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Abstract

The relationship between staged computation and proce-
dural macros is often mentioned in the literature. However,
this relationship is not as straightforward as it may appear.
Existing approaches tend to compromise the role of macros
as syntactic extensions, focusing primarily on staged type
systems to enforce the static safety of macros.

In this position paper, we propose a different approach
to connecting procedural macros and staged computation:
to understand the semantic aspect of procedural macros
through the lens of staged computation. We observe that the
notion of a syntactic environment in hygienic macros has
a natural counterpart in a staged extension of environment
machines. Building on this observation, we sketch our draft
design of an environment machine for a Lisp-like language
with an explicit-renaming macro facility a la Clinger.
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1 Introduction

The similarities between staged computation [5, 6, 22, 23]
and Lisp-style procedural macros [4, 7, 9, 10] have long been
noted and discussed from multiple perspectives. Both treat
code fragments as first-class data and provide syntactic mech-
anisms such as quasiquotation to construct and manipulate
code.

In both settings, hygiene—the preservation of lexical scop-
ing—has been recognized as a major concern. However, the
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let min = fun expl exp2 ->
.< let t1 = .~expl in
let t2 = .~exp2 in
if (t1 <= t2) then t1 else t2 >.

Figure 1. min function in MetaOCaml

way hygiene is handled differs significantly between staged
computation and macros.

Hygiene in Staged Computation. In staged computa-
tion, hygiene is relatively easy to ensure. The program in
Figure 1 defines a function in MetaOCaml [17] that gener-
ates a code fragment computing the minimum of two ex-
pressions. In MetaOCaml, a quotation .<--->. produces a
representation of the program inside the quotation instead
of evaluating it. A splice .~- - - within a quotation embeds the
given code fragment into the surrounding program. For ex-
ample, min .< foo 10 >. .< t1 >. produces the following
code fragment:

.< let t1_1 = foo 10 in
let t2 = t1 in
if t1_1 <= t2 then t1_1 else t2 >.

The outermost .<- - ->. denotes a code value. The occur-
rences of t1 introduced by min are renamed to t1_1 to avoid
conflicts with the t1 in the second argument. In formal se-
mantics, such renaming is typically achieved via a-renaming,
as in standard A-calculi. Thus, a-renaming plays a central
role in ensuring hygienic code generation.

Hygiene in Macros. By contrast, achieving hygiene in
the context of Lisp-style procedural macros is more subtle.
For example, the following program with the let* macro:

(letx ((a b) (b a)) (* a b))
expands to a chain of let as below.
(let ((a b)) (let ((b a)) (x a b)))

Hence, the first program should have a non-trivial binding
structure as displayed below:

——

(letx ((a b) (b a)) (* a b)))
\/
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(define-syntax min
(er-transformer (lambda (exp rename compare)
(let ((let/r (rename 'let))

(if/r (rename 'if))
(<=/r (rename '<=))
(tmp1/r (rename 'tmpl))
(tmp2/r (rename 'tmp2)))

‘(,let/r ((,tmp1/r (cadr ,exp)))
(,let/r (,tmp2/r (caddr ,exp))

(,if/r (,<=/r ,tmpl/r ,tmp2/r)
,tmp1/r ,tmp2/r)))))))

Figure 2. min macro wtih explicit-renaming

The issue here is that we do not know the binding struc-
tures in S-expressions with this kind of user-defined macros
before macro expansion. Hence, we cannot apply a-renaming
to achieve hygiene for macros.

Instead, hygienic macros often rely on the notion of a syn-
tactic environment, which resolves raw symbols to unique
names that refer to specific bindings. Explicit renaming by
Clinger [3] offers one of the most primitive interfaces among
hygienic macros using syntactic environment. Figure 2 shows
a Scheme macro that implements min using explicit renaming,.
The macro expansion function takes three arguments. The
first argument, exp, is the S-expression of the macro invoca-
tion. The other two are specific to explicit renaming: rename
resolves a given symbol to its corresponding name in the
syntactic environment of the macro definition, and compare
compares two symbols under the syntactic environment of
the macro definition. One can observe that this macro defini-
tion renames let, if, and <= so that they refer to the symbols
in the macro-definition environment, and renames tmp1 and
tmp2 to generate fresh variables.

In the rest of this paper, we focus on the renaming as-
pects of the explicit-renaming macro facility due to space
limitations. Comparison can be regarded as equality up to
renaming, and is therefore a less important topic than re-
naming itself.

2 Owur Position

We are interested in formal semantics for programming lan-
guages with hygienic macros. Such a semantics should ac-
count for both hygiene and staging, while preserving the
full expressive power of procedural macros.

However, existing formal models of hygienic macros [1,
9, 10, 15, 18] have primarily focused on formalizing how
hygiene is ensured. They often do not define the semantics
of the entire language. In particular, they do not describe se-
mantics for staging — that is, how and when each expression
is evaluated— which is essential to understanding the full
behavior of procedural macros. See [4] for an overview of
these approaches.

A natural idea to address this gap is to apply the insights
from staged computation to hygienic macros. Indeed, several
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proposals [11, 19-21, 24] have explored this direction. These
approaches leverage the well-established theory of staged
computation to control evaluation stages and to reason about
macros formally.

However, because these approaches emphasize static type
safety, they impose strong restrictions inherited from staged
computation. In particular, they cannot express macros with
non-trivial binding structures such as let*. Consequently,
they fall short of capturing the full expressive power of hy-
gienic macros as used in practice.

Despite these challenges, we believe that insights from
staged computation remain crucial to achieving a formal
semantics for languages with hygienic macros. In this posi-
tion paper, we propose an potential approach that explains
hygienic macros from the perspective of staged computation
using abstract machine semantics.

Specifically, we argue that environment machines provide
a key to reconciling the tension between staged computation
and hygienic macros. In a staged variant of the CEK machine,
a-renaming is realized as deterministic renaming steps. This
allows hygiene in staged computation to be described sym-
bolically, making it easier to transfer these ideas to hygienic
macros. We observe that syntactic environments in hygienic
macros correspond to renaming environments in staged envi-
ronment machines, and we leverage this correspondence to
reinterpret the hygienic behavior of macros in terms of the
renaming process in such machines.

In the rest of this paper, we first introduce a staged variant
of the CEK machine and explain the notion of renaming
environments (Section 3). We then sketch a potential design
of an environment machine for a Lisp-like language with
explicit renaming, where renamers are realized as a reflective
interface to renaming environments (Section 4). Finally, we
discuss the major remaining challenges toward achieving
our goal in Section 5.

This perspective provides a symbolic account of hygiene
that bridges staged computation and hygienic macros. By
grounding both in staged environment machines, we expect
it to enable a more precise comparison between the two,
clarifying their similarities and differences.

3 Staged CEK Machine

In this section, we present a variant of the CEK machine
for a simplified version of MetaML [22, 23]. This machine
introduces explicit evaluation steps for renaming variables in
code fragments. Such semantics provides a fine-grained op-
erational account of hygienic code generation, which cannot
be captured by standard a-renaming.

There are several variants of the CEK machine that sup-
port staging [12, 16]. Our staged CEK machine presented
in Figure 3 is similar to both of these, but explicitly intro-
duces the renaming environment as a dedicated object. Our



Hygienic Macros via Staged Environment Machines (Position Paper)

Variables XY ...
Terms 0 x| Ax. 0] 50 8° | (1)
s x| Ax. o | t1"+ t2n+ | (tn++> | ~t"
Values W0

clos{E,R, Ax. t°} | (v')
tn

<
=
3

Value Envs. E
Renaming Envs. R
Conts. x°

e|Ex=v

€| R x =x
o|{ER/at’}>«’| {+°O}>«°
{~o} > «!

{Ax. O} > k™

{E,R/Ot"} > k™ | {v"*O}b> k"
o)} e[ {~O} > "

P

(%, E,RK")%, = (E(x), %)%,

(Ax. t°,E,R, Ko)gv — (clos{E, R, Ax. 1}, K)Eet

(ev-var-0)

(ev-A-0)

(V°, {clos{E, R, Ax. ,°} 0} > x")ﬁe, - (t,(E,x = v°),R,:<)2,,

(W {=m) e k) = (Vik)re

(ret-app-r-0)

(ret-~-0)

(% E,R k™) g5 — (R(x), &™),
(Ax. ™ E,R k™) 0x — ("™, E, (R,x = y), {Ay. O} > &™) %

where y is fresh

(ev-var-n+)

(ev-A-n+)

R(x) =y ifR= (R, x:=yRy)and x ¢ Dom(Ry)
R(x) =x otherwise
E(x)=v ifE=Ej,x:=v,E;and x ¢ Dom(E;)

Figure 3. Our Staged CEK Machine. n+ is written as a short-
hand for n + 1. The full rules can be found in Appendix.

machine extends the original CEK machine [8] with the fol-
lowing points:

e Terms, values, continuations, and machine states are
stratified by evaluation stages. 0 represents the run-
time stage, and n+ represents a future stage inside
code fragments.

e Rules for quotations ({)) and splices (~) move up and
down between stages.

e Rules for n+-stages are responsible for constructing
code fragments (i.e., values for n+-stages).

e We introduce renaming environments R in addition to
value environments E. Renaming environments map
variable names to other variable names and are used
for renaming variables to ensure hygienic code gener-
ation.

(t", E, R, k")], denotes an evaluation state at stage n, where
t" is the term being evaluated, E and R are the value and re-
naming environments, and k" is the continuation. (v, k"),
denotes a returning state at stage n, where the value v" is
returned to the continuation x".

Here we focus on the rules (ev-A-n+) and (ev-var-n+).
These rules use renaming environments to ensure hygiene.
When constructing a code fragment for a lambda abstraction,
(ev-A-n+) generates a fresh variable y and adds the mapping

x = y to the renaming environment. When it reaches a
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variable inside a code fragment, (ev-var-n+) renames it ac-
cording to the renaming environment. For example, consider
the evaluation of (1y. (Ax. x ~(y))) (x), where we expect the
x in the lambda to be renamed to avoid a name conflict.

((Ay- {Ax. x~(1))) (x) 6,6, D)gp

(Ax. x~(y),E 6, {{(D)} > O)},

(x~(9),E.R, {Axp. 0} > {(O)} > D)}, (where R = (x =x))
(% E.R{E,R/0~(y)} > {Ax. 0} > {(O)} > D)},

(0, {E,R/0~(y)} > {Ax. O} > {{O)} > D),

Ll

(x1)

1

(x2)

U

((Axo. x X0 ), 0) P

In the final state, we observe that x in the lambda is re-
named to xp, avoiding name conflicts as expected. The actual
renaming operations occur at (x1) and (*2), where R holds
the mapping from x to xy. In this way, our staged CEK ma-
chine offers a finer-grained perspective on hygienic code
generation than substitution-based semantics.

Note that it is a common technique in partial evalua-
tion [14] and multi-stage programming [2] to generate fresh
names for binding forms in order to ensure hygiene. Com-
pared to these existing approaches, our staged CEK machine
introduces renaming environments, which provide explicit
information about the renaming process at each step of eval-
uation. This mechanism allows us to establish a clearer corre-
spondence between multi-stage programming and hygienic
macros, as we will discuss in the next section.

4 Abstract Machines with Hygienic Macros

Looking at the staged CEK machine in the previous section,
we observe that the notion of renaming environments is
quite similar to that of syntactic environments in hygienic
macros. Building on this intuition, we sketch the design of
an environment machine for programming languages with
an explicit-renaming macro facility. We begin by defining
the syntax constructs.
Symbols x,y ...
S-Exps. s = ox | ()| #|#] (51 82)

Here we define S-expressions instead of terms. Syntax
constructs such as lambda abstractions and applications are
encoded as S-expressions. Unlike in the staged CEK machine,
S-expressions are not stratified, because their structure is
unknown at this point.

Values v x| O] #t]|#f] (o1.02)

s | #prim(x) | #clos(E, (A (¥) s))
#ren(R) | #cmp(R)

€|Ex=0v

€ | R, X1 = X2

Value Envs. E
Name Envs. R =
We define values by extending S-expressions. In addition
to closures #clos(E, R, (A (X) s)) and primitive functions
#prim(x), we introduce renamers #ren(R) and comparators
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#cmp(R). These serve as interfaces to renaming environ-
ments, and are passed to macro-expanding functions. One
can assume that the states and continuations are similar to
those in staged CEK machines. For simplicity, we consider
only stages 0 and 1. At stage 1, the evaluation steps rename
the bound variables of lambda abstractions while expanding
macros.

The renaming steps are similar to those in the staged
CEK machine. When processing lambda abstractions, (ev-
A-1) ensures that A is not a bound variable by checking the
renaming environment.

(AR NERK)L, = (SERT =) {AGH D> K,  (ev-A-1)
if R(A) = A° where 3 are fresh
(% E R K)gy = (R(x),5) ¢ (ev-var-1)

We consider a simplified model of an explicit-renaming
macro system, where a macro call is written in the form
(macrox . s). (ev-macro-1) evaluates x at stage 0 to obtain
the macro-expanding function. (ret-macro-1) then applies the
function to the given S-expression, generating renamers and
comparators from the renaming environment of the function.
In this way, we allow macro-expanding functions to access
the renaming environments at their definition sites. After the
macro transformer returns an expanded S-expression, (ret-
embed-1) continues processing it as a stage-1 S-expression.

((macrox.s),E, R,K)i,,, — (x, E,R,{E,R/(macroOd.s)} > K)Sv (ev-macro-1)

if R(macro) = macro®

(#clos(Eq, Ry, (A (x®P x"" x“™) 5,3), {Ea, Ry/(macro 0. 5p) } &> k)0,
— (s1,E',R, {Ez,R;/embed O} > rc)gv

where E’ = (E;, x¥® = 55, x™" := #ren(Ry ), x*™ := #cmp(R;3))

(ret-macro-1)

(s, {E,R/embed 0} > x)°,, — (s, E,Rx)}, (ret-embed-1)

If a symbol x is passed to a renamer with R, it returns
either (a) R(x) if x is in the domain of R (ret-ren-n+-a), or
(b) a fresh variable otherwise ! (ret-ren-n+-b). Comparators
work in a similar way.

(x,{E, R/ (#1en(Ry) D)} > k)], = (Ro(x),K)}, if x € Dom(R,)

(ret-ren-n+-a)
(%, {E, Ry / (#ren(Rp) D)} & 1)0e; = (3K) 1 (ret-ren-n+-b)

if x ¢ Dom(R;) where y is fresh

That is our preliminary idea of how explicit renaming can
be formalized using staged environment machines. The core
idea is to (a) use S-expressions instead of structured terms,
and (b) provide renamers and comparators as a reflective
interface to the renaming environments.

IMore precisely, a renamer should always return the same name for the
same input. Hence, it needs to remember the fresh names it has generated
in some way.
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5 Discussion and Future Directions

In the previous section, we outlined the basic idea of provid-
ing formal models for hygienic macro expansion. However,
several challenges remain in defining a full semantics for a
programming language with hygienic macros.

The most significant challenge is defining multi-level se-
mantics. Scheme programs with multi-level macros are com-
mon — for example, a macro whose definition uses other
macros, or a macro that generates the definition of another
macro. Thus, handling such cases is crucial for practical ap-
plications.

The core difficulty lies in deciding how to treat macros at
levels deeper than level 1. Should these macros be expanded,
or should we perform renaming without expansion? Expand-
ing them raises the issue of staging discipline, because a
macro at a deeper level may be invoked before its definition
becomes available. On the other hand, skipping macro ex-
pansion requires us to ensure that renaming on unstructured
S-expressions can be performed safely.

Possible approaches include employing more sophisti-
cated staging models. For example, MacoCaml [24] adopts a
staging model in which each module is compiled separately,
and compiled modules can be used by other modules both
at run time and at compile time. This model can represent
macro-using-macros, like the earlier example, while keeping
the language essentially two-level. Such an approach could
also be well suited to Lisp-style hygienic macros.

If we instead wish to maintain multi-level language, we
may want to elaborate models for renaming S-expressions.
This includes the approach by Dybvig et al. 7], which an-
notates S-expressions with syntactic information, and the
approach by Adams [1], which elaborates symbols into pairs
of binder and reference parts. We would also need to in-
fer level information from expressions, where multi-level
binding-time analysis [13, 14] appears to be a promising ap-
proach. However, note that such analysis would need to be
performed dynamically during macro expansion, because
we cannot analyze unstructured S-expressions before macro
expansion.

In any case, addressing these questions is a prerequisite
for developing a full semantics of hygienic macros that re-
flects their practical usage. In this sense, this position paper
represents only a starting point. We expect that further re-
search will enable more fine-grained comparisons between
multi-stage programming and hygienic macros, which we
expect will benefit both areas.
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A Full Definition of Staged CEK Machine

Variables X,y

Terms 0 x| Ax. 0] 1080 | ()
tfH' x | Ax tﬂ+ | t1"+ tZIH' | (tn++> ‘ ,__tn
Values V0 clos{E,R Ax. t°} | (+')
n+ n
v t
Value Envs. E €e|Ex=v
Renaming Envs. R €| R x =x

o

o|{ER/at’}>«’| {+°O}>«°

Conts. K
{~o} > «!
K" {Ax. O} > k™
{E,R/Ot™}p> k™ | (v*O}>«k"
{(o)}e x| {~O} > ™
(x,E,R, x°)20 — (E(x), KO)Bet (ev-var-0)
(Ax. ©°, E,R, k°)0, — (clos{E, R, Ax. °},x)%,, (ev-1-0)
(4° % E.Rx°)), > (1°.E,.R.{E,R/ Ot} > x), (ev-app-0)
() ERK) — (L ER (D)) > k%), (ev-()-0)

(W {ER/Tt’} > k"0, — (% ER {vo} > "), (ret-app-l-0)

(v°, {clos{E, R, Ax. t,°} o} > k%)%, — (8, (E,x =°),R, K)gu (ret-app-r-0)

ret
(W) (B} & K)o = (VarD ey (ret-~-0)
(%, E, R k™)™ — (R(x), k™)™, (ev-var-n+)

(Ax. t"™, E,R k")l — (", E, (R x:=y),{Ay. 0} > &")I  (ev-A-n+)
where y is fresh

(5" "™ E,R k") — (4™, E,R{E,R/0t" } > k") (ev-app-n+)

()L ERK"™) 5 — (" ER{(O)} > &) 5T (ev-()n+)
(~t",E,R k") — ("\E,R {~O} > k"")], (ev-~-n+)
(V" {Ax gl o k"), o (Ao VT M), (ret-A-n+)

(V' AER/ Ot} b k"™, — (t" E,R (v O} > k") (ret-app-r-n+)

(™ AAw" 0} ™) = (w™ "KM (ret-app-l-n+)

ret ret
VO e K = (VK (ret-()-n+)
(VD e K, o (V) K (ret~-n-)

R(x)=y ifR=(R;,x=y,R;)and x ¢ Dom(R;)
R(x) =x otherwise
E(x)=v ifE=Ej,x:=v,Eyand x ¢ Dom(E;)

B Full Definition of Abstract Machines
with Hygienic Macros

(#t,E, R, K)gv — (#t,K)(r)et
(#f,E,R k)%, — (#f,1)%,
(O.ER 1), = (0,56)0e;
(x,E,R, K)gv — (#prim(x), K)get if x is primitive
(G ERK)¢y = (E(x),K) e
((A (X)), E R x)%, — (#clos(E,R, (A (X)) 9)),x)%, ifR(A)=2°
((ifs15253), E R k)0 — (51, E,R {E/(if O sz 83)} > k)0, if R(if) = if°
((quotes), E, R, K)gz, — (s, K)SE, if R(quote) = quote’
((qquote s), E, R, K)SU — (s,E,R, {(qquote 0)} > x)}, if R(qquote) = qquote’

((s1 %),ER, K)gz, — (s, E,R, {E/(O ?2))} > K)gv otherwise

(0, {E.R/ (33051 5)} > )% = (s, ER {ER/(0; 0 0 53)} > K)0,
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(#clos(E,R, (A () ), {E, R/ (@)} > k)], = (5 E, R 10)2,
(01, {E, R/ (#clos(E, (A (¥) ) B D)} & K))e; = (s, (B ¥ = (92,01)), R K)gy
(01, {E, R/ Ghprim (x) 2 D)} & 1)1 = (8(x, (T3, 01)), 1) e
(#t,{E,R/(if O s 82) } > K)ge[ — (s, E,R, K)gZJ
(#f, {E,R/(if O 5182} > K)%p — (52, E,R, k)%,
(%, {E, Ry/ (#ren(Ry) 0)} > K)Je; = (Ro(x),50)7e;
if x € Dom(R;)
(%, {E, Ry / (#1en(Ry) D)} & 1)0e, = (3,K)0er
if x ¢ Dom(R;) where y is fresh
(% {E.Ry/ Gbemp(Ry) y D) } > K) [ — (#8, k)¢ if R2(x) = Re(y)
(x,{E,Ry/(#cmp(Rz) yO) } > K)E.e, — (#F,K)Be, otherwise
(s, {E,R/embed O} > x)°,, — (s, E,R,x)},
(s, {(qauote D)} > K}, — ((qquote s),K) 7,

((qquote s), { (unquote O) } > K)Eet — (s, K)ie,

(#clos(Eq, Ry, (A (x®® x"" x™) 5,)), {Ez, R2/(macro 0. s5) } > k)%,
— (51, E', R, {Ez, Ry /embed O} > K)?,

where E' = (Ep, x¥P = 55, x™" := #ren(R; ), x™ = #cmp(Ry3) )

(B R K)o = (#8,K) s
(#F, B, R, K)oy = (#F,K) e
(0,ER K)o = (0,K)rer
(% E,R k)L, = (R(x),K) e
(A )ERK)g = (SERT =7).{(A O} e k),
where 3 are fresh
((unquote s), E, R, )c)éu — (s,E,R, {(unquote 0) } > )c)gu
if R(unquote) = unquote’
((macrox.s),E,R, K)év — (x,E,R, {E,R/(macroQ.s)} > K)gv
if R(macro) = macro®

((s1 %).ER, K)oy — (s1, E,R {E/(D ?})} > K)o4  otherwise

Rt =A:=2A%if = if°, ...
R(x) =y ifR=(Ry,x=y,R;)and x ¢ Dom(R;)
R(x) =x otherwise

E(x)=v ifE=E;,x:=0,E;andx ¢ Dom(E;)
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