natural since we cannot un-
derstand the contents of mathematics unless, first of all, we
understand the syntax of the language in which mathematics
is written.

Z is a Lisp-like (see, e.g. [?]) language in the sense that
both data and programs are represented by symbolic ob-
jects. The biggest difference between Z and Lisp is that ev-
ery Z object belongs to its mother Class where the mother
Class itself is a Z object, but this is not the case in Lisp
since there are no built-in classes in Lisp (although there
are some extensions (e.g., CLOS [?]) of Lisp with classes
as objects. Moreover, each Z Class is created as an Z ob-
ject by reifying (see Quine [?] for a philosophical account
of the concept of reification) the corresponding meta-level
class listed in Figure 1. In fact, we first analyzed the primi-
tive concepts that are necessary to realize a Turing complete
language from scratch, and obtained the data structure of Z
by reifying these primitive concepts. Therefore, Figure 1
can been seen as a concept map which shows a minimal
set of primitive concepts necessary to develop the notion of
computation.

The present work is a part of our long-term project ([?])
of creating a computer environment for supporting human
mathematical activity. Philosophical motivation for the
project is as follows. As a core subject of science, mathe-

9

nil : → 〈List〉
cons : 〈Object〉 〈List〉 → 〈List〉

t : → 〈Tuple〉
snoc : 〈Object〉 〈Tuple〉 → 〈Tuple〉

constant : 〈Object〉 → 〈Constant〉
variable : 〈Object〉 → 〈Variable〉

class : 〈class-name〉 → 〈Class〉
zero : → 〈Nat〉
succ : 〈Nat〉 → 〈Nat〉

empty : → 〈Env〉
put : 〈symbol〉 〈Object〉 〈Env〉 → 〈Env〉

function : 〈fun-name〉 → 〈Function〉
defun : 〈Constant〉 〈pattern〉 〈Tuple〉 → 〈Function〉

defmacro : 〈Constant〉 〈pattern〉 〈Tuple〉 → 〈Function〉

Figure 3. Signature of 〈Object〉

matics is not a completed collection of mathematical knowl-
edge. Rather, our mathematical knowledge is dynamically
extended, day by day, by our scientific activity. The ex-
tensibility, or the open-endedness, of mathematics comes
from a key feature of mathematics: introduction of new con-
cepts and objects by definitions. Thus it is essential for our
project to formalize and implement this key feature. Based
on this motivation, we have introduced a theory of objects
with the aim of supporting the key feature. The language Z,
as defined here, supports introduction of new functions, but
does not support introduction of new concepts. We have a
plan of adding this feature by incorporating a function, say
defclass, which enables us to add new classes to U dy-
namically. We are also hoping that, by the introduction of
this feature, Z will become a class-based functional object-
oriented programming language.

A. Specification of 〈Object〉

We give the specification of the 14 classes listed in Fig-
ure 1. Of these classes 8 are basic classes and they are spec-
ified by the signature Σ〈Object〉 shown in Figure 3. For ex-
ample, the second item says that cons is to be a method
which creates a new List from an object and an List. How-
ever, as we have seen in §??, in our implementation, the
methods defun and defmacro may be applied only if their
first argument, a Constant, satifies a special side-condition.
The specification given here does not cover this point.

The 6 derived classes are specified as follows. The
classes 〈Object〉, 〈symbol〉 and 〈atom〉 are specified by the

following equations:

〈Object〉 := 〈List〉+ 〈Tuple〉+ 〈symbol〉+ 〈atom〉
〈symbol〉 := 〈Constant〉+ 〈Variable〉
〈atom〉 := 〈Nat〉+ 〈Env〉+ 〈Function〉+ 〈Class〉

We specify the remaining derived classes 〈pattern〉,
〈class-name〉 and 〈fun-name〉 in terms of axioms for the
corresponding concepts pattern, class-name and fun-name.
First, we introduce constants c1, . . . , c14 for the 14 class-
names together with the 15 axioms:

class-name(c1), . . . , class-name(c14)

and
Constant(x) ⇐ class-name(x)

The first 14 axioms assert that each of the 14 constants is a
class-name, and the last axiom asserts that any class-name is
a Constant. We can specify the concept fun-name similarly.
To specify the concept pattern, we introduce a constant r,
and we also specify the concept decl (declaration). In the
axioms for decl, we we write (c x) for snoc(c, snoc(x, t()))
and understand (r c x) similarly.

Constant(r) ⇐
decl(x) ⇐ Variable(x)

decl((c x)) ⇐ class-name(c), Variable(x)
decl((r c x)) ⇐ class-name(c), Variable(x)
pattern(t()) ⇐

pattern(snoc(d, p)) ⇐ decl(d), pattern(p)

References

[1] H. Abelson and G. J. Sussman. Structure and Interpretation
of Computer Programs, 2nd edition. The MIT Press, 1996.

[2] J. H. Conway. On Numbers and Games, 2nd edition. A K Pe-
ters Ltd., 2001.

[3] G. Frege. On Function and Concept. in The Frege Reader,
M. Beaney (ed.), Blackwell Publishing, 130–148, 1997.

[4] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli,
1984.

[5] B. Nordström, K. Peterson and J. M. Smith. Programming
in Martin-Löf’s Type Theory – An Introduction –, Clarendon
Press, Oxford, 1990.

[6] M. Sato and M. Hagiya. Hyperlisp. Proceedings of the In-
ternational Symposium on Algorithmic Language, 251–269,
North-Holland, 1981.

[7] M. Sato. Theory of symbolic expressions, I. Theoretical Com-
puter Science, 22:19–55, 1983.

[8] M. Sato and R. Pollack. External and internal syntax of the
λ-calculus, Journal of Symbolic Computation, to appear.

[9] M. Sato. A framework for checking proofs naturally, Journal
of Intelligent Information Systems, 31:111–125, 2008.

[10] S. Keene. Object-Oriented Programming in Common Lisp:
A Programmer’s Guide to CLOS, Addison-Wesley, 1988.

[11] W. V. O. Quine. From a Logical Point of View (2nd ed.,
revised) Harvard University Press, Cambridge, MA, 1980.

10

