Hygienic Macros
via Staged Environment Machines

Yuito Murase (Kyoto University)

2025-0Oct-16 @ Scheme Workshop 2025, Singapore

High-Level Description

Hygienic
Procedyral
Macros

Multi-Stage
Computation

Explicit

A-reNaming s m _é_ —[Renaming

Macros in Lisp

Name Conflict in Macros

(let ((tmp <=1

(or (

Name Conflict in Macros

Macro Expand

(let ((tmp 1))
(et ((tmp 9%)

Variable name conflict

(if tmp)))

Hygienic Macros [Kohlbecker 1986]

Macro Expand

(let_ 0 ((tmp_1<1))

(let_ 0 (((
(if 4

Explicit Renaming Macros [Clinger 1991]

(define-syntax

)))))

Hygienic Proc. Macros w/ Explicit Renaming

. A renamer resolves symbols to their unique names
(define-s yn tax according to the syntactic environment of the macro definition

Hygienic Proc. Macros w/ Explicit Renaming

. A renamer resolves symbols to their unique names
(define-s yn tax according to the syntactic environment of the macro definition

(Leotipare)

Resolved to
referring to in the standard lib

TetT ((, (rename “tmp) ,a))

)

Hygienic Proc. Macros w/ Explicit Renaming

. A resolves symbols to their unique names
(deflne_syntax according to the macro definition

(Leotipare)

Resolved to
referring to in the standard lib

et T ((, (re

Resolved to
that doesn’t conflict with other

High-Level Description

Multi-Stage
Computation

A-FreNaMiNg s _6_ —

Hygienic
Procedyral
Macros

Explicit
Renaming

Multi-Stage Programming

= .~a 1n
then else

Multi-Stage Programming and a-renaming

Multi-Stage Programming and a-renaming

let =

.< let abc = .~a 1n

if agc‘¥ﬁgﬁ\abc else .~b >.

Multi-Stage Programming and a-renaming

let =

.< let epp*i\;:é 1n
1f ppp then ppp else .~b >.

Evaluating a Staged Program

.~a 1n

\

then else
1in

a-renaming avoids name conflicts

a-renaming avoids name conflicts

High-Level Description

Multi-Stage
Computation

A-reNnaming s= == = —

Hygienic
Procedural
Macros

Explicit
Renaming

10

High-Level Description

Multi-Stage
Computation

(Subst. Semantics)

Multi-Stage

.»Computation
(Env. Machine

Semantics)

a-renamin Renaming
J ‘ .‘ as eval. steps

Elaborate!

Hygienic

_> Procedural
Macros

Explicit
Renaming

Evaluating a Staged Program

Renaming Env. Value Env.

tmp — tmpo gen — clos(...)
a = .< s—1 X >.
b = .< tmp0 >.

1n

= .~a 1n
then else .~b >.)

Evaluating a Staged Program (= Env. Machine)

tmp — tmpo gen — clos(...)
a = .< s—1 X >.

——~_ . b = .< tmp0o >.
.< let = 1 1n

~(.< let = .~a 1n

if then else .~b >.)

_/\

Evaluating a Staged Program

Renaming Env. Value Env.

tmp — tmpo gen — clos(...)
a = .< s—1 X >.
b = .< tmp0 >.

= 1 1n

S—>1 X 1n
then else .~b >.)

Evaluating a Staged Program

Renaming Env. Value Env.

Ep———Em8 gen — clos(...)

tmp = tmpl a —> .< s—>1 X >.
b = .< tmp0 >.

1n

else .~b >.)

Evaluating a Staged Program

Renaming Env. Value Env.

Ep———Em8 gen — clos(...)

tmp — tmpl a = .< s—1 X >.
b = .< tmp0 >.

1n

else .~b >.)

Evaluating a Staged Program

Renaming Env. Value Env.

Ep———Em8 gen — clos(...)

tmp — tmpl a = .< s—1 X >.
b = .< tmp0 >.

Evaluating a Staged Program

Renaming Env. Value Env.

Ep———Em8 gen — clos(...)

tmp — tmpl a = .< s—1 X >.
b = .< tmp0 >.

Evaluating a Staged Program

Renaming Env. Value Env.

Evaluating a Staged Program

Renaming Env. Value Env.

ER as a Reflective Interface to Renaming Env.

Renaming Env. Value Env.

Ep———Empé gen — clos(...)

tmp — tmpl a —> .< s—>1 X >.
1 1n b = .< tmp0o >.

ER as a Reflective Interface to Renaming Env.

Renaming Env. Value Env.

Ep———Empé gen — clos(...)

tmp — tmpl a —> .< s—>1 X >.
1 1n b = .< tmp0o >.

ER as a Reflective Interface to Renaming Env.

Renaming Env. Value Env.

Ep———Empé gen — clos(...)

tmp — tmpl a —> .< s—>1 X >.
1 1n b = .< tmp0o >.

ER as a Reflective Interface to Renaming Env.

Renaming Env. Value Env.

Ep———Empé gen — clos(...)

tmp — tmpl a —> .< s—>1 X >.
1 1n b = .< tmp0o >.

High-Level Description

Multi-Stage
Computation

(Subst. Semantics)

a-renaming -’-Ta

(like [Ge+ 2019])

Elaborate!

Refining semantics

Multi-Stage Hygienic

Computation .> Procedyral

(Env. Machine Macros

Semantics)

Renaming Explicit

s eval. steps \ I‘ Renaming

Adding reflective
interface for

e renaming env.

14

See My Position Paper for ...

e Discussion on
a-renaming vs ER

e Formal definition of the
staged CEK machine

e Draft design of an

abstract machine for ER

o Lots of things need to
be fixed

Hygienic Macros via Staged Environment Machines
(Position Paper)

Yuito Mur.
murase@fos.kuis.kyoto:
Kyoto University
Kyoto, Japan

Abstract

‘The relationship between staged computation and proc
dural macros is often mentioned in the literature. However,
this relationship is not as straightforward as it may appear.
Existing approaches tend to compromise the role of macros

s syntactic extensions, focusing primarily on staged type
systems to enforce the static safety of macros.

In this position paper, we propose a different approach
to connecting procedural macros and staged computatio
to understand the semantic aspect of procedural macros

sputation. We observe that the
notion of a syntactic environment in hygienic macros has
2 natural counterpart in a staged extension of cnvironment
‘machines. Building on this observation, v ketch our draft

design of an environment machine for a Li
with an explicit-renaming macro ity 31 linger

CCS Coneepts: - Software and its engineering — Seman-
tics.

Keywords: Multi-Stage Programming, Hy

stract Machine

ACM Reference Format:

it Marsse. 2025, Hyinic Macro i Stged Envirnment M

hop on Scheme and Funcr mm[Pegromming
October 12 e ACM
Y, USA, 6 pages. hitps://doi.org/10.1145

1 Introduction

The similarities between staged computation

and Lisp-style procedural macros [4,7, 9, 10] have long b
ed and discussed from multiple perspectives. Both treat
e fragments class data and provide synta

anisms such as quasiquotation to construct and manipulate
In both etings, hygienc—the preseration oflxical scop-

ing—has been recognized as a major concern. Howe the

his work i lcensed under a Creative Commons Attribution 40 Tnterna
mal L

let min = fun expl exp2 -
let t1 = .~expl in
let t2 = .~exp2 in
if (6 then t1 else t2

Figure 1. min function in M

way hygiene is handled differs
computation and macros.

Hygiene in Staged Computation. In staged computa-
tion, hygiene is relatively easy to ensure. The program in
Figure 1 defines a function in MetaOCaml [17] that gener-
ates a code fragment computing the minimum of tw
pre In MetaOCanl, a quotation .<--->. produ
representation of the program inside the quotation instead
of evaluating it. A splice . - - within a quotation embeds the
given code fragment into the surrounding program. For ex-
ample, min < foo 10 >. .< t1 >. produces the following
code fragment:

let t1.1 = foo 10 in

let t2 = t1 in

if t11 <= 2 then t1_1 else t2 >

The outermost .<-+>. denotes a code value. The occur
rences of t1 introduced by min are renamed to t1_1 to avoid

oflicts with the t1 in the second argument. In formal
‘mantics, such renaming is typically achieved via a-renaming,
as in standard A-calculi. Thus, a-renaming plays a central
role in ensuring hygienic code generation.

Hygiene in Macros. By contrast, achieving hygiene in
the context of Lisp-style procedural macros is more suble.
For example, the following program with the let macro:
(lets ((a b) (b 2)) (+a b))
expands to a chain of let as below.

(Let ((a b)) (Tet ((b a)) (* a b))

ram should have a non-trivial bindi

Key takeaway

e We can derive Explicit Renaming from a-renaming
o Itis likely applicable to other hygienic macro facilities
like syntactic closures and syntax-case

e Staged Environment Machines provide a novel

viewpoint of hygienic code generation
o ... but pretty little work on them

16

Supplementary Materials

37

What needs to be done

e (Correspondence between substitution semantics and
Staged CEK machine
e Design full semantics for ER macros inspired by staged

CEK machine

o Challenge 1: Staging semantics in traditional MSP is not
sufficient

o Challenge 2: Gap between S-expresisons in Lisp and
quasiquotes in MSP

17

Relation to Existing Approaches

Existing work that apply MSP to macros
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023]
1. Focus on type-safety

2. Isincompatible with ER macros

Extend a-renaming to S-EXpression [Herman+ 2008]istansifer+ 2014]

1. Provide explicit binding specification for macros
2. Isthe other direction than ours: provide high-level macro facility that
is compatible with a-renaming

Implementation for MSP or Partial Evaluation
[Gllck+ 1997][Calcagno+ 2003]
o Provide operational accounts of hygienic code generation
o Lacks the idea of renaming environment

39

Theory of Hyginic Macros is Hard

... the subject of macro hygiene is not at all
decided, and more research is needed to

precisely state what hygiene formally
means and which precisely assurances it

provides.

from [Kiselyov Scheme'02]

40

Summary of Our Position

Multi-Stage Programming is considered to provide

theoretical foundation for hygienic proc. macros
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023]

MSP achieves hygiene via a-renaming,
which is quite different from ER

Gap

Our We can fill this gap by considering
Answer an environment machine for MSP

41

What about this case?

Renaming Env. Value Env.

Code Construction Steps in MSP

Code Construction Steps in MSP

Code Construction Steps in MSP

Code Construction Steps in MSP

Code Construction Steps in MSP

Renaming Env.

tmp — tmpo

+ 1 >.

Code Construction Steps in MSP

Renaming Env.

tmp — tmpo

+ 1 >.

Code Construction Steps in MSP

Renaming Env.

tmp — tmpo

+ 1 >.

Code Construction Steps in MSP

Renaming Env.

tmp — tmpo

_ar

Code Construction Steps in MSP

Staged Env. Machines to Reason about ER macros

Multi-Stage Programming is considered to provide

theoretical foundation for hygienic proc. macros
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023]

Issue: gap in
hygiene facilities MSP Macro

High-lEVEl a-renaming —__ difficult to compare @

elaborate +
. . iert . o
Renaming steps in coerii;jﬁe"e Explicit

Low-level staged env. machines P Renaming 8

Theory behind Explicit Renaming?

e The original paper of ER does not provide formal
model [Clinger 1991]

e Some proposals provide formal models for hygienic
macros in general [Flatt+ 2012][Adams 2015][Flatt 2016]

o ... but, they are detached from the semantics of the host
languages

Theory of hygienic procedural macros
should provide semantics for both side

Staged Env. Machines to Reason about ER macros

Multi-Stage Programming is considered to provide

theoretical foundation for hygienic proc. macros
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023]

Staged Env. Machines to Reason about ER macros

Multi-Stage Programming is considered to provide

theoretical foundation for hygienic proc. macros
[Ganz+ 2001][Taha+ 2003][Stucki+ 2021][Xie+ 2023]

Issue: gap in

hygiene facilities MSP Macro
High-lEVEl a-renaming —__ difficult to compare @
Explicit
Low-level Renaming g

a-renaming VS Explicit Renaming

(define-syntax

let =
.< let tmp = .~a in

1f tmp then tmp else .~b >.

MSP Macro

High-|EVE| a-renaming —__ difficult to compare @

elaborate +
Low-level Renaming steps in Coerisl’oi:;etoe Explicit
staged env. machines » Renaming 1 2

a-renaming VS Explicit Renaming

(define-syntax

let =
.< let tmp = .~a in

1f tmp then tmp else .~b >.

Macro

High-level O-reNamMINg ——— il ey

elaborate +
Low-level Renaming steps in Coerisl’oi:;etoe Explicit
i staged env. machines » Renaming 1 2

a-renaming VS Explicit Renaming

(define-syntax

let =
.< let tmp = .~a in

1f tmp then tmp else .~b >.

Macro

High-level O-reNamMINg ——— il ey

- claborste \
easier to

Renaming stepsin compare@ EXPpIiCit
Low-level staged env. machines # Renaming 12

Overview Again 9

let =
.< let tmp = .~a in

1f tmp then tmp else .~b >.

Refining semantics
(like [Biernacka+ 2007]
[Ge+2019])

Substitution
— Explicit Substitution
— Environment Machine

(define-syntax

Renaming Env. Value Env.

o gen — clos(...)
a = .< s—1 x >.

b = .< tmp0 >.

_x_in
else .~b >.)

Adding reflective
interface

16

Evaluating a Staged Program

= .~a 1n
then else
1 1n

Evaluating a Staged Program

= .~a 1n
then else
1 1n

