

Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata

Masaki Waga^{1,2,3}

National Institute of Informatics¹, SOKENDAI², JSPS Research Fellow³

27 August 2019, FORMATS 2019

This work is partially supported by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), by JSPS Grants-in-Aid No. 15KT0012 & 18J22498

Monitoring

Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata

Masaki Waga^{1,2,3}

National Institute of Informatics¹, SOKENDAI², JSPS Research Fellow³

27 August 2019, FORMATS 2019

This work is partially supported by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), by JSPS Grants-in-Aid No. 15KT0012 & 18J22498

Why Monitoring?

Exhaustive formal method

(e.g. model checking, reachability analysis)

- The system is correct/incorrect for any execution
- We need system model (white box)
- Scalability is a big issue

Monitoring

- The system is correct/incorrect for the given execution
 - data-driven analysis
- We do not need system model (black box is OK)
- Usually scalable

Input

[Ulus+, FORMATS'14]

- Finite-valued signal σ
 - System <u>log</u>
 - e.g.,

- Real-time spec. ${\cal W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high for > 1 sec.

- All the subsignals $\sigma([t,t'])$ of the <u>log</u> satisfies the <u>spec.</u>
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

<u>Input</u>

[Ulus+, FORMATS'14]

- Finite-valued signal σ
 - System log
 - e.g.,

- Real-time spec. ${\mathcal W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high f

- All the subsignals $\sigma([t,t'])$ of the **log** satisfies the **spec.**
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

Input

[Ulus+, FORMATS'14]

- Finite-valued signal σ
 - System <u>log</u>
 - e.g.,

- Real-time spec. ${\mathcal W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high f

- All the subsignals $\sigma([t,t'])$ of the \log satisfies the spec.
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

Input

[Ulus+, FORMATS'14]

- Finite-valued signal σ
 - System <u>log</u>
 - e.g.,

- Real-time spec. ${\cal W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high f

- All the subsignals $\sigma([t,t'])$ of the \log satisfies the **spec.**
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

<u>Input</u>

[Ulus+, FORMATS'14]

- Finite-valued signal σ
 - System <u>log</u>
 - e.g.,

- discretized!! v_{low}
- Real-time spec. ${\mathcal W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high f

- All the subsignals $\sigma([t,t'])$ of the **log** satisfies the **spec.**
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

<u>Input</u>

[Ulus+, FORMATS'14]

- Finite-valued signal σ
 - System <u>log</u>
 - e.g.,

- discretized!! v_{low} 0 4.0 0 t
- Real-time spec. ${\mathcal W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high f

Output

- All the subsignals $\sigma([t,t'])$ of the **log** satisfies the **spec.**
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

We want to know **how robustly** the spec. is satisfied!!

ıvı. vvaya (NII)

Input

[Bakhirkin+, FORMATS'17]

- Real-valued piecewise-constant signal σ
 - System *log*
 - e.g.,

- Real-time spec. with signal constraints $\,\mathcal{W}$
 - Spec. to be monitored
 - e.g., The velocity should not keep > 80 for > 1 sec.

- How robustly, each subsignals $\sigma([t,t'))$ of the <u>log</u>, satisfies the <u>spec.</u>
 - e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0,4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5,7.8) = 40$, ...

<u>Input</u>

[Bakhirkin+, FORMATS'17]

- Real-valued piecewise-constant signal σ
 - System *log*
 - e.g.,

- **Spec.** to be monitored
 - e.g., The velocity should not ke > 80 for > 1 sec.

Output

- How robustly, each subsignals $\sigma([t,t'))$ of the <u>log</u>, satisfies the <u>spec.</u>
 - e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0,4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5,7.8) = 40$, ...

M. Waga (NII)

Input

[Bakhirkin+, FORMATS'17]

- Real-valued piecewise-constant signal σ
 - System <u>log</u>
 - e.g.,

- **Spec.** to be monitored
 - e.g., The velocity should not k > 80 for > 1 sec.

Output

- How robustly, each subsignals $\sigma([t,t'))$ of the <u>log</u>, satisfies the <u>spec.</u>
 - e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0,4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5,7.8) = 40$, ...

M. Waga (NII)

Input

[Bakhirkin+, FORMATS'17]

t'10

7.8 -8 -

2

0 2.0

- Real-valued piecewise-constant signal σ
 - System <u>log</u>
 - e.g.,

- **Spec.** to be monitored
 - e.g., The velocity should not k > 80 for > 1 sec.

Output

- How robustly, each subsignals $\sigma([t,t'))$ of the <u>log</u>, satisfies the <u>spec.</u>
 - e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0,4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5,7.8) = 40$, ...

M. Waga (NII)

40

30

20

10

-10

-20

-30

-40

4 6.5 8 10 t

Online Pattern Matching

• After reading the prefix signal σ' of $\sigma = \sigma'$ • σ'' , we obtain the partial result $\mathcal{M}(\sigma', \mathcal{W})$ of $\mathcal{M}(\sigma, \mathcal{W})$

Important in practice

Timed symbolic weighted automata (TSWA)

- New formalism for spec.
 - Automata structure is good for online monitoring
- Generality of semiring (same as the usual WFA)

	Boolean	sup-inf	tropical	
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$	
\oplus	V	sup	inf	
\otimes	^	inf	+	
6		M. Waga (NII)		

Contribution

- Introduced timed symbolic weighted automata (TSWA)
 - TSWA: timed automata with signal constraints (TSA)

Automata structure

+ semiring-valued weight function

Quantitative semantics

- Gave <u>online</u> algorithm for quantitative timed pattern matching
- Implementation + experiments → Scalable!!

Related Works

Timed

automata

Timed automata with signal constraints

Only "Robust"
Semantics
[Fainekos & Pappas, TCS'09]

Any Semantics defined by semiring-valued weight function

Outline

- Motivation + Introduction
- Technical Part
 - Timed symbolic weighted automata (TSWA)
 - TSWA: TA with signal constraints + weight function
 - Quantitative monitoring/timed pattern matching algorithm
 - Idea: zone construction with weight
- Experiments

Timed Automaton (TA)

Timed Symbolic Automaton (TSA)

Timed Symbolic Weighted Automaton (TSWA)

$$\kappa_r(u, (a_1 a_2 \dots a_m)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(u, (a_i))$$

$$\kappa_r(\bigwedge_{i=1}^n (x_i \bowtie_i d_i), (a)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(x_i \bowtie_i d_i, (a)) \text{ where } \bowtie_i \in \{>, \ge, <, <\}$$

$$\kappa_r(x \succ d, (a)) = a(x) - d \text{ where } \succ \in \{\ge, >\}$$

$$\kappa_r(x \prec d, (a)) = d - a(x) \text{ where } \prec \in \{\le, <\}$$

Timed Symbolic Weighted Automaton (TSWA)

Automata structure

Quantitative semantics

$$\kappa_r(u, (a_1 a_2 \dots a_m)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(u, (a_i))$$

$$\kappa_r(\bigwedge_{i=1}^n (x_i \bowtie_i d_i), (a)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(x_i \bowtie_i d_i, (a)) \text{ where } \bowtie_i \in \{>, \ge, <, <\}$$

$$\kappa_r(x \succ d, (a)) = a(x) - d \text{ where } \succ \in \{\ge, >\}$$

$$\kappa_r(x \prec d, (a)) = d - a(x) \text{ where } \prec \in \{\le, <\}$$

Weight function

$$\kappa: \Phi(X, \mathbb{D}) \times (\mathbb{D}^X)^{\otimes} \longrightarrow S$$

Constraints on signal values at the location

Sequence of signal values at the location

Semiring value

- $\kappa(\Lambda(l),u)$: weight for the stay at l with signal values u
- Semiring: set S with accumulating operators \oplus and \otimes
- We can use any complete and idempotent semiring

Semantics: Weighted TTS

- *l*: location
- v: clock valuation
- t: absolute time
- u: sequence of signal values after the latest discrete transition

M. Waga (NII)

$$\rightarrow$$
 (l_0 , c =0, 0, ε)

$$\rightarrow$$
 (l_0 , c =0, 0, ε) $\stackrel{2.0}{-}$ (l_0 , c =2, 2, { v = 7})

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{\epsilon} (l_1, c=0, 2, \varepsilon)$$

start
$$\rightarrow (l_0, v < 15)$$
 $c < 5 / c := 0$ $(l_1, v > 5)$ $c < 10$ (l_2, \top) (l_2, \top) here

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{\epsilon} (l_1, c=0, 2, \varepsilon)$$

$$5.0$$

$$-- \triangleright (l_1, c=5, 7, \{v=7\} \{v=12\})$$

start
$$\rightarrow \underbrace{\begin{pmatrix} l_0, v < 15 \end{pmatrix}}_{c < 5 \ /c := 0} \underbrace{\begin{pmatrix} l_1, v > 5 \end{pmatrix}}_{c < 10} \underbrace{\begin{pmatrix} l_2, \top \end{matrix}}_{c < 10} \underbrace{\begin{pmatrix} l_2, \top \end{matrix}}_{c$$

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 2, \varepsilon)$$

$$5.0 \xrightarrow{} (l_1, c=5, 7, \{v=7\} \{v=12\}) \xrightarrow{e} (l_2, c=5, 7, \varepsilon)$$

$$\kappa(v > 5, \{v=7\} \{v=12\})$$

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 2, \varepsilon)$$

$$5.0$$

$$- \blacktriangleright (l_1, c=5, 7, \{v=7\}) \{v=12\}) \xrightarrow{\kappa(v < 15, \{v=7\})} (l_2, c=5, 7, \varepsilon)$$

$$\kappa(v > 5, \{v=7\}) \{v=12\})$$

	Boolean	sup-inf	tropical
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	ℝ ∪ {+∞}
\oplus	V	sup	inf
\otimes	٨	inf	+

M. Waga (NII)

Accumulating paths in Weighted TTS

start
$$\rightarrow (l_0, v < 15)$$
 $c < 5 / c := 0$ $(l_1, v > 5)$ $c < 10$ (l_2, \top) 7.0

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 3, \varepsilon) \xrightarrow{5.0} (l_1, c=5, 7, \{v=7\}\}\{v=12\}) \xrightarrow{e} (l_2, c=5, 7, \varepsilon)$$

$$\kappa(v < 15, \{v=7\}) \otimes \kappa(v > 5, \{v=7\}\}\{v=12\})$$

→
$$(l_0, c=0, 0, \varepsilon)$$
 → $(l_0, c=4, 4, \{v=7\}\{v=12\})$ \xrightarrow{e} $(l_1, c=0, 4, \varepsilon)$ → $(l_1, c=3, 7, \{v=12\})$ \xrightarrow{e} $(l_2, c=3, 7, \varepsilon)$ $\kappa(v < 15, \{v=7\}\{v=12\})$ $\otimes \kappa(v > 5, \{v=12\})$

	Boolean	sup-inf	tropical	
S	{True/False}	$\mathbb{R} \cup \{\pm \infty \}$	$\mathbb{R} \cup \{+\infty\}$	
\oplus	V	sup	inf	
\otimes	^	inf	+	
16		M. Waga (NII)		

Accumulating paths in Weighted TTS

start
$$\longrightarrow (l_0, v < 15)$$
 $c < 5 / c := 0$ $(l_1, v > 5)$ $c < 10$ (l_2, \top)

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 3, \varepsilon) \xrightarrow{5.0} (l_1, c=5, 7, \{v=7\} \{v=12\}) \xrightarrow{e} (l_2, c=5, 7, \varepsilon)$$

$$\kappa(v < 15, \{v=7\}) \otimes \kappa(v > 5, \{v=7\} \{v=12\})$$

→
$$(l_0, c=0, 0, \varepsilon)$$
 $\stackrel{4.0}{\longrightarrow}$ $(l_0, c=4, 4, \{v=7\}\{v=12\})$ $\stackrel{e}{\longrightarrow}$ $(l_1, c=0, 4, \varepsilon)$ $\stackrel{3.0}{\longrightarrow}$ $(l_1, c=3, 7, \{v=12\})$ $\stackrel{e}{\longrightarrow}$ $(l_2, c=3, 7, \varepsilon)$ $\kappa(v < 15, \{v=7\}\{v=12\})$ $\otimes \kappa(v > 5, \{v=12\})$

	Boolean	sup-inf	tropical
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$
\oplus	V	sup	inf
\otimes	٨	inf	+
16	M. Waga (NII)		

Timed symbolic weighted automata (TSWA)

• TSA: the automata structure

start
$$\longrightarrow (l_0, v < 15)$$
 $c < 5 / c := 0$ $\downarrow (l_1, v > 5)$ $c < 10$ $\downarrow (l_2, \top)$

- Weight function (κ): the one-step semantics (weight on each transition)
- Semiring operations (⊗,⊕): how to accumulate weights
 - One-step semantics → semantics for a path/TSWA

Outline

- Motivation + Introduction
- Technical Part
 - Timed symbolic weighted automata (TSWA)
 - TSWA: TA with signal constraints + weight function
 - Quantitative monitoring/timed pattern matching algorithm
 - Idea: zone construction with weight
- Experiments

Review: Reachability by zones

Infinitely many reachable states!! → symbolic analysis by **zones**

Review: Reachability by zones

 Zone Z symbolically represents infinitely many clock valuations!!

Infinitely many reachable states!! → symbolic analysis by **zones**

Reachable at **all** the transitions (Λ)

	Boolean	sup-inf	tropical
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$
\oplus	V	sup	inf
\otimes	٨	inf	+
22	M. Waga (NII)		

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$\rightarrow (l_0, c = T = 0, \varepsilon)$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$\rightarrow (l_0, c = T = 0, \epsilon) \longrightarrow (l_0, 0 < c = T < 3.5, \{v = 7\})$$

- T: absolute time < This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$\rightarrow (l_0, c = T = 0, \epsilon) \longrightarrow (l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$\kappa(v < 15, \{v = 7\})$$

$$(l_1, 0 = c < T < 3.5, \epsilon)$$

- T: absolute time < This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$\rightarrow (l_0, c = T = 0, \epsilon) \longrightarrow (l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$\kappa(v < 15, \{v = 7\})$$

$$(l_1, 0 = c < T < 3.5, \epsilon)$$

$$(l_1, 0 < c < T < 3.5, \{v = 7\})$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$(v < 15, \{v = 7\})$$

$$(l_1, 0 = c < T < 3.5, \epsilon)$$

$$(l_1, 0 < c < T < 3.5, \epsilon)$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_0, c = T = 0, \epsilon) - (l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$\{v = 7\}\}$$

$$(l_1, 0 = c < T < 3.5, \epsilon)$$

$$(l_1, 0 < c < T < 3.5, \{v = 7\})$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_0, c = T = 0, \varepsilon) - (l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$\{v = 7\}\}$$

$$(l_1, 0 = c < T < 3.5, \varepsilon)$$

$$(l_1, 0 < c < T < 3.5, \{v = 7\}) - (l_1, 0 < c < T = 3.5, \{v = 7\})$$

- T: absolute time < This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, c = T = 0, \varepsilon) - (l_{0}, 0 < c = T < 3.5, \{v = 7\})$$

$$(v < 15, \{v = 7\})$$

$$(l_{1}, 0 = c < T < 3.5, \varepsilon)$$

$$(l_{1}, c = 0 < T = 3.5, \varepsilon)$$

$$(l_{1}, c = 0 < T = 3.5, \varepsilon)$$

$$(l_{1}, c = 0 < T = 3.5, \varepsilon)$$

- T: absolute time < This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, c = T = 0, \epsilon) \longrightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\}) \longrightarrow (l_{0}, 3.5 < c = T = 7, \{v = 7\}) \longrightarrow (l_{0}, 3.5 < c = T = 7, \{v = 7\}, \{v = 12\})$$

$$(l_{1}, 0 < c < T < 3.5, \epsilon)$$

$$(l_{1}, c = 0 < T = 3.5, \epsilon)$$

$$(l_{1}, 0 < c < T = 3.5, \{v = 7\})$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, 0 < c = T < 3.5, \{v = 7\}) \longrightarrow (l_{0}, 0 < c = T = 7, \{v = 7\}) \longrightarrow (l_{0}, 3.5 < c = T = 7, \{v = 7\} \{v = 12\})$$

$$(l_{1}, 0 = c < T < 3.5, v) \qquad (l_{1}, c = 0 < T = 3.5, \epsilon)$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T < 3.5, \{v = 7\}) \longrightarrow (l_{1}, 0 < c < T = 3.5, \{v = 7\})$$

- T: absolute time < This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, c = T = 0, c) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\}) \rightarrow (l_{0}, 3.5 < c = T = 7, \{v = 7\} \{v = 12\})$$

$$(l_{1}, 0 = c < T < 3.5, \epsilon)$$

$$(l_{1}, 0 = c < T < 3.5, \epsilon)$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T = 3.5, \{v = 7\}) \rightarrow (l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T = 3.5, \{v = 7\}) \rightarrow (l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, c = T = 0, \epsilon) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\}) \rightarrow (l_{0}, 3.5 < c = T = 7, \{v = 7\}) \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \epsilon)$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

- T: absolute time < This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, c = T = 0, \varepsilon) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\}) \rightarrow (l_{0}, 3.5 < c = T = 7, \{v = 7\} \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \varepsilon)$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$(l_{0}, 0 < c = T < 3.5, \{v = 7\}) \qquad (l_{0}, 0 < c = T = 3.5, \{v = 7\}) \qquad (l_{0}, 0 < c = T = 7, \{v = 7\}) \qquad (v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \epsilon)$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

$$(l_{1}, 0 < c < T \in (3.5, 7), \{v = 12\})$$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

- This is OK for monitoring T: absolute time
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

- T: absolute time
 This is OK for monitoring
- Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

Main Theorem: Correctness

Thm.

The shortest distance in the zone graph with weight is same as the shortest distance in the weighted TTS for any complete and idempotent semiring.

All of them work!!

	Boolean	sup-inf	tropical
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$
\oplus	V	sup	inf
\otimes	٨	inf	+

Local Conclusion: Zone Construction with Weight

- The construction is basically same as the usual zone construction
- Weights are same as weighted TTS
- The state space is finite thanks to zones and finite horizon of the input signal

Matching Automata for Pattern Matching

[Bakhirkin+, FORMATS'18]

- Add l_{init} to wait for the beginning of the matching
- Add clock variable T for the beginning of the matching

$$\operatorname{start} \longrightarrow \left(\overrightarrow{l_{\text{init}}}, \top \right) \top / T' := 0, c := 0 \\ l_0, v < 15 \right) \xrightarrow{c < 5/c} = 0 \\ \downarrow c < 5/c := 0 \\ \downarrow c < 5/c := 0 \\ \downarrow c < 10 \\ \downarrow c < 1$$

Outline

- Motivation + Introduction
- Technical Part
 - Timed symbolic weighted automata (TSWA)
 - TSWA: TA with signal constraints + weight function
 - Quantitative monitoring/timed pattern matching algorithm
 - Idea: zone construction with weight
- Experiments

Environment of Experiments

- Semirings: sup-inf ($\mathbb{R} \cup \{\pm \infty\}$, sup, inf) and tropical ($\mathbb{R} \cup \{+ \infty\}$, inf, +)
- Used 3 original benchmarks (automotive):
 - Inspired by ST-Lib [Kapinski+, SAE Technical Paper'16]
- **Overshoot**: $|v_{ref} v|$ gets large after v_{ref} changed
 - Only matches the sub-signals of length < 150 time units
- **Ringing**: v(t) v(t-10) gets positive and negative repeatedly
 - Only matches the sub-signals of length < 80 time units
- Overshoot (unbounded): $|v_{ref} v|$ gets large after v_{ref} changed
 - No such bounded
- Amazon EC2 c4.large instance / Ubuntu 18.04 LTS (64 bit)
 - 2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, 3.75 GiB RAM

Execution Time

Bounded

Unbounded

- Execution time is linear for the bounded spec.
 - 1,000 entries / 1 or 2 sec.
- Execution time explodes for the unbounded spec.

Conclusion

- Introduced timed symbolic weighted automata (TSWA)
 - TSWA: TA with signal constraints + weight function
- Gave <u>quantitative monitoring/timed pattern matching</u> <u>algorithm</u>
 - **Idea**: zone construction with weight
- Implementation + experiments
 - scalable for bounded specifications

Appendix

Example: "Robust" Semantics

Weight Function: minimum distance from the threshold

$$\kappa_r(u, (a_1 a_2 \dots a_m)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(u, (a_i))$$

$$\kappa_r(\bigwedge_{i=1}^n (x_i \bowtie_i d_i), (a)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(x_i \bowtie_i d_i, (a)) \text{ where } \bowtie_i \in \{>, \ge, <, <\}$$

$$\kappa_r(x \succ d, (a)) = a(x) - d \text{ where } \succ \in \{\ge, >\}$$

$$\kappa_r(x \prec d, (a)) = d - a(x) \text{ where } \prec \in \{\le, <\}$$

Robustness

Semiring: sup-inf semiring

Example: "Robust" Semantics

Weight Function: minimum distance from the threshold

$$\kappa_r(u, (a_1 a_2 \dots a_m)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(u, (a_i))$$

$$\kappa_r(\bigwedge_{i=1}^n (x_i \bowtie_i d_i), (a)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(x_i \bowtie_i d_i, (a)) \text{ where } \bowtie_i \in \{>, \ge, \le, <\}$$

$$\kappa_r(x \succ d, (a)) = a(x) - d \text{ where } \succ \in \{\ge, >\}$$

$$\kappa_r(x \prec d, (a)) = d - a(x) \text{ where } \prec \in \{\le, <\}$$

Robustness

Semiring: sup-inf semiring

	Boolean	sup-inf	tropical
S	{True/False}	ℝ ∪ {± ∞ }	ℝ ∪ {+∞ }
\oplus	V	sup	inf
\otimes	٨	inf	+
36	M. Waga (NII)		

Insights: Zone Construction with Weight

- The construction is basically same as the usual zone construction
- The state space is finite thanks to zones and finite horizon of the input signal
- The weight is constant because the signal is piecewise-constant

Comparison of the semiring

$$\operatorname{start} \longrightarrow \overbrace{l_0, v < 15} \xrightarrow{c < 5 \ /c := 0} \overbrace{l_1, v > 5} \xrightarrow{c < 10} \overbrace{l_2, \top}$$

$$\kappa(v < 15, \{v=13\}) = 2$$
 \otimes $\kappa(v > 5, \{v=13\}) = 8$

$$\kappa(v > 5, \{v=13\}) = 8$$

Sup-inf semiring

$$2 \otimes 8 = \inf(2, 8) = 2$$

Tropical semiring

$$2 \otimes 8 = 2 + 8 = 10$$

	Boolean	sup-inf	tropical	
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$	
\oplus	V	sup	inf	
\otimes	٨	inf	+	
38		M. Waga (NII)		