
Hygienic Macros 
via Staged Environment Machines 

Yuito Murase (Kyoto University) 
2025-Oct-16 @ Scheme Workshop 2025, Singapore 

High-Level Description 

Multi-Stage 
Computation 

2 

α-renaming 

Hygienic 
Procedyral 

Macros 

Explicit 
Renaming 🤔

Less Known Theory 
(e.g., λ calculi) 

Solid Theoretical
Background 

Macros in Lisp 

(or (string->number x) -1)

2 

(let ((tmp (string->number x)))

 (if tmp tmp -1))

Macro Expand 

Name Conflict in Macros 

(let ((tmp -1))

 (or (string->number x) tmp))

3 

Name Conflict in Macros 

(let ((tmp -1))

 (or (string->number x) tmp))

3 

(let ((tmp -1))

 (let ((tmp (string->number x)))

 (if tmp tmp tmp)))

Macro Expand 

Variable name conflict 

Hygienic Macros [Kohlbecker 1986] 

(let ((tmp -1))

 (or (string->number x) tmp))

4 

 (let_0 ((tmp_1 -1))

 (let_0 ((tmp_2 (string->number_3 x)))

 (if_4 tmp_2 tmp_2 tmp_1)))

Macro Expand 

😄 

Explicit Renaming Macros [Clinger 1991] 

5 

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if) ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

Hygienic Proc. Macros w/ Explicit Renaming 

5 

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if) ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

A renamer resolves symbols to their unique names 
according to the syntactic environment of the macro definition 

Hygienic Proc. Macros w/ Explicit Renaming 

5 

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if) ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

A renamer resolves symbols to their unique names 
according to the syntactic environment of the macro definition 

Resolved to let_0, 
referring to let in the standard lib 

Hygienic Proc. Macros w/ Explicit Renaming 

5 

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if) ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

A renamer resolves symbols to their unique names 
according to the syntactic environment of the macro definition 

Resolved to tmp_1, 
 that doesn’t conflict with other tmp 

Resolved to let_0, 
referring to let in the standard lib 

High-Level Description 

Multi-Stage 
Computation 

6 

α-renaming 

Hygienic 
Procedyral 

Macros 

Explicit 
Renaming 🤔

Multi-Stage Programming 

7 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >.

Multi-Stage Programming and α-renaming 

7 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >.

Multi-Stage Programming and α-renaming 

7 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >.

 (* MetaOCaml style *)
 let genOr a b =
 .< let abc = .~a in
 if abc then abc else .~b >.

Multi-Stage Programming and α-renaming 

7 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >.

 (* MetaOCaml style *)
 let genOr a b =
 .< let ppp = .~a in
 if ppp then ppp else .~b >.

Evaluating a Staged Program 

8 

 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >. in
 .< let tmp = 1 in
 .~(genOr .< string->int x >.
 .< tmp >.)

α-renaming avoids name conflicts 

9 

 .< let tmp = 1 in
 let tmp = string->int x in
 if tmp then tmp else tmp >.

⚠

α-renaming avoids name conflicts 

9 

 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >. in
 .< let tmp = 1 in
 .~(genOr .< string->int x >.
 .< tmp >.)

 .< let tmp = 1 in
 let tmp’ = string->int x in
 if tmp’ then tmp’ else tmp >.

High-Level Description 

Multi-Stage 
Computation 

10 

α-renaming 

Hygienic 
Procedural 

Macros 

Explicit 
Renaming 🤔

Implicit 
Non-Deterministic 

Explicit 
Deterministic 

High-Level Description 

Multi-Stage 
Computation 

(Subst. Semantics) 

10 

α-renaming 

Hygienic 
Procedural 

Macros 

Explicit 
Renaming 

Multi-Stage 
Computation 

(Env. Machine 
Semantics) 

Renaming 
as eval. steps 🤩

Implicit 
Non-Deterministic 

Explicit 
Deterministic 

Explicit 
Deterministic 

Elaborate! 

Evaluating a Staged Program 

11 

.< let tmp0 = 1 in
 .~(.< let tmp = .~a in
 if tmp then tmp else .~b >.)
>.

tmp -> tmp0

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Evaluating a Staged Program (= Env. Machine) 

11 

.< let tmp0 = 1 in
 .~(.< let tmp = .~a in
 if tmp then tmp else .~b >.)
>.

tmp -> tmp0

E. Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

D. Value Env.

A. Expression under evaluation 
(or Commands) 

B. Current level = 0 (= runtime level) 

C. Evaluation Context 
 (or Continuation) 

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 .~(.< let tmp = s->i x in
 if tmp then tmp else .~b >.)
>.

tmp -> tmp0

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp1 then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp1 then tmp1 else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 let tmp1 = s->i x in
 if tmp1 then tmp1 else tmp0
>.

Renaming Env. Value Env.

Evaluating a Staged Program 
 

12 

.< let tmp0 = 1 in
 let tmp1 = s->i x in
 if tmp1 then tmp1 else tmp0
>.

Renaming Env. Value Env.

ER as a Reflective Interface to Renaming Env. 

13 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp
 then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.
gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

ER as a Reflective Interface to Renaming Env. 

13 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp1
 then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.
gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

ER as a Reflective Interface to Renaming Env. 

13 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if .~(rename ‘tmp)
 then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.
gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

ER as a Reflective Interface to Renaming Env. 

13 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp1
 then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.
gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

High-Level Description 

Multi-Stage 
Computation 

(Subst. Semantics) 

14 

α-renaming 

Hygienic 
Procedyral 

Macros 

Explicit 
Renaming 

Multi-Stage 
Computation 

(Env. Machine 
Semantics) 

Renaming 
as eval. steps 

Refining semantics 
(like [Ge+ 2019]) 

Elaborate! 

Adding reflective
interface for

renaming env. 

See My Position Paper for … 

● Discussion on
α-renaming vs ER 

● Formal definition of the
staged CEK machine 

● Draft design of an
abstract machine for ER 
○ Lots of things need to

be fixed 

15 

Key takeaway 

● We can derive Explicit Renaming from α-renaming 
○ It is likely applicable to other hygienic macro facilities

like syntactic closures and syntax-case 
 

● Staged Environment Machines provide a novel
viewpoint of hygienic code generation 
○ … but pretty little work on them 

16 

Supplementary Materials 

37

What needs to be done 

● Correspondence between substitution semantics and
Staged CEK machine 

● Design full semantics for ER macros inspired by staged
CEK machine 
○ Challenge 1: Staging semantics in traditional MSP is not

sufficient 
○ Challenge 2: Gap between S-expresisons in Lisp and

quasiquotes in MSP 

17 

Relation to Existing Approaches 

● Existing work that apply MSP to macros 
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023]  
1. Focus on type-safety 
2. Is incompatible with ER macros 

● Extend α-renaming to S-Expression [Herman+ 2008][Stansifer+ 2014] 
1. Provide explicit binding specification for macros 
2. Is the other direction than ours: provide high-level macro facility that

is compatible with α-renaming 
● Implementation for MSP or Partial Evaluation  

[Glück+ 1997][Calcagno+ 2003] 
○ Provide operational accounts of hygienic code generation 
○ Lacks the idea of renaming environment 

39 

Theory of Hyginic Macros is Hard 

 from [Kiselyov Scheme’02] 

40 

… the subject of macro hygiene is not at all
decided, and more research is needed to
precisely state what hygiene formally
means and which precisely assurances it
provides.

Summary of Our Position 

Multi-Stage Programming is considered to provide
theoretical foundation for hygienic proc. macros 
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023] 

41 

MSP achieves hygiene via α-renaming, 
which is quite different from ER 

We can fill this gap by considering 
an environment machine for MSP 

Gap 

Our 
Answer 

What about this case? 

42 

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp1 then tmp1 else tmp0 >.)
>.

Renaming Env. Value Env.

Code Construction Steps in MSP 

12 

 .< let tmp = 1 in tmp + 1 >.

Code Construction Steps in MSP 

12 

 .< let tmp = 1 in tmp + 1 >.

Code Construction Steps in MSP 

12 

 .< let tmp = 1 in tmp + 1 >.

Code Construction Steps in MSP 

12 

 .< let tmp = 1 in tmp + 1 >.

Code Construction Steps in MSP 

12 

 .< let tmp0 = 1 in tmp + 1 >.

tmp -> tmp0

Renaming Env.

Code Construction Steps in MSP 

12 

 .< let tmp0 = 1 in tmp + 1 >.

tmp -> tmp0

Renaming Env.

Code Construction Steps in MSP 

12 

 .< let tmp0 = 1 in tmp + 1 >.

tmp -> tmp0

Renaming Env.

Code Construction Steps in MSP 

12 

 .< let tmp0 = 1 in tmp0 + 1 >.

tmp -> tmp0

Renaming Env.

Code Construction Steps in MSP 

12 

 .< let tmp0 = 1 in tmp0 + 1 >.

Staged Env. Machines to Reason about ER macros 

Multi-Stage Programming is considered to provide
theoretical foundation for hygienic proc. macros 
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023] 

8 

MSP 

High-level 

Macro 

Low-level  Renaming steps in
staged env. machines 

Explicit 
Renaming 

difficult to compare 🤔 α-renaming 
elaborate 

Issue: gap in 
hygiene facilities 

easier to 
compare 😄 

Theory behind Explicit Renaming? 

● The original paper of ER does not provide formal
model [Clinger 1991] 

● Some proposals provide formal models for hygienic
macros in general [Flatt+ 2012][Adams 2015][Flatt 2016]  
○ … but, they are detached from the semantics of the host

languages 

7 

Theory of hygienic procedural macros 
should provide semantics for both side 

Staged Env. Machines to Reason about ER macros 

Multi-Stage Programming is considered to provide
theoretical foundation for hygienic proc. macros 
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023] 

8 

Staged Env. Machines to Reason about ER macros 

Multi-Stage Programming is considered to provide
theoretical foundation for hygienic proc. macros 
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023] 

8 

MSP 

High-level 

Macro 

Low-level  Explicit 
Renaming 

difficult to compare 🤔 α-renaming 

Issue: gap in 
hygiene facilities 

 α-renaming vs Explicit Renaming 

12 

MSP 

High-level 

Macro 

Low-level  Renaming steps in
staged env. machines 

Explicit 
Renaming 

difficult to compare 🤔 α-renaming 
elaborate 

easier to 
compare 😄 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in

 if tmp then tmp else .~b >.

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if)
 ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

 α-renaming vs Explicit Renaming 

12 

MSP 

High-level 

Macro 

Low-level  Renaming steps in
staged env. machines 

Explicit 
Renaming 

difficult to compare 🤔 α-renaming 
elaborate 

easier to 
compare 😄 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in

 if tmp then tmp else .~b >.

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if)
 ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

Implicit 
Non-Deterministic 

Explicit 
Deterministic 

 α-renaming vs Explicit Renaming 

12 

MSP 

High-level 

Macro 

Low-level  Renaming steps in
staged env. machines 

Explicit 
Renaming 

difficult to compare 🤔 α-renaming 
elaborate 

easier to 
compare 😄 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in

 if tmp then tmp else .~b >.

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if)
 ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

Implicit 
Non-Deterministic 

Explicit 
Deterministic Explicit 

Deterministic 

Overview Again 

16 

 (* MetaOCaml style *)
 let genOr a b =
 .< let tmp = .~a in

 if tmp then tmp else .~b >.

 (define-syntax or (er-macro-transformer
 (lambda (expr rename compare)
 (match expr
 ((_ a b)
 `(,(rename ‘let) ((,(rename ‘tmp) ,a))
 (,(rename ‘if)
 ,(rename ‘tmp)
 ,(rename ‘tmp)
 ,b)))))

.< let tmp0 = 1 in
 .~(.< let tmp1 = s->i x in
 if tmp then tmp else .~b >.)
>.

tmp -> tmp0
tmp -> tmp1

Renaming Env.

gen -> clos(...)
a -> .< s->i x >.
b -> .< tmp0 >.

Value Env.

Refining semantics 
(like [Biernacka+ 2007] 
 [Ge+ 2019]) 
 
 Substitution 
→ Explicit Substitution 
→ Environment Machine 

Adding reflective 
interface 

🤔 

Evaluating a Staged Program 

13 

 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >. in
 .< let tmp = 1 in
 .~(genOr .< string->int x >.
 .< tmp >.)

Evaluating a Staged Program 
 

13 

 let genOr a b =
 .< let tmp = .~a in
 if tmp then tmp else .~b >. in
 .< let tmp = 1 in
 .~(genOr .< string->int x >.
 .< tmp >.)

