# Viewing $\lambda$-terms through Maps <br> - Essence of de Bruijn index - 

Masahiko Sato<br>Graduate School of Informatics, Kyoto University

TPP2012
Chiba University
November 22, 2012

## Authors

A joint work with the following people.

- Randy Pollack (Harvard University)
- Helmut Schwichtenberg (University of Munich)
- Takafumi Sakurai (Chiba University)
- James McKinna (Edinburgh University)


## History

- 1930's. Church defined raw lambda terms ( $\boldsymbol{\Lambda}$ ) and defined $\alpha$-equivalence relation on them.
- 1940. Quine defined graphical representation of lambda terms. Later, in the 50's, Bourbaki rediscovered it.
- 1972. de Bruijn defined representation of lambda terms by indices ( $\mathbb{D}$ ).
- 1980. Sato defined representation of lambda terms by map and skelton ( $\mathbb{L}$ ).
- 2012. This talk clarifies the relationship among the above four representations.


## History (cont.)

Church ( $\boldsymbol{\Lambda}$ )


Quine-Bourbaki $\left(\Lambda / \equiv{ }_{\alpha}\right)$

de Bruijn ( $\mathbb{D}$ )
sideration for established usage, the "variation" connoted belongs to a vague metaphor which is best forgotten. The variables have no meaning beyond the pronominal sort of meaning which is reflected in translations such as (20); they serve merely to indicate cross-references to various positions of quantification. Such crossreferences could be made instead by curved lines or bonds; e.g., we might render (27) thus:
 and (26) thus:


But these "quantificational diagrams" are too cumbersome to recommend themselves as a practical notation; hence the use of variables.

$$
\begin{gathered}
\mathrm{A} \\
\mathrm{~A}^{\prime} \\
\mathrm{A}^{\prime \prime} \\
\in \mathrm{AA}^{\prime} \\
\in \mathrm{AA}^{\prime \prime} \\
7 \in \mathrm{AA}^{\prime} \\
V 7 \in \mathrm{AA}^{\prime} \in \mathrm{AA}^{\prime \prime} \\
\square \square \mathrm{V}, \square \mathrm{~A}^{\prime} \in \square \mathrm{A}^{\prime \prime}
\end{gathered}
$$

## Summary of the talk

Three datatypes
We will relate the three datatypes $(\Lambda, \mathbb{L}, \mathbb{D})$ of expressions introduced by Church, S. and de Bruijn.
$\boldsymbol{\Lambda}=$ The datatype of raw $\boldsymbol{\lambda}$-terms.
$\mathbb{L}=$ The datatype of lambda-expressions.
$\mathbb{D}=$ The datatype of de Bruijn expressions.
Three types of binding
$\boldsymbol{\Lambda}:$ binding by parameters $\boldsymbol{x} \in \mathbb{X}$.
$\mathbb{L}:$ binding by maps $\boldsymbol{m} \in \mathbb{M}$.
$\mathbb{D}:$ binding by indices $i \in \mathbb{I}$.

## Summary of the talk (cont.)

$$
\begin{aligned}
& \boldsymbol{K}, \boldsymbol{L} \in \boldsymbol{\Lambda}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{K}, \boldsymbol{L}) \mid \operatorname{lam}(\boldsymbol{x}, \boldsymbol{K}) \\
& \boldsymbol{M}, \boldsymbol{N} \in \mathbb{L}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{M}, \boldsymbol{N}) \mid \operatorname{mask}(\boldsymbol{m}, \boldsymbol{M})(\boldsymbol{m} \mid \boldsymbol{M}) . \\
& \boldsymbol{D}, \boldsymbol{E} \in \mathbb{D}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{D}, \boldsymbol{E}) \mid \operatorname{bind}(\boldsymbol{D}) \\
& \boldsymbol{x} \in \mathbb{X} \\
& \boldsymbol{i} \in \mathbb{I} . \\
& \boldsymbol{m} \text {. }
\end{aligned}
$$

## The diagram

$$
\begin{array}{rrr}
\llbracket \cdot \rrbracket_{\mathbb{L}}: \boldsymbol{\Lambda} \rightarrow \mathbb{L}=\left\{\llbracket M \rrbracket_{\mathbb{L}} \in \mathbb{L} \mid M \in \boldsymbol{\Lambda}\right\} & \text { surjection. } \\
\mathbb{I} \cdot \rrbracket_{\mathbb{D}}: \boldsymbol{\Lambda} \rightarrow \mathbb{D}=\left\{\llbracket M \rrbracket_{\mathbb{D}} \in \mathbb{D} \mid M \in \boldsymbol{\Lambda}\right\} & \text { surjection. } \\
\mathrm{L} 2 \mathrm{D}: \mathbb{L} \rightarrow \mathbb{D} & \text { bijection. }
\end{array}
$$



## The Datatype $\mathbb{M}$ of Maps

Intuitive idea

$$
\overline{0 \in \mathbb{M}} \quad \overline{1 \in \mathbb{M}} \quad \frac{\boldsymbol{m} \in \mathbb{M} \quad \boldsymbol{n} \in \mathbb{M}}{\operatorname{mapp}(\boldsymbol{m}, \boldsymbol{n}) \in \mathbb{M}}
$$

Equality axiom on $\mathbb{M}$

$$
\operatorname{mapp}(0,0)=0
$$

## The Datatype $\mathbb{M}$ of Maps (cont.)

$$
\begin{gathered}
\overline{1 \in \mathbb{M}_{\mathbf{0}}} \text { mone } \\
\frac{\boldsymbol{m} \in \mathbb{M}_{\mathbf{0}}}{\min \mid(\boldsymbol{m}) \in \mathbb{M}_{\mathbf{0}}} \min \quad \frac{\boldsymbol{n} \in \mathbb{M}_{\mathbf{0}}}{\operatorname{minr}(\boldsymbol{n}) \in \mathbb{M}_{\mathbf{0}}} \operatorname{minr} \\
\frac{\boldsymbol{m} \in \mathbb{M}_{\mathbf{0}} \quad \boldsymbol{n} \in \mathbb{M}_{\mathbf{0}}}{\operatorname{mcons}(\boldsymbol{m}, \boldsymbol{n}) \in \mathbb{M}_{\mathbf{0}}} \text { moons } \\
\frac{\boldsymbol{m} \in \mathbb{M}_{\mathbf{0}}}{\boldsymbol{m} \in \mathbb{M}} \text { mincl }
\end{gathered}
$$

## The Datatype $\mathbb{M}$ of Maps (cont.)

We define mapp : $\mathbb{M} \times \mathbb{M} \rightarrow \mathbb{M}$ as follows.

$$
\operatorname{mapp}(\boldsymbol{m}, \boldsymbol{n}):= \begin{cases}0 & \text { if } \boldsymbol{m}=\boldsymbol{n}=0 \\ \min \mid(\boldsymbol{m}) & \text { if } \boldsymbol{m} \neq 0 \text { and } \boldsymbol{n}=0 \\ \operatorname{minr}(\boldsymbol{n}) & \text { if } \boldsymbol{m}=0 \text { and } \boldsymbol{n} \neq 0, \\ \operatorname{mcons}(\boldsymbol{m}, \boldsymbol{n}) & \text { if } \boldsymbol{m} \neq 0 \text { and } \boldsymbol{n} \neq 0\end{cases}
$$

We will write ( $\boldsymbol{m} \boldsymbol{n}$ ) or $\boldsymbol{m} \boldsymbol{n}$ for $\operatorname{mapp}(\boldsymbol{m}, \boldsymbol{n})$.
Orthogonality relation

$$
\overline{m \perp 0} \quad \overline{0 \perp n} \quad \frac{m \perp n m^{\prime} \perp n^{\prime}}{m m^{\prime} \perp n n^{\prime}}
$$

Example: (1 0) $\perp\left(\begin{array}{ll}0 & 1\end{array}\right)$ but not $\left(\begin{array}{ll}1 & 1\end{array}\right) \perp\left(\begin{array}{ll}0 & 1\end{array}\right)$.

## The Datatype $\mathbb{I}$ of Indices

$$
\begin{gathered}
\frac{\operatorname{box} \in \mathbb{I}}{} \text { box } \quad \frac{\boldsymbol{i} \in \mathbb{I}}{\operatorname{lift}(\boldsymbol{i}) \in \mathbb{I}} \text { lift } \\
\boldsymbol{i}, \boldsymbol{j} \in \mathbb{I}::=\operatorname{box} \mid \operatorname{lift}(\boldsymbol{i}) .
\end{gathered}
$$

We will write $\square$ for box.

## The Datatype $\mathbb{X}$ of Parameters

We assume a countably infinite set $\mathbb{X}$ of parameters. We will write $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ for parameters.
We assume that equality relation on $\mathbb{X}$ is decidable.

## The Datatype $\Lambda$ of Raw $\boldsymbol{\lambda}$-terms

$$
\begin{array}{cl}
\overline{\boldsymbol{x} \in \boldsymbol{\Lambda}} \text { par } & \overline{\boldsymbol{i} \in \boldsymbol{\Lambda}} \mathrm{idx} \\
\frac{\boldsymbol{K} \in \boldsymbol{\Lambda} \boldsymbol{L} \in \boldsymbol{\Lambda}}{\operatorname{app}(\boldsymbol{K}, \boldsymbol{L}) \in \boldsymbol{\Lambda}} \mathrm{app} \quad & \frac{\boldsymbol{x} \in \mathbb{X} \boldsymbol{K} \in \boldsymbol{\Lambda}}{\operatorname{lam}(\boldsymbol{x}, \boldsymbol{K}) \in \boldsymbol{\Lambda}} \operatorname{lam} \\
\boldsymbol{K}, \boldsymbol{L} \in \boldsymbol{\Lambda}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{K}, \boldsymbol{L}) \mid \operatorname{lam}(\boldsymbol{x}, \boldsymbol{K}) . \\
\boldsymbol{x} \in \mathbb{X} . \\
\boldsymbol{i} \in \mathbb{I} .
\end{array}
$$

Remark. lam binds parameter $\boldsymbol{x}$ in $\boldsymbol{K}$.

## The Datatype $\mathbb{L}$ of lambda-expressions

$$
\begin{array}{cc}
\overline{\boldsymbol{x} \in \mathbb{L}} \text { par } & \overline{\boldsymbol{i} \in \mathbb{L}} \mathrm{idx} \\
\frac{\boldsymbol{M} \in \mathbb{L} \quad \boldsymbol{N} \in \mathbb{L}}{\operatorname{app}(\boldsymbol{M}, \boldsymbol{N}) \in \mathbb{L}} \mathrm{app} & \frac{\boldsymbol{m} \in \mathbb{M} \quad \boldsymbol{M} \in \mathbb{L} \quad \boldsymbol{m} \mid \boldsymbol{M}}{\operatorname{mask}(\boldsymbol{m}, \boldsymbol{M}) \in \mathbb{L}} \\
\frac{\boldsymbol{M} \in \mathbb{L}}{0 \mid \boldsymbol{M}} & \overline{1 \mid \operatorname{box}} \\
\frac{\boldsymbol{m}|\boldsymbol{M} \boldsymbol{n}| \boldsymbol{N}}{\operatorname{mapp}(\boldsymbol{m}, \boldsymbol{n}) \mid \operatorname{app}(\boldsymbol{M}, \boldsymbol{N})} & \frac{\boldsymbol{m}|\boldsymbol{N} \boldsymbol{n}| \boldsymbol{N} \boldsymbol{m} \perp \boldsymbol{n}}{\boldsymbol{m} \mid \operatorname{mask}(\boldsymbol{n}, \boldsymbol{N})}
\end{array}
$$

## The Datatype $\mathbb{L}$ of lambda-expressions (cont.)

Notational Convention

- We use $\boldsymbol{M}, \boldsymbol{N}, \boldsymbol{P}$ as metavariables ranging over lambda-expressions.
- We write $(\boldsymbol{M} \boldsymbol{N})$ and also $\boldsymbol{M} \boldsymbol{N}$ for $\operatorname{app}(\boldsymbol{M}, \boldsymbol{N})$.
- We write $[\boldsymbol{m} \backslash \boldsymbol{M}]$ and also $\boldsymbol{m} \backslash \boldsymbol{M}$ for $\operatorname{mask}(\boldsymbol{m}, \boldsymbol{M})$.
- A lambda-expression of the form $\operatorname{mask}(\boldsymbol{m}, \boldsymbol{M})$ is called an abstract.
- We use $\boldsymbol{A}, \boldsymbol{B}$ as metavariables ranging over abstarcts, and write $\mathbb{A}$ for the subset of $\mathbb{L}$ consisting of all the abstracts.


## Map and Skelton

We define map : $\mathbb{X} \times \mathbb{L} \rightarrow \mathbb{M}$ and skel : $\mathbb{X} \times \mathbb{L} \rightarrow \mathbb{L}$. We write $\boldsymbol{M}_{\boldsymbol{X}}$ for $\operatorname{map}(\boldsymbol{X}, \boldsymbol{M})$, and $\boldsymbol{M}^{\boldsymbol{X}}$ for $\operatorname{skel}(\boldsymbol{X}, \boldsymbol{M})$.

$$
\begin{aligned}
y_{x} & := \begin{cases}1 & \text { if } x=y, \\
0 & \text { if } x \neq y .\end{cases} \\
i_{x} & :=0 . \\
(M N)_{x} & :=\operatorname{mapp}\left(M_{x}, N_{x}\right) . \\
{[m \backslash M]_{x} } & :=M_{x} . \\
y^{x} & := \begin{cases}\square & \text { if } x=y, \\
y & \text { if } x \neq y .\end{cases} \\
i^{x} & :=i . \\
(M N)^{x} & :=\left(M^{x} N^{x}\right) . \\
{[m \backslash M]^{x} } & :=\left[m \backslash M^{x}\right] .
\end{aligned}
$$

## Lambda Abstraction in $\mathbb{L}$

We define lam : $\mathbb{X} \times \mathbb{L} \rightarrow \mathbb{L}$ by:

$$
\operatorname{lam}(x, M):=\left[M_{x} \backslash M^{x}\right]
$$

Examples. We assume that $\boldsymbol{x}, \boldsymbol{y}$ and $\boldsymbol{z}$ are distinct parameters.

$$
\operatorname{lam}(\boldsymbol{x}, \operatorname{lam}(\boldsymbol{y}, \operatorname{lam}(\boldsymbol{z},(\boldsymbol{x} \boldsymbol{z} \boldsymbol{y} \boldsymbol{z}))))=
$$

$$
\begin{aligned}
& \operatorname{lam}(\boldsymbol{x}, \boldsymbol{x})=\mathbf{1} \backslash \square . \\
& \operatorname{lam}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0} \backslash \boldsymbol{y} . \\
& \operatorname{lam}(\boldsymbol{x}, \operatorname{lam}(\boldsymbol{y}, \boldsymbol{x}))=\operatorname{lam}(\boldsymbol{x}, \mathbf{0} \backslash \boldsymbol{x}) \\
&=\mathbf{1} \backslash \mathbf{0} \backslash \square \\
& \operatorname{lam}(\boldsymbol{x}, \operatorname{lam}(\boldsymbol{y}, \boldsymbol{y}))=\operatorname{lam}(\boldsymbol{x}, \operatorname{lam}(\mathbf{1}, \square)) \\
&=\mathbf{0} \backslash \mathbf{1} \backslash \square . \\
&\operatorname{lam}(\boldsymbol{z},(\boldsymbol{x} \boldsymbol{z} \boldsymbol{y} \boldsymbol{z}))))= \\
&(\mathbf{1 0} \mathbf{0 0}) \backslash(\mathbf{0 0} \mathbf{1 0}) \backslash(\mathbf{0 1} \mathbf{0 1}) \backslash(\square \square \square \square)
\end{aligned}
$$

## Instantiation and Substitution

We define the instantiation operation: inst : $\mathbb{A} \times \mathbb{L} \rightarrow \mathbb{L}$ as follows. We will write $\boldsymbol{A} \boldsymbol{\nabla} \boldsymbol{M}$ for $\operatorname{inst}(\boldsymbol{A}, \boldsymbol{M})$.

$$
\begin{aligned}
{[1 \backslash \square] \vee P } & :=P . \\
{[0 \backslash M] \vee P } & :=M . \\
{[(m n) \backslash(M N)] \vee P } & :=([m \backslash M] \vee P[n \backslash N] \vee P) . \\
{[m \backslash[n \backslash N]] \nabla P } & :=[n \backslash[m \backslash N] \nabla P] .
\end{aligned}
$$

We can now define substitution operation: subst : $\mathbb{L} \times \mathbb{X} \times \mathbb{L} \rightarrow \mathbb{L}$ as follows.

$$
M\{x \backslash N\}:=\operatorname{lam}(x, M) \nabla N
$$

## Instantiation and Substitution (cont.)

Example.

$$
\begin{aligned}
\operatorname{lam}(y, y x)\{x \backslash y\} & =\operatorname{lam}(x, \operatorname{lam}(y, y x)) \nabla y \\
& =\operatorname{lam}(x,[10 \backslash \square x]) \nabla y \\
& =[01 \backslash[10 \backslash \square \square]] \nabla y \\
& =10 \backslash[01 \backslash \square \square] \nabla y \\
& =10 \backslash([0 \backslash \square] \nabla y[1 \backslash \square] \nabla y) \\
& =10 \backslash \square y \\
& =\operatorname{lam}(z, z y)
\end{aligned}
$$

Remark. By internalizing the instantiation operation, we can easily get an explicit instantiation calculus.

## Instantiation and Substitution (cont.)

Substitution Lemma If $\boldsymbol{x} \neq \boldsymbol{y}$ and $\boldsymbol{x} \notin \mathrm{FP}(\boldsymbol{P})$, then

$$
M\{x \backslash N\}\{y \backslash P\}=M\{y \backslash P\}\{x \backslash N\{y \backslash P\}\}
$$

Proof. By induction on $M \in \mathbb{L}$. Here, we only treat the case where $M=\operatorname{mcons}\left(m_{1}, m_{2}\right) \backslash M_{1} M_{2}=m_{1} m_{2} \backslash M_{1} M_{2}$.

```
M{x\N}{y\P}
    = [m, m}\mp@subsup{m}{2}{\\M}\mp@subsup{M}{1}{}\mp@subsup{M}{2}{}]{x\N}{y\P
    = [m, m}\mp@subsup{m}{2}{\\( M
    = [m, m}\mp@subsup{m}{2}{\\( M
    = [(m}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\(\mp@subsup{M}{1}{}{y\P}{x\N{y\P}} M M { y \P}{x\N{y\P}}
        (by IH)
= [(m, m}\mp@subsup{m}{2}{\prime})\(\mp@subsup{M}{1}{}{y\P} \mp@subsup{M}{2}{}{y\P})]{x\N{y\P}
= [(m}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{\prime})\(\mp@subsup{M}{1}{}\mp@subsup{M}{2}{\prime})]{y\P}{x\N{y\P}
=M{y\P}{x\N{y\P}}.
```


## The $\mathbb{L}_{\beta}$-calculus

$$
{\overline{A M \rightarrow_{\beta} A \nabla M}}^{\beta}
$$

$$
\frac{M \rightarrow_{\beta} M^{\prime}}{M N \rightarrow_{\beta} M^{\prime} N} \text { appl } \quad \frac{M \in \mathbb{L}}{M N \rightarrow_{\beta} M N^{\prime}} \text { appr }
$$

$$
\frac{M \rightarrow_{\beta} N}{\operatorname{lam}(x, M) \rightarrow_{\beta} \operatorname{lam}(x, N)} \xi
$$

Remark. Traditional way of formulating $\boldsymbol{\beta}$-conversion rule is:

$$
(\operatorname{lam}(x, M) N) \rightarrow_{\beta} M\{x \backslash N\}
$$

## The $\mathbb{L}_{\beta \eta}$-calculus

The $\mathbb{L}_{\boldsymbol{\beta} \boldsymbol{\eta}}$-calculus is obtained from the $\mathbb{L}_{\boldsymbol{\beta}}$-calculus by adding the following $\eta$-rule.

$$
{\overline{[01 \backslash M \square]} \rightarrow_{\beta \eta} M} \eta
$$

Remark. In the tradtional $\boldsymbol{\lambda}_{\boldsymbol{\beta} \boldsymbol{\eta}}$-caclulus the $\boldsymbol{\eta}$-rule is:

$$
\operatorname{lam}(\boldsymbol{x}, \boldsymbol{M} \boldsymbol{x}) \rightarrow_{\beta \eta} \boldsymbol{M} \quad \text { if } \boldsymbol{x} \notin \mathrm{FP}(\boldsymbol{M})
$$

But, we could state it without mentioning $\boldsymbol{x}$ and hence without mentioning the side condition on $\boldsymbol{x}$ and $\boldsymbol{M}$, since we have

$$
\operatorname{lam}(\boldsymbol{x}, \boldsymbol{M} \boldsymbol{x})=[\mathbf{0 1} \backslash \boldsymbol{M} \square] \quad \text { if } \boldsymbol{x} \notin \mathrm{FP}(\boldsymbol{M})
$$

In fact, the $\boldsymbol{\eta}$-rule is a rule about abstracts $\boldsymbol{M}$ and has nothing to do with parameters $\boldsymbol{x}$. The same remark applies to the $\boldsymbol{\beta}$-conversion rule as well.

## Interpretation of $\Lambda$ in $\mathbb{L}$

We define the interpretation function $\llbracket-\rrbracket_{\mathbb{L}}: \boldsymbol{\Lambda} \rightarrow \mathbb{L}_{\boldsymbol{\Lambda}}$ as follows.

$$
\begin{aligned}
\llbracket x \rrbracket_{\mathbb{L}} & :=X . \\
\llbracket i \rrbracket_{\mathbb{L}} & :=i . \\
\llbracket M N \rrbracket_{\mathbb{L}} & :=\left(\llbracket M \rrbracket_{\mathbb{L}} \llbracket N \rrbracket_{\mathbb{L}}\right) . \\
\llbracket \operatorname{lam}(x, M) \rrbracket_{\mathbb{L}} & :=\operatorname{lam}\left(x, \llbracket M \rrbracket_{\mathbb{L}}\right) .
\end{aligned}
$$

Remark. Two raw $\boldsymbol{\lambda}$-terms $\boldsymbol{M}$ and $\boldsymbol{N}$ are $\boldsymbol{\alpha}$-equivalent iff $\llbracket M \rrbracket_{\mathbb{L}}=\llbracket N \rrbracket_{\mathbb{L}}$.

## The Datatype $\mathbb{D}$ of de Bruijn-expressions

$$
\begin{array}{cl} 
& \overline{\boldsymbol{x} \in \mathbb{D}} \text { par } \\
\frac{\boldsymbol{i} \in \mathbb{D}}{} \text { idx } \\
\frac{\boldsymbol{D} \in \mathbb{D}}{\operatorname{app}(\boldsymbol{D}, \boldsymbol{E}) \in \mathbb{D}} \operatorname{app} & \frac{\boldsymbol{D} \in \mathbb{D}}{\operatorname{bind}(\boldsymbol{D}) \in \mathbb{D}} \text { bind } \\
\boldsymbol{D}, \boldsymbol{E} \in \mathbb{D}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{D}, \boldsymbol{E}) \mid \operatorname{bind}(\boldsymbol{D}) . \\
\boldsymbol{x} \in \mathbb{X} . \\
\boldsymbol{i} \in \mathbb{I} .
\end{array}
$$

## Summary of the Datatypes $\Lambda, \mathbb{L}$ and $\mathbb{D}$

$$
\begin{aligned}
& \boldsymbol{K}, \boldsymbol{L} \in \boldsymbol{\Lambda}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{K}, \boldsymbol{L}) \mid \operatorname{lam}(\boldsymbol{x}, \boldsymbol{K}) \\
& \boldsymbol{M}, \boldsymbol{N} \in \mathbb{L}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{M}, \boldsymbol{N}) \mid \operatorname{mask}(\boldsymbol{m}, \boldsymbol{M})(\boldsymbol{m} \mid \boldsymbol{M}) . \\
& \boldsymbol{D}, \boldsymbol{E} \in \mathbb{D}::=\boldsymbol{x}|\boldsymbol{i}| \operatorname{app}(\boldsymbol{D}, \boldsymbol{E}) \mid \operatorname{bind}(\boldsymbol{D}) \\
& \boldsymbol{x} \in \mathbb{X} . \\
& \boldsymbol{i} \in \mathbb{I} . \\
& \boldsymbol{m} \in \mathbb{M} .
\end{aligned}
$$

## Interpretation of $\mathbb{L}$ in $\mathbb{D}$

We define the mask function

$$
\operatorname{mask}_{i}: \mathbb{M} \times \mathbb{D} \rightarrow \mathbb{D}(i \in \mathbb{I})
$$

as follows. We will write $[\boldsymbol{m} \backslash \boldsymbol{D}$ ] or $\boldsymbol{m} \backslash \boldsymbol{D}$ for $\operatorname{mask}(\boldsymbol{m}, \boldsymbol{D})$.

$$
\begin{aligned}
\boldsymbol{0} \backslash_{i} \boldsymbol{x} & :=\operatorname{bind}(\boldsymbol{x}) . \\
\boldsymbol{0} \backslash_{i} \boldsymbol{j} & := \begin{cases}\operatorname{bind}(\boldsymbol{j}) & \text { if } \boldsymbol{j}<\boldsymbol{i}, \\
\operatorname{bind}(\boldsymbol{j}+\boldsymbol{1}) & \text { if } \boldsymbol{j} \geq \boldsymbol{i} .\end{cases} \\
\mathbf{1} \backslash_{i} \boldsymbol{i}: & :=\operatorname{bind}(\boldsymbol{i}) . \\
\boldsymbol{m} \boldsymbol{n} \backslash_{i} \boldsymbol{D} \boldsymbol{E} & :=\operatorname{bind}\left(\boldsymbol{D}^{\prime} \boldsymbol{E}^{\prime}\right) \\
\boldsymbol{m} \backslash_{\boldsymbol{i}} \operatorname{bind}(\boldsymbol{D}) & :=\operatorname{mind}\left(\boldsymbol{m} \backslash_{i+1} \boldsymbol{D}\right) .
\end{aligned}
$$

## Interpretation of $\mathbb{L}$ in $\mathbb{D}$ (cont.)

We define the interpretation function $\mathrm{L} 2 \mathrm{D}: \mathbb{L} \rightarrow \mathbb{D}$ as follows.

$$
\begin{aligned}
\mathrm{L} 2 \mathrm{D}(x) & :=x \\
\mathrm{~L} 2 \mathrm{D}(\boldsymbol{i}) & :=\boldsymbol{i} \\
\mathrm{L} 2 \mathrm{D}(\boldsymbol{M}) & :=(\mathrm{L} 2 \mathrm{D}(\boldsymbol{M}) \mathrm{L} 2 \mathrm{D}(\boldsymbol{N})) . \\
\mathrm{L} 2 \mathrm{D}(\boldsymbol{m} \backslash \boldsymbol{M}) & :=[\boldsymbol{m} \backslash \mathrm{L} 2 \mathrm{D}(\boldsymbol{M})]
\end{aligned}
$$

