
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Manifest Contracts for Datatypes

Taro Sekiyama
Graduate School of Informatics

Kyoto University
t-sekiym@kuis.kyoto-u.ac.jp

Yuki Nishida
Graduate School of Informatics

Kyoto University
nishida@fos.kuis.kyoto-u.ac.jp

Atsushi Igarashi
Graduate School of Informatics

Kyoto University
igarashi@kuis.kyoto-u.ac.jp

Abstract
We study algebraic datatypes in a manifest contract system, a soft-
ware contract system where contract information occurs as refine-
ment types. We first compare two simple approaches: refinements
on type constructors and refinements on data constructors. For ex-
ample, lists of positive integers can be described by {l ∶int list ∣
for all (λy .y > 0) l} in the former, whereas by a user-defined
datatype pos list with cons of type {x ∶int ∣ x > 0}×pos list →
pos list in the latter. The two approaches are complementary: the
former makes it easier for a programmer to write types and the latter
enables more efficient contract checking. To take the best of both
worlds, we propose (1) a syntactic translation from refinements on
type constructors to equivalent refinements on data constructors
and (2) dynamically checked casts between different but compat-
ible datatypes such as int list and pos list. We define a manifest
contract calculus λH

dt to formalize the semantics of the casts and
prove that the translation is correct.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Data types and
structures; D.2.4 [Software Engineering]: Software/Program Veri-
fication—Programming by contracts

General Terms Languages, Design, Theory

Keywords algebraic datatypes, datatype translation, contract check-
ing, refinement types

1. Introduction
1.1 Background: Software Contracts
Software contracts are a prominent tool to develop robust software.
Contracts allow programmers to write specifications in the same
programming language as that used to write programs, making it
possible to check such specifications at run time. They are pro-
vided as libraries or primitive constructs in various practical pro-
gramming languages. For example, the C language provides the
assert macro to check at run time that a given Boolean expression
evaluates to true and the Eiffel language [21] provides a dedicated
construct to specify and check pre- and postconditions of methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676996

and class invariants. Racket is a representative functional language
with higher-order contracts, based on the seminal work by Findler
and Felleisen [9].

Although contracts were originally conceived as a mechanism
to check software properties dynamically, it was also clear that con-
tract checking could cause significant overhead for various reasons
and that it would be desirable to find contract violations earlier
than run time. A lot of research has been conducted to address
these problems. For example, Herman, Tomb, and Flanagan [16]
and Siek and Wadler [25] address the space-efficiency problem that
inserting contract checking can degrade tail calls into non-tail calls;
Findler, Guo, and Rogers [10] introduce lazy contract checking to
address the problem that naive contract checking for datatypes can
make asymptotic time complexity worse; and there is a lot of work
on static analysis/verification of contracts [11, 15, 18, 22, 32, 33]
to find out statically which contract checking always succeeds in
order to eliminate such successful contract checking for optimiza-
tion. The last line of work is also closely related to static refinement
checking [17, 24, 27, 31].

In this paper, we revisit the problem of contract checking on
datatypes, especially in the context of manifest contracts [4, 11, 13,
14, 18].

1.2 Manifest Contracts and Two Approaches to Datatypes
In a manifest contract system, unlike more traditional (dubbed la-
tent by Greenberg, Pierce, and Weirich [14]) contract systems, con-
tract information occurs as refinement types of the form {x ∶T ∣ e}.
This form of type denotes the subset of values v of type T satis-
fying the Boolean expression e, namely, e {v/x} reduces to true.
For example, {x ∶int ∣ x > 0} denotes positive integers. Refinement
types can be introduced by using casts, which involve run-time
checking. A cast ⟨T ⇐ S⟩` means that, when applied to a value
of the source type S , it is checked that the value can behave as
a value of the target type T . For example, the cast application
⟨{x ∶int ∣ x > 0} ⇐ int⟩` 5 succeeds, after confirming 5 > 0 re-
turns true, and returns 5. If a cast fails, an uncatchable exception
will be raised with the label ` to identify which cast has failed.
Computational calculi of manifest contracts have been studied as
theoretical frameworks for hybrid contract checking [11, 18], in
which contract checking is performed both statically and dynam-
ically. The idea behind hybrid contract checking is to check, for
each cast ⟨T ⇐ S⟩`, whether it is an upcast, or equivalently, S is a
subtype of T . Upcasts are proved to be contextually equivalent to
the identity functions and so safe to be eliminated. The other casts
are still subject to run-time check.

There are two approaches to specifying contracts for data struc-
tures. One is to put refinements on the type constructor for a plain
data structure and the other is to put refinements on (types for)
data constructors. For example, a type slist for sorted integer lists
can be written {x ∶int list ∣ sorted x} in which sorted is a familiar
Boolean function that returns whether the argument list is sorted

in the former, or defined as another datatype with refined cons of
type x ∶int × {xs ∶slist ∣nil xs or x ≤ head xs} → slist in the latter.
Here, the argument type is a dependent product type, expressing
the relationship between the two components in the pair. However,
as pointed out by Findler, Guo, and Rogers [10], neither approach
by itself is very satisfactory.

On the one hand, the former approach, which is arguably easier
for ordinary programmers, may cause significant overhead in con-
tract checking to make asymptotic time complexity worse. To see
how it happens, let us consider function insert_sort for inser-
tion sort. The sorting function and its auxiliary function insert can
be defined in the ML-like syntax as follows.

type slist1 = {x:int list | sorted x}

let rec insert (x:int) (l:slist1) : slist1 =
match l with

| [] -> ⟨slist1⇐ int list⟩`1 [x]
| y::ys ->

if x <= y then ⟨slist1⇐ int list⟩`2 (x::l)

else ⟨slist1⇐ int list⟩`3

(y::(insert x (⟨slist1⇐ int list⟩`4 ys)))

let rec insert_sort (l:int list) : slist1 =
match l with
| [] -> []
| x::xs -> insert x (insert_sort xs)

Without gray-colored casts, insert_sort would be an ordinary
insertion-sort function. However, in insert, the four subexpres-
sions [x], x::l, y::(insert x ys) and ys, which are given type
int list, are actually expected to have type slist1 by the con-
text. To fill the gap1, we have to check whether these subexpres-
sions satisfy the contract sorted. Notice that these casts cannot be
eliminated by simple subtype checking because int list is obvi-
ously not a subtype of slist1. As far as we understand, existing
technologies cannot verify these casts will be successful, at least,
without giving hints to the verifier. Unfortunately, leaving these
casts (especially ones with `2, `3, and `4) has an unpleasant effect:
They traverse the entire lists to check sortedness, even though the
lists have already been sorted, making the asymptotic time com-
plexity of insert from O(m) to O(m2), where m stands for the
length of the input.

On the other hand, the latter approach, which exploits refine-
ment in argument types of data constructors, does not have this ef-
ficiency problem (if not always). For example, we can define sorted
lists as a datatype with refined constructors:

type slist2 =
SNil

| SCons of
x:int × {xs:slist2 | nil xs or x <= head xs}

Here, nil and head are functions2 that return whether a given list
is empty and the first element of a given list, respectively, and a
type of the form x ∶T1 ×T2 is a dependent product type, which
denotes pairs (v1, v2) of values such that v1 and v2 are of types T1

and T2 {v1/x}, respectively. So, SCons takes an integer x and a
(sorted) list whose head (if any) is equal to or greater than x. Using
slist2, we can modify the functions insert and insert_sort
to perform less dynamic checking.

let rec insert ’ (x:int) (l:slist2) : slist2 =

1 Actually, there are subexpressions whose expected types are int list
but actual types are slist1. We assume that slist1 can be converted to
int list for free.
2 Precisely speaking, these functions have to be defined together with
slist2 but we omit them for brevity.

match l with

| SNil -> SCons (x,⟨slistx ⇐ slist2⟩` SNil)
| SCons (y, ys) ->

if x <= y then SCons (x,⟨slistx ⇐ slist2⟩` l)
else SCons

(y,⟨slisty ⇐ slist2⟩` (insert ’ x ys))

let rec insert_sort ’ (l:int list) : slist2 =
match l with
| [] -> SNil
| x::xs -> insert ’ x (insert_sort ’ xs)

Here, sliste stands for {xs:slist2 | nil xs or e <= head
xs}. Since the contract in the cast ⟨slistx ⇐ slist2⟩` does not
traverse xs, it is more efficient than the first definition; in fact, the
time complexity of insert’ remains to be O(m). Moreover, it
would be possible to eliminate the cast on l by collecting con-
ditions (l is equal to SCons(y, ys) and x <= y) guarding this
branch [24]. (It is more difficult to eliminate the other cast because
the verifier would have to know that the head of the list returned by
the recursive call to insert’ is greater than y.)

However, this approach has complementary problems. First, we
have to maintain the predicate function sorted and the correspond-
ing type definition slist2 separately. Second, it may not be a
trivial task to write down the specification as data constructor re-
finement. For example, consider the type of lists whose elements
contain a given integer n . A refinement type of such lists can be
written {l:int list | member n l} using the familiar member
function. One possible datatype definition corresponding to the re-
finement type above would be given by using an auxiliary datatype,
parameterized over an integer n and a Boolean flag p to represent
whether n has to appear in a list.

type incl_aux⟨p:bool , n:int⟩ =
LNil of {unit|not p}

| LCons of x:int × incl_aux⟨not (x=n) and p, n⟩

type list_including⟨n:int⟩ = incl_aux⟨true ,n⟩

(Notice that incl_aux⟨false,n⟩ is essentially int list and, if
a list without n is given type incl_aux⟨p,n⟩, then p must be
false.) We do not think it is as easy to come up with a datatype
definition like this as the refinement type above.

Another issue is interoperability between a plain type and its
refined versions: Just as casts between slist1 and int list are
allowed, we would hope that the language supports casts between
slist2 and int list, even when they have different sets of data
constructors. Such interoperability is crucial for code reuse [10]—
without it, we must reimplement many list-processing functions,
such as sort, member, map, etc., every time a refined datatype
is given. As pointed out in Vazou, Rondon, and Jhala [27], one
can give one generic datatype definition, which is parameterized
over predicates on components of the datatype, and instantiate it
to obtain plain and sorted list types but, as we will show later,
refined datatype definitions may naturally come with more data
constructors than the plain one, in which case parameterization
would not work (the number of constructors is the same for every
instantiation).

In short, the two approaches are complementary.

1.3 Our Contributions
Our work aims at taking the best of both worlds. First, we give
a provably correct syntactic translation from refinements on type
constructors, such as the Boolean function sorted, to equiva-
lent type definitions where data constructors are refined, namely,
slist2. This translation is closely related to the work by Atkey,
Johann, and Ghani [3] and McBride [20], also concerned about

systematic generation of a new datatype; see Section 5 for com-
parison. Second, we extend casts so that casts between similar but
different datatypes (what we call compatible types, which are de-
clared explicitly in datatype definitions) are possible. For exam-
ple, ⟨slist2 ⇐ int list⟩`(1 :: 2 :: []) yields SCons(1,
SCons(2, SNil)), whereas ⟨slist2 ⇐ int list⟩` (1 :: 0
:: []) raises blame `. Thanks to the two ideas, a programmer can
automatically derive a datatype definition from a familiar Boolean
function, exploit the resulting datatype for less dynamic checking
as we saw in the example of insertion sort, and also use it, when
necessary, as if it were a refinement type using the Boolean func-
tion.

We formalize these ideas as a manifest contract calculus λH
dt

and prove basic properties such as subject reduction and progress.
We follow the existing approach, advocated by Belo et al. [4], to
defining a manifest calculus without subtyping but improve it by
modifying the semantics of casts slightly and simplifying the type
equivalence relation. These changes play a crucial role in proving
subject reduction and other semantic properties such as parametric-
ity. We also give a first syntactic proof of the property that “if a pro-
gram is given a refinement type {x ∶T ∣ e} and it results in a value
v , then v satisfies the predicate e” in the context of manifest cal-
culi. This property was proved by using semantic methods in the
literature [14, 18]. A syntactic proof would have been possible for
a polymorphic manifest calculus FH [4] but the metatheory of FH
depends on a few conjectures, which unfortunately turned out to be
false recently (personal communication).

Our contributions are summarized as follows:

• We propose casts between compatible datatypes to enhance
interoperability among a plain datatype and its refined versions.

• We define a manifest contract calculus λH
dt to formalize the

semantics of the casts.
• We formally define a translation from refinements on type con-

structors to type definitions where data constructors are refined
and prove the translation is correct.

We also have a toy implementation of λH
dt on top of OCaml and

Camlp4 and it is available at http://www.fos.kuis.kyoto-u.
ac.jp/~t-sekiym/papers/rech/. A full version with proofs is
also found there.

We note that this work gives type translation but does not give
translation from a program with refinement types to one with re-
fined datatypes, so if a programmer has a program with, for exam-
ple, slist1, then he has to rewrite it to one with a datatype like
slist2 by hand. Automatic program transformation is left as fu-
ture work.

The rest of the paper is organized as follows. Section 2 gives an
overview of our datatype mechanism and Section 3 formalizes λH

dt

and shows its type soundness. Then, Section 4 gives a translation
from refinement types to datatypes and proves its correctness. We
discuss related work in Section 5 and conclude in Section 6.

2. Overview
In this section, we informally describe our proposals of datatype
definitions, casts between compatible datatypes, and translation,
mainly by means of examples.

As we have seen already in the example of sorted lists, our
datatype definition allows the argument types of data constructors
to be refined using the set comprehension notation {x ∶T ∣ e} and
dependent product types x ∶T1 ×T2. We also allow parameteriza-
tion over terms as in incl_aux in the previous section.

2.1 Casts for Datatypes
As we have discussed in the introduction, in order to enhance
interoperability between refined datatypes, we allow casts between
two different datatypes if they are “compatible”; in other words,
compatibility is used to disallow casts between unrelated types
(for example, the integer type and a function type). Compatibility
for types other than datatypes means that two types are the same
by ignoring refinements; compatibility for datatypes means that
there is a correspondence between the sets of the data constructors
from two datatypes and the argument types of the corresponding
constructors are also compatible. In our proposal, a correspondence
between constructors has to be explicitly declared. So, the type
slist2 in the previous section is actually written as follows:

type slist2 =
SNil || []

| SCons || (::) of
x:int × {xs:slist2 | nil xs or x <= head xs}

The symbol || followed by a data constructor from an exist-
ing datatype declares how constructors correspond. The types
int list and slist2 are compatible because both SNil and
[] take no arguments and the argument type x:int × {xs:slist2

| nil xs or x <= head xs} of SCons is compatible with int

× int list of (::). (Precisely speaking, compatibility is defined
coinductively.) Readers may think that explicit declaration of a cor-
respondence of data constructors seems cumbersome. However, we
could replace these declarations by a compatibility declaration for
type names as slist2 || int list and let the system infer the
correspondence between data constructors. Such inference is easy
for many cases, where the argument types of data constructors are
of different shapes, as in this example.

A cast for datatypes converts data constructors to the
corresponding ones and puts a new cast on components.
For example, ⟨slist ⇐ int list⟩` (1 ∶∶2 ∶∶3 ∶∶ []) reduces to
SCons (1,SCons (2,SCons (3,SNil))) as follows:

⟨slist⇐ int list⟩` (1 ∶∶2 ∶∶3 ∶∶ [])
→ SCons(⟨x ∶int×{xs ∶slist ∣nil xs or x ≤ head xs}⇐ int× int list⟩`

(1,2 ∶∶3 ∶∶ []))
→ SCons(1, ⟨{xs ∶slist ∣nil xs or 1 ≤ head xs}⇐ int list⟩` (2 ∶∶3 ∶∶ []))
→ . . .
→ SCons (1,SCons (2,SCons (3,SNil)))

In the example above, the correspondence between data con-
structors is bijective but we actually allow nonbijective correspon-
dence, too. This means that a new datatype can have two or more
(or even no) data constructors corresponding to a single data con-
structor from an existing type. For example, an alternative defini-
tion of list_including is as follows:

type list_including⟨n:int⟩ =
LConsEq || (::) of {x:int|x=n} × int list

| LConsNEq || (::) of
{x:int|x<>n} × list_including⟨n⟩

This version of list_including has no constructors compatible
to Nil because the empty list does not include n. By contrast, there
are two constructors, LConsEq and LConsNEq, both compatible to
(::). The constructor LConsEq is used to construct lists where the
head is equal to n , and LConsNEq to construct lists where the head
is not equal to n but the tail list includes n . A cast to the new
version of list_including works by choosing either LConsEq
or LConsNEq, depending on the head of the input list:

⟨list including⟨0⟩⇐ int list⟩` [] Ð→∗ ⇑`
⟨list including⟨0⟩⇐ int list⟩` (2 ∶∶0 ∶∶1 ∶∶ []) Ð→∗

LConsNEq (2, (LConsEq (0,1 ∶∶ [])))

This cast does not have to traverse a given list when it succeeds
(notice int list in the argument type of LConsEq and 1 ∶∶ [] in the
second example above).

Although it is fairly clear how to choose an appropriate con-
structor in the example above, it may not be as easy in general.
In the formal semantics we give in this paper, we model these
choices as oracles. In practice, a constructor choice function is
specified along with a datatype definition either manually or of-
ten automatically—in fact, we will show that a constructor choice
function can be systematically derived when a new datatype is gen-
erated from our translation. More interestingly, the asymptotic time
complexity of the cast from a plain list to the generated datatype is
no worse than the cast to the original refinement type. In this sense,
the translation preserves efficiency of casts. This efficiency preser-
vation lets us conjecture that, when a programmer rewrites a pro-
gram with the refinement type to one with the generated datatype,
the asymptotic time complexity of the latter program becomes no
worse than the former. We discuss efficiency preservation in detail
in Section 4.3.

Allowing nonbijective correspondence between constructors
simplifies our translation and makes dynamic contract checking
more efficient as in the example above.

2.2 Ideas for Translation
We informally describe the ideas behind our translation through the
example of list including above. We start with the refinement type
{x ∶int list ∣membern x}, where member n x is a usual function,
which returns whether n appears in list x:

let rec member (n:int) (l:int list) =
match l with
| [] -> false
| x::xs ->

if x = n then true
else member n xs

Through this paper, we always suppose that some logical opera-
tions such as && and || are desugared to simplify our formalization,
and so here we write if x = n then true else member n xs
instead of x = n || member n xs. We examine how list including
corresponds to member. For reference, the definition of list including
is shown below again:

type list_including⟨n:int⟩ =
| LConsEq || (::) of {x:int|x=n} × int list
| LConsNEq || (::) of

{x:int|x<>n} × list_including⟨n⟩

We expect that a value of list including⟨n⟩ returns true when it is
passed to member n (modulo constructor names).

It is not difficult to observe two things. First, each constructor
and its argument type represent when the predicate returns true. In
this example, there are two reasons that member n x returns true:
either (1) n is equal to the first element of x or (2) n is not equal to
the first element of x but member n is true for the tail of x. The con-
structors LConsEq and LConsNEq and their argument types repre-
sent these conditions. Since member n x never returns true when
x is the empty list, there is no constructor in list including. Second,
a recursive call on a substructure corresponds to type-level recur-
sion: member n xs in the else-branch in member is represented
by list including⟨n⟩ in the argument type of LConsNEq.

So, the basic idea of our translation scheme is to analyze the
body of a given predicate function and collect guarding conditions
on branches reaching true. As mentioned above, recursive calls
on the tail become type-level recursion. This correspondence be-
tween execution paths and data constructors is also useful to de-
rive a constructor choice function for a cast. For example, a cast
to list including⟨n⟩ will choose LConsEq when (the list being

Types
T ∶∶= Bool ∣ x ∶T1 → T2 ∣ x ∶T1 ×T2 ∣ {x ∶T ∣ e} ∣ τ⟨e⟩
Constants, Values, Terms
c ∶∶= true ∣ false
v ∶∶= c ∣ fix f (x ∶T1)∶T2 = e ∣ ⟨T1 ⇐ T2⟩` ∣ (v1, v2) ∣ C ⟨e⟩v
e ∶∶= c ∣ x ∣ fix f (x ∶T1)∶T2 = e ∣ e1 e2 ∣ (e1, e2) ∣ e.1 ∣ e.2 ∣

C ⟨e1⟩e2 ∣ match e withCi xi → ei
i ∣

if e1 then e2 else e3 ∣ ⟨T1 ⇐ T2⟩`

Datatype definitions

ς ∶∶= τ ⟨x ∶T ⟩ = Ci ∶ Ti
i ∣ τ ⟨x ∶T ⟩ = Ci ∥ Di ∶ Ti

i

Σ ∶∶= ∅ ∣ Σ, ς

Figure 1. Program syntax.

TypDefOfΣ(τ) The definition of τ .
ArgTypeOfΣ(τ) The parameter name and its type of τ .
CtrsOfΣ(τ) The set of constructors that belong to τ .
TypSpecOfΣ(C) The type specification of C .
TypNameOfΣ(C) The data type that C belongs to.
CtrArgOfΣ(C) The argument type of C .

Table 1. Lookup functions.

checked is not empty and) the head is equal to n , just because
LConsEq corresponds to the path guarded by x=n in the definition
of member.

3. A Manifest Contract Calculus λH
dt

We formalize a manifest contract calculus λH
dt of datatypes with

its syntax, type system, and operational semantics, and prove its
type soundness. Following Belo et al. [4], we drop subtyping and
subsumption from the core of the calculus to simplify the definition
and metatheory.

In the following, we write a sequence with an overline: for ex-
ample, Ci

i ∈{1,...,n}
means a sequence C1, . . . ,Cn of data con-

structors. We often omit the index set {1, ...,n} when it is clear
from the context or not important. Given a binary relation R, the
relation R∗ denotes the reflexive and transitive closure of R.

3.1 Syntax
We present the program syntax of λH

dt in Figure 1, where there are
various metavariables: T ranges over types, τ names of datatypes,
C and D constructors, c constants, x , y , z , f , etc. variables, v
values, e terms, ` blame labels, Γ typing contexts, ς datatype
definitions, Σ type definition environments.

Types consist of base types (we have only Boolean here but ad-
dition of other base types causes no problems), dependent function
types, dependent product types, refinement types, and datatypes.
In a dependent function type x ∶T1 → T2 and a dependent prod-
uct type x ∶T1 ×T2, variable x is bound in T2. A refinement type
{x ∶T ∣ e}, in which x is bound in e , denotes the subset of type T
whose value v satisfies the Boolean contract e , that is, e {v/x}
evaluates to true. Finally, a datatype τ⟨e⟩ takes the form of an ap-
plication of τ to a term e .

Note that, unlike some refinement type systems [17, 24, 27, 28,
30, 31], which aim at decidable static verification, the predicate e is
allowed to be an arbitrary Boolean expression, which may diverge
or raise blame. As we will see soon, however, no computation is
involved with typing rules for source programs and it is easy to

show decidability of typing for source programs. In fact, two types
with different predicates such as {x ∶int ∣ x > 2} and {x ∶int ∣ x >
1 + 1} are always distinguished and a cast is required to convert
from one type to the other. Static verification amounts to checking
a given cast is in fact an upcast, where the source type is a subtype
of the target, and subtyping is not, in general, decidable but the
language is not equipped with subsumption.

Terms are basically those from the λ-calculus with Booleans,
recursive functions, products, datatypes, and casts. A term
fix f (x ∶T1)∶T2 = e represents a recursive function in which vari-
ables x and f denote an argument and the function itself, respec-
tively, and are bound in e . We often omit type annotations. A
data constructor application C ⟨e1⟩e2 takes two arguments: e1 rep-
resents one for the type definition and e2 for data constructors,
respectively. A match expression match e withCi xi → ei

i
is as

usual and binds each variable xi in ei .
The last form is a cast ⟨T1 ⇐ T2⟩`, consisting of a target type

T1, a source type T2, and a label `, and, when applied to a value v
of type T2, checks that the value v can behave as T1. The label `
is used to identify the cast when it is blamed.

A datatype definition ς can take two forms. The form τ ⟨x ∶T ⟩ =
Ci ∶ Ti

i
, where x is bound in Ti

i
, declares a datatype τ , parame-

terized over x of type T , with data constructors Ci whose argument
types are Ti . The other form τ ⟨x ∶T ⟩ = Ci ∥ Di ∶ Ti

i
is the same

except that it declares that Ci is compatible with Di from another
datatype.

A type definition environment Σ is a sequence of datatype defi-
nitions. We assume that datatype and constructor names declared in
a type definition environment are distinct. Table 1 shows metafunc-
tions to look up information on datatype definitions. Their defini-
tions are omitted since they are straightforward. A type specifica-
tion, returned by TypSpecOf and written x ∶T1 ↣ T2 ↣ τ⟨x ⟩, of a
constructor C consists of the datatype τ that C belongs to, the pa-
rameter x of τ and the type T1 of x , and the argument type T2 of C .
In other words, τ = TypNameOfΣ(C), x ∶T1 = ArgTypeOfΣ(τ)
and T2 = CtrArgOfΣ(C). We omit the subscript Σ from these
metafunctions for brevity if it is clear from the context.

We use the following familiar notations. We write FV (e) to
denote the set of free variables in a term e , and e {e ′/x} capture
avoiding substitution of e ′ for x in e . We apply similar notations
to values and types. We say that a term/value/type is closed if it
has no free variables, and identify α-equivalent ones. In addition,
we introduce several shorthands. A function type T1 → T2 means
x ∶T1 → T2 where the variable x does not occur free in T2. We
write λ x ∶T1.e to denote fix f (x ∶T1)∶T2 = e if f does not occur in
the term e . A let-expression let x = e1 in e2 denotes (λ x ∶T .e2) e1

where T is an appropriate type. Finally, a datatype τ is said to be
monomorphic if the definition of τ does not refer to a type argument
variable, and then we abbreviate τ⟨e⟩ to τ .

3.2 Type System
This section introduces a type system for source programs in λH

dt;
later we extend the syntax to include run-time terms to define
operational semantics and give additional typing rules for those
terms. The type system consists of three judgments: context well-
formedness Σ ⊢ Γ, type well-formedness Σ; Γ ⊢ T , and typing
Σ; Γ ⊢ e ∶ T . Here, a typing context Γ is a sequence of variable
declarations:

Γ ∶∶= ∅ ∣ Γ, x ∶T
where declared variables are pairwise distinct. We show inference
rules in Figure 2, where a type definition environment Σ in judg-
ments are omitted for simplification. Typing rules for atomic terms,
such as Booleans, variables, etc. demand that types of a typing con-
text of a judgment be well-formed; in other rules, well-formedness

of a typing context and a type of a term is shown as a derived prop-
erty.

Inference rules for context and type well-formedness judgments
are standard except for WT DATATYPE, which requires an argu-
ment to a datatype τ to be typed at the declared argument type.

Most of typing rules are also standard or similar to the previous
work [4]. The rule T CAST means that the source and target types
in a cast have to be compatible. Intuitively, two types are compati-
ble when a cast from one type to the other may succeed. More for-
mally, type compatibility, written T1 ∥ T2, is the least congruence
satisfying rules in the bottom of Figure 2: the rule C REFINEL al-
lows casts from and to refinement types; and the rule C DATATYPE
says that if datatypes are declared to be compatible in the type def-
inition, then they are compatible. The typing rule T CTR demands
that arguments e2 and e1 respect the argument types of C and the
datatype that C belongs to, respectively. The rule T MATCH for
match expressions demands the matched term e0 to be typed at
a datatype τ⟨e⟩. Using the metafunction CtrsOf, the rule demands
that the patterns Ci xi

i
be exhaustive. Moreover, each branch ei has

to be given the same type T , which cannot contain pattern variables
xi (and so is well formed under Γ).

3.3 Semantics
The semantics of λH

dt is given in the small-step style by using two
relations over closed terms: the reduction relation (↝), which rep-
resents basic computation such as β-reduction, and the evaluation
relation (Ð→), in which a subexpression is reduced.

The semantics is parameterized by a type definition environ-
ment and a constructor choice function δ, which is a partial func-
tion that maps a term of the form ⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩`C2⟨e⟩v to a
constructor C1. We introduce this function as an oracle to decide
which constructor a given constructor is converted to by a cast be-
tween datatypes, as discussed in Section 2. The constructor C1 has
to not only belong to τ1 but also be compatible with C2. We will
give a more precise condition on δ later.

Precisely speaking, the two relations are parameterized by Σ
and δ but we fix certain Σ and δ in what follows and usually omit
them from relations and judgments.

Before reduction and evaluation rules, we introduce several run-
time terms to express dynamic contract checking in the semantics.
These run-time terms are assumed not to appear in a source pro-
gram (or datatype definitions). The syntax is extended as below:

e ∶∶= ... ∣ ⇑` ∣ ⟨{x ∶T ∣ e1}, e2, v⟩` ∣ ⟨⟨{x ∶T ∣ e1}, e2⟩⟩`

The term ⇑` denotes a cast failure blaming `, which identifies which
cast failed. An active check ⟨{x ∶T ∣ e1}, e2, v⟩` verifies that the
value v of type T satisfies the contract e1. The term e2 repre-
sents an intermediate state of a check, which starts by reducing
e1 {v/x}. If the check succeeds, namely e2 reduces to true, then
the active check evaluates to v ; otherwise, if e2 reduces to false,
then it is blamed with `. A waiting check ⟨⟨{x ∶T ∣ e1}, e2⟩⟩`, which
appears when an application of a cast to a refinement type is re-
duced, checks that the value of e2 satisfies e1. Waiting checks are
introduced to avoid a technical problem recently found in Belo et
al. [4]. We will discuss it in more detail at the end of this section.

Figure 3 shows reduction and evaluation rules. Reduction rules
are standard except for those about casts and active/waiting checks.
There are six reduction rules for casts. The rule R BASE means
that a cast between the same base type simply behaves like an
identity function. The rule R FUN, which shows that casts between
function types behave like function contracts [6, 14], produces a
lambda abstraction which wraps the value v with the contravariant
cast ⟨T21 ⇐ T11⟩` between the argument types and the covariant
cast ⟨T12 ⇐ T22⟩` between the return types. To avoid capture of
the bound variable of T12, we take a fresh variable y and rename

⊢ Γ Typing Context Well-Formedness Rules

⊢ ∅ WC EMPTY
⊢ Γ Γ ⊢ T

⊢ Γ, x ∶T WC EXTENDVAR

Γ ⊢ T Type Well-Formedness Rules

⊢ Γ

Γ ⊢ Bool
WT BASE

Γ ⊢ T1 Γ, x ∶T1 ⊢ T2

Γ ⊢ x ∶ T1 → T2

WT FUN
Γ ⊢ T1 Γ, x ∶T1 ⊢ T2

Γ ⊢ x ∶T1 ×T2

WT PROD

Γ ⊢ T Γ, x ∶T ⊢ e ∶ Bool
Γ ⊢ {x ∶T ∣ e} WT REFINE

ArgTypeOf (τ) = x ∶T Γ ⊢ e ∶ T
Γ ⊢ τ⟨e⟩ WT DATATYPE

Γ ⊢ e ∶ T Typing Rules

⊢ Γ c ∈ {true, false}
Γ ⊢ c ∶ Bool

T CONST
⊢ Γ x ∶T ∈ Γ

Γ ⊢ x ∶ T
T VAR

Γ, f ∶(x ∶T1 → T2), x ∶T1 ⊢ e ∶ T2 f ∉ FV (T2)
Γ ⊢ fix f (x ∶T1)∶T2 = e ∶ x ∶T1 → T2

T ABS

Γ ⊢ T1 Γ ⊢ T2 T1 ∥ T2

Γ ⊢ ⟨T1 ⇐ T2⟩` ∶ T2 → T1

T CAST
Γ ⊢ e1 ∶ x ∶T1 → T2 Γ ⊢ e2 ∶ T1

Γ ⊢ e1 e2 ∶ T2 {e2/x}
T APP

Γ, x ∶T1 ⊢ T2 Γ ⊢ e1 ∶ T1 Γ ⊢ e2 ∶ T2 {e1/x}
Γ ⊢ (e1, e2) ∶ x ∶T1 ×T2

T PAIR
Γ ⊢ e ∶ x ∶T1 ×T2

Γ ⊢ e.1 ∶ T1

T PROJ1
Γ ⊢ e ∶ x ∶T1 ×T2

Γ ⊢ e.2 ∶ T2 {e.1/x} T PROJ2

Γ ⊢ e1 ∶ Bool Γ ⊢ e2 ∶ T Γ ⊢ e3 ∶ T
Γ ⊢ if e1 then e2 else e3 ∶ T

T IF

TypSpecOf (C) = x ∶T1 ↣ T2 ↣ τ⟨x ⟩
Γ ⊢ e1 ∶ T1 Γ ⊢ e2 ∶ T2 {e1/x} Γ ⊢ τ⟨e1⟩

Γ ⊢ C ⟨e1⟩e2 ∶ τ⟨e1⟩
T CTR

Γ ⊢ e0 ∶ τ⟨e⟩ Γ ⊢ T CtrsOf (τ) = Ci
i ∈{1,...,n}

ArgTypeOf (τ) = y ∶T ′
for all i , CtrArgOf (Ci) = Ti for all i , Γ, xi ∶Ti {e/y} ⊢ ei ∶ T

Γ ⊢ match e0 withCi xi → ei
i ∈{1,...,n} ∶ T

T MATCH

T1 ∥ T2 Type Compatibility

T1 ∥ T2

{x ∶T1 ∣ e1} ∥ T2
C REFINEL

TypDefOf (τ1) = (type τ1 ⟨x ∶T ⟩ = Ci ∥ Di ∶ Ti
i) for all i , TypNameOf (Di) = τ2

τ1⟨e1⟩ ∥ τ2⟨e2⟩
C DATATYPE

Figure 2. Type system.

variable x in T22 to it. Similar renaming is performed in R PROD.
The rule R PROD means that elements v1 and v2 are checked by
covariant casts obtained by decomposing the source and target
types. The rules R FORGET and R PRECHECK are applied when
source and target types of a cast are refinement types, respectively:
the rule R FORGET peels the outermost refinement of the source
type; and the rule R PRECHECK means that inner refinements
in the target type are first checked and then the outermost one
is. The side condition in R PRECHECK are needed to make the
semantics deterministic. For example, the term ⟨{x ∶int ∣0 < x +
1} ⇐ {x ∶int ∣0 < x}⟩` v reduces to ⟨⟨{x ∶int ∣0 < x + 1}, ⟨int ⇐
int⟩` v⟩⟩` by applying first R FORGET and then R PRECHECK. A
waiting check turns into an active check when its second argument
becomes a value (R CHECK).

There are three rules R DATATYPE, R DATATYPEMONO, and
R DATATYPEFAIL for datatype casts. The rule R DATATYPE is ap-
plied when the choice function δ gives the constructor C1; then
the original constructor argument v is passed to a cast between
the argument types of C2 and C1. Here, note that e1 and e2 are
substituted for variables x1 and x2 in the argument types of C1

and C2, respectively, because these types depend on these vari-
ables. The rule R DATATYPEMONO is similar to R BASE. The rule
R DATATYPEFAIL says that, if the choice function δ is undefined
for the cast, the cast application is blamed with `.

The last three rules R CHECK, R OK, and R FAIL follow the
intuitive meaning of active checks explained above.

Evaluation rules are also shown in Figure 3. Here, evaluation
contexts [8], ranged over by E , are defined as usual:

E ∶∶= [] ∣ E e2 ∣ v1 E ∣ (E , e2) ∣ (v1,E) ∣ E .1 ∣ E .2 ∣ C ⟨e1⟩E ∣
matchE withCi xi → ei

i ∣ if E then e2 else e3 ∣
⟨{x ∶T ∣ e},E , v⟩` ∣ ⟨⟨{x ∶T ∣ e},E⟩⟩`

The rule E RED means that evaluation proceeds by reducing the
redex indicated by an evaluation context; the rule E BLAME means
that a raised blame will abort program execution.

3.4 Type Soundness
We show type soundness of λH

dt. As usual, type soundness means
that a well-typed term does not go wrong and is proved via subject
reduction and progress [23, 29]. Moreover, we will show that, if a
term is given a refinement type, its value (if it exists) satisfies the
contract. This last property, which was proved by using semantic
methods [4, 18], is proved purely syntactically for the first time.

Before stating the type soundness theorem, we start with extend-
ing the type system to run-time terms, and define well-formedness
of type definition environments and constructor choice functions.

3.4.1 Typing for Run-time Terms
Typing rules for run-time terms are shown in Figure 4. The rule
T BLAME means that a blame ⇑` can have any type because
it is an exception. In the rule T ACHECK for an active check
⟨{x ∶T ∣ e1}, e2, v⟩`, the last premise e1 {v/x} Ð→∗ e2 means
that e2 is an intermediate state of checking, which started from

e1 ↝ e2 Reduction Rules

(fix f (x ∶T1)∶T2 = e) v ↝ e {v/x ,fix f (x ∶T1)∶T2 = e/f } R BETA

(v1, v2).1 ↝ v1 R PROJ1 if true then e1 else e2 ↝ e1 R IFTRUE

(v1, v2).2 ↝ v2 R PROJ2 if false then e1 else e2 ↝ e2 R IFFALSE

matchCj ⟨e⟩v withCi xi → ei
i ↝ ej {v/xj} (where Cj ∈ Ci

i
) R MATCH

⟨Bool⇐ Bool⟩` v ↝ v R BASE

⟨x ∶T11 → T12 ⇐ x ∶T21 → T22⟩` v ↝ (λ x ∶T11.let y = ⟨T21 ⇐ T11⟩` x in ⟨T12 ⇐ (T22 {y/x})⟩` (v y))
(where y is fresh) R FUN

⟨x ∶T11 ×T12 ⇐ x ∶T21 ×T22⟩` (v1, v2) ↝ let x = ⟨T11 ⇐ T21⟩` v1 in (x , ⟨T12 ⇐ (T22 {v1/x})⟩` v2) R PROD

⟨T1 ⇐ {x ∶T2 ∣ e}⟩` v ↝ ⟨T1 ⇐ T2⟩` v R FORGET

⟨{x ∶T1 ∣ e}⇐ T2⟩` v ↝ ⟨⟨{x ∶T1 ∣ e}, ⟨T1 ⇐ T2⟩` v⟩⟩` R PRECHECK
(where T2 is not a refinement type)

⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩`C2⟨e⟩v ↝ C1⟨e1⟩(⟨T ′1 {e1/x1}⇐ T ′2 {e2/x2}⟩` v) R DATATYPE

(where τ1 ≠ τ2 or τ1 is not monomorphic, and δ(⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩`C2⟨e⟩v) = C1 and
ArgTypeOf (τi) = xi ∶Ti and CtrArgOf (Ci) = T ′i for i ∈ {1,2})

⟨τ ⇐ τ⟩` v ↝ v R DATATYPEMONO

⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩` v ↝ ⇑` R DATATYPEFAIL

(where τ1 ≠ τ2 or τ1 is not monomorphic, and δ(⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩` v) is undefined)
⟨⟨{x ∶T ∣ e}, v⟩⟩` ↝ ⟨{x ∶T ∣ e}, e {v/x}, v⟩` R CHECK

⟨{x ∶T ∣ e}, true, v⟩` ↝ v R OK ⟨{x ∶T ∣ e}, false, v⟩` ↝ ⇑` R FAIL

e1 Ð→ e2 Evaluation Rules

e1 ↝ e2

E[e1] Ð→ E[e2]
E RED

E ≠ []
E[⇑`] Ð→ ⇑` E BLAME

Figure 3. Semantics.

Γ ⊢ e ∶ T

⊢ Γ ∅ ⊢ T

Γ ⊢ ⇑` ∶ T T BLAME

⊢ Γ ∅ ⊢ {x ∶T ∣ e1} ∅ ⊢ v ∶ T
∅ ⊢ e2 ∶ Bool e1 {v/x} Ð→∗ e2

Γ ⊢ ⟨{x ∶T ∣ e1}, e2, v⟩` ∶ {x ∶T ∣ e1}
T ACHECK

⊢ Γ ∅ ⊢ {x ∶T ∣ e1} ∅ ⊢ e2 ∶ T
Γ ⊢ ⟨⟨{x ∶T ∣ e1}, e2⟩⟩` ∶ {x ∶T ∣ e1}

T WCHECK

⊢ Γ ∅ ⊢ e ∶ T1 T1 ≡ T2 ∅ ⊢ T2

Γ ⊢ e ∶ T2

T CONV
⊢ Γ ∅ ⊢ v ∶ {x ∶T ∣ e}

Γ ⊢ v ∶ T
T FORGET

⊢ Γ ∅ ⊢ {x ∶T ∣ e} ∅ ⊢ v ∶ T
e {v/x} Ð→∗ true

Γ ⊢ v ∶ {x ∶T ∣ e} T EXACT

Figure 4. Typing rules for run-time terms.

e1 {v1/x}. This reference to the semantics in the typing rule is un-
usual but is important in Belo et al.’s syntactic approach. The rule
T WCHECK for a waiting check is easy to understand. The rule
T FORGET is needed because R FORGET peels off the refinements
in the source type of a cast. The rule T EXACT allows a value
which succeeds in dynamic checking to be typed at a refinement
type.

Finally, T CONV—the heart of the approach by Belo et al.—is
introduced as a technical device to prove subject reduction. To see
why this rule is required, let us consider an application term v1 e2.
From T APP, the type of v1 e2 is T2 {e2/x} for some T2 and x .
If e2 reduces to e ′2, then the type of the application term changes
to T2 {e ′2/x}. Since T2 {e2/x} ≠ T2 {e ′2/x} in general, subject
reduction would not hold. The rule T CONV bridges the gap by
allowing a term to be typed at another, but “equivalent” type. The
type equivalence (denoted by ≡) is given as follows.

Definition 1 (Type Equivalence).

1. The common subexpression reduction relation ⇛ over types is
defined as follows: T1 ⇛ T2 iff there exist some T , x , e1

and e2 such that T1 = T {e1/x} and T2 = T {e2/x} and
e1 Ð→ e2.

2. The type equivalence ≡ is the symmetric and transitive closure
of ⇛.

The type equivalence given here relates fewer terms than that by
Belo et al., but is sufficient to prove subject reduction.

The fact that typing contexts in premises are empty reflects that
run-time terms are closed; however, they can appear under binders
as part of types (notice term substitution in the typing rules) and so
weakening is needed.

3.4.2 Well-formed Type Definition Environments
Intuitively, a type definition environment is well formed when the
parameter type is well formed, constructor argument types are well
formed, and the argument types of compatible constructors are
compatible.

Definition 2 (Well-Formed Type Definition Environments).

1. Let ς = τ ⟨x ∶T ⟩ = Ci ∶ Ti
i ∈{1,...,n}

. A type definition ς is
well formed under a type definition environment Σ if it satisfies
the followings: (a) 0 < n . (b) Σ;∅ ⊢ T holds. (c) For any
i ∈ {1, ...,n}, Σ, ς; x ∶T ⊢ Ti holds.

2. Let ς = τ ⟨x ∶T ⟩ = Ci ∥ Di ∶ Ti
i ∈{1,...,n}

. A type definition ς
is well formed under a type definition environment Σ if it sat-
isfies the followings: (a) 0 < n . (b) Σ;∅ ⊢ T holds. (c) For
any i ∈ {1, ...,n}, Σ, ς; x ∶T ⊢ Ti holds. (d) There exists some
datatype τ ′ in Σ such that constructors Di

i ∈{1,...,n}
belong to

it. (e) For any i ∈ {1, ...,n}, Ti is compatible with the argu-
ment type of Di under Σ, ς , that is, Σ, ς ⊢ Ti ∥ CtrArgOfΣ(Di)
holds.

3. A type definition environment Σ is well formed if for any Σ1, ς ,
and Σ2, Σ = Σ1, ς,Σ2 implies that ς is well formed under Σ1.
We write ⊢ Σ to denote that Σ is well formed.

Intuitively, a constructor choice function is well formed when it
returns a constructor related by ∥ in type definitions and respects
term equivalence, which is defined similarly to type equivalence.

Definition 3 (Compatible Constructors). The compatibility rela-
tion ∥ over constructors is the least equivalence relation satisfying
the following rule.

TypNameOf (Ci) = τ
TypDefOf (τ) = type τ ⟨y ∶T ⟩ = Cj ∥ Dj ∶ Tj

j

Ci ∥ Di

The function CompatCtrsOf, which maps a datatype τ and a con-
structor C to the set of compatible constructors of τ , is defined as
follows:

CompatCtrsOf (τ,C) = {D ∣ C ∥ D and TypNameOf (D) = τ}.
Definition 4 (Term Equivalence).

1. The common subexpression reduction relation ⇛ over terms is
defined as follows: e1 ⇛ e2 iff there exist some e , x , e ′1 and e ′2
such that e1 = e {e ′1/x} and e2 = e {e ′2/x} and e ′1 Ð→ e ′2.

2. The term equivalence ≡ is the symmetric and transitive closure
of ⇛.

Definition 5 (Well-Formed Constructor Choice Functions). A con-
structor choice function δ is well formed iff

1. if C1 = δ(⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩`C2⟨e⟩v), then
C1 ∈ CompatCtrsOf (τ1,C2); and

2. for any e1, e2, and C , if e1 ≡ e2 and δ(e1) = C , then
δ(e2) = C .

We suppose that the type definition environment and the choice
function are well formed in what follows.

Lemma 1 (Subject Reduction). If ∅ ⊢ e ∶ T and e Ð→ e ′, then
∅ ⊢ e ′ ∶ T .

Lemma 2 (Progress). If ∅ ⊢ e ∶ T , then one of the followings
holds: (1) e Ð→ e ′ for some e ′; (2) e is a value; or (3) e = ⇑` for
some `.

To show the additional property mentioned above about refine-
ment types, we need to show that the term equivalence respects the
semantics in the following sense.

Lemma 3 (Cotermination). Suppose e1 ⇛∗ e2.

1. If e1 Ð→∗ v1, then there exist some v2 such that e2 Ð→∗ v2

and v1 ⇛∗ v2.
2. If e2 Ð→∗ v2, then there exist some v1 such that e1 Ð→∗ v1

and v1 ⇛∗ v2.

Theorem 1 (Type Soundness). If ∅ ⊢ e ∶ T , then one of the
followings holds: (1) there exists v such that e Ð→∗ v and
∅ ⊢ v ∶ T ; (2) e Ð→∗ ⇑` for some `; or (3) there is an
infinite sequence of evaluation e Ð→ e1 Ð→ ⋯. Moreover, if T
is a refinement type {x ∶T0 ∣ e0} and (1) holds, then e0 {v/x} Ð→∗
true.

Proof. (1)–(3) follow from subject reduction and progress. For the
additional property, it suffices to show that if ∅ ⊢ v ∶ T , then
v satisfies all contracts of type T . We proceed by induction on the
derivation of ∅ ⊢ v ∶ T . In the case of T CONV, we use Lemma 3
and the fact that for any v ′, if v ′ ⇛∗ true or true ⇛∗ v ′, then
v ′ = true.

3.4.3 Remark on Semantics of Casts
As we have mentioned, our semantics of casts for nested refinement
types is slightly different from the one for FH [4] in the following
respects. First, they had a rule to remove reflexive casts

⟨T ⇐ T ⟩` v Ð→ v

(for any type, including function and refinement types) and a rule
to start an active check:

⟨{x ∶T ∣ e}⇐ T ⟩` v Ð→ ⟨{x ∶T ∣ e}, e {v/x}, v⟩`

Second, they define type equivalence ≡ based on parallel reduction.
They also left the cotermination property as a conjecture. However,
with these rules, cotermination does not quite hold. Consider e =
⟨{x ∶Bool ∣ y}⇐ {x ∶Bool ∣ false}⟩` v . Then,

e {false/y} ≡ e {1 = 0/y} and
e {false/y} Ð→ v (by removing the reflexive cast), but

e {1 = 0/y} Ð→∗ ⟨{x ∶Bool ∣1 = 0},1 = 0, v⟩` Ð→∗ ⇑`,
which is a counterexample to cotermination.3 It is easy to construct
a similar counterexample using the second rule above. This is quite
bad because the cotermination property is quite important to show
semantic properties such as (3) of Theorem 1 or parametricity for
FH.

The problem seems to stem from the fact that reduction of a
subterm (in this case 1 = 0) can change the cast rule to be applied.
Our calculus λH

dt is carefully designed to avoid this problem by
restricting reflexive casts (R BASE and R DATATYPEMONO) and
introducing waiting checks. The price we pay is that we have to
prove that reflexive casts can be eliminated.

4. Translation from Refinement Types to
Datatypes

We give a translation from refinement types to datatypes and prove
that the datatype obtained by the translation has the same meaning
as the refinement type in the sense that a cast from the refinement
type to the datatype always succeeds, and vice versa. We formal-
ize our translation and prove its correctness using integer lists for
simplicity and conciseness but our translation scheme can be gener-
alized to other datatypes. We will informally discuss a more general
case of binary trees later.

In this section, we assume that we have unit and int as base
types and int list with [] and infix cons x ∶∶ y as constructors. For
simplicity, we also assume that the input predicate function is well
typed and of the following form:

fix f (y ∶T , x ∶int list)= match x with []→ e1 ∣ z1 ∶∶ z2 → e2

3 Note that replacing ≡ based on parallel reduction with one based on
common subexpression reduction would not help. We should also note that
subject reduction and progress of FH still hold because they do not depend
on cotermination.

GenContracts (true) = {(None, true)} GenContracts (false) = ∅
GenContracts (if f e1 z2 then e2 else e3) = {(Some e1, e2)} ∪

{(eopt, if f e1 z2 then false else e
′
3) ∣ (eopt, e

′
3) ∈ GenContracts (e3)}

(if FV (e1) ⊆ {y , z1})
GenContracts (if e1 then e2 else e3) = {(eopt, if e1 then e

′
2 else false) ∣ (eopt, e

′
2) ∈ GenContracts (e2)} ∪

{(eopt, if e1 then false else e
′
3) ∣ (eopt, e

′
3) ∈ GenContracts (e3)}

(if a term of the form f e z2 occurs in e2 or e3)

GenContracts (match e0 withCi xi → ei
i ∈{1,...,n}) = ⋃j ∈{1,...,n}{(eopt,match e0 withCi xi → e ′i

i ∈{1,...,n}) ∣
(eopt, e

′
j) ∈ GenContracts (ej) ∧ ∀i ≠ j . e ′i = false}
(if a term of the form f e z2 occurs in some ei)

GenContracts (e) = {(None, e)} (otherwise)

Figure 6. Generation of base contracts and arguments to recursive calls.

Trans
input:
fix f (y ∶T , x ∶int list)= match x with []→ e1 ∣ z1 ∶∶ z2 → e2

returns:
1 let τ be a fresh type name in
2 let {Ti}i =

{z1∶int×{z2∶T0 ∣ e0} (eopt, e) ∈ GenContracts (e2),
(T0, e0) = Aux(τ, eopt, e) } in

3 let D and Di
i

be fresh constructor names, and
z be a fresh variable in

4 type τ ⟨y ∶T ⟩ = D ∥ [] ∶ {z ∶unit ∣ e1} ∣Di ∥ (∶∶) ∶ Ti

i

where
Aux(τ, eopt, e) =

let e ′ = e {fix f (y ∶T , x ∶int list)= .../f } in
match eopt with
∣ Some e ′′ → (τ⟨e ′′⟩, let z2 = ⟨int list⇐ τ⟨e ′′⟩⟩` z2 in e

′)
∣ None→ (int list, e ′)

Figure 5. Translation.

where x ∉ FV (e1) ∪ FV (e2). We will use sorted as a running
example. For expository reasons, the definition is slightly verbose;
the nested if expression at the end is essentially z1 <= y &&
sorted () z2.

let rec sorted (y:unit , x:int list) =
match x with
| [] -> true

| z1::z2 -> e2
sorted

where
e2

sorted
=

match z2 with
| [] -> true
| y::ys -> if z1 <= y then

if sorted () z2 then true
else false

else false

4.1 Translation, Formally
We show the translation function Trans in Figure 5 and the auxiliary
function GenContracts in Figure 6. The main function Trans takes a
recursive function as an input and returns a corresponding datatype
definition (on line 4).

On line 2, information on how e2, which is the contract for
(∶∶), can evaluate to true is gathered by the auxiliary function
GenContracts. In the definition, variables f , y , z1, and z2 come

from the input function and are fixed names. This function takes
an expression as an input and returns a set of pairs (eopt, e

′
2), each

of which expresses one execution path that returns true in e2. e ′2 is
derived from e2 by substituting false for all but one path and eopt is
the first argument to a recursive call (if any) on this path. Intuitively,
conjunction of e ′2 and f eopt z2 gives one sufficient condition for e2

to be true and disjunction of the pairs in the returned set is logically
equivalent to e2. For example, GenContracts(e2

sorted) returns a set
consisting of (None, e21) where e21 is

match z2 with [] -> true | y::ys -> false

and (Some (), e22) where e22 is

match z2 with
[] -> false

| y::ys -> if z1 <= y then true else false .

(Gray bits show differences from e2
sorted.) The first expression

means that a (non-empty) list x is sorted when the tail is empty;
and the second means that x is sorted when the head z1 is equal to
or smaller than the second element y and the recursive call sorted
() z2 returns true. GenContracts performs a kind of disjunctive
normal form translation and each disjunct will correspond to a data
constructor in the generated datatype.

Now let us take a look at the definition of GenContracts. The
first two clauses are trivial: if the expression is true, then it returns
the trivial contract and if it is false, then this branch should not
be taken and hence the empty sequence is returned. The third
clause deals with a conditional on a recursive call f e1 z2 on the
tail. In this case, it returns Some e1, to signal there is a designated
recursive call in this branch, with the additional condition e2 and
also the condition when the recursive call returns false but e3 is
true. The following two clauses are for the other cases where the
input expression is case analysis. In this case, from each branch,
GenContracts recursively collects execution paths and reconstruct
conditional expressions by replacing other branches with false.
The side conditions on these clauses mean that we can stop DNF
translation if there is no recursive calls on the tail and simply return
the given contract as it is, by calling for the last clause, which deals
with other forms of expressions.

The collected execution path information is further transformed
into dependent product types with the help of another auxiliary
function Aux. This function takes a pair (eopt, e) (obtained by
GenContracts) together with the new datatype name τ as an input
and returns the base type and its refinement for the tail part. If there
was no recursive call on the tail in a given execution path (namely,
eopt = None), then the base type is int list and the refinement is e ′,
obtained from e by replacing other recursive occurrences of f with
the function itself. Otherwise, the base type is the new datatype

applied to the first argument e ′′ to the recursive call; the refinement
is essentially e ′ (except a cast back to int list). For example, for
sorted, we obtain

T1 = z1∶int×{z2∶int list ∣ e21}
from (None, e21) and

T2 = z1∶int×{z2∶τ ∣ let z2 = ⟨int list⇐ τ⟩` z2 in e22}
from (Some (), e22). T1 is a type for singleton lists, which are
trivially sorted and T2 is a type for a list where the head is equal to
or less than the second element and the tail is of type τ , which is
supposed to represent sorted lists.

Finally, we combine Ti to make a complete datatype definition.
The translation of sorted will be:

type sorted_t =
SNil || [] of {z:unit|true}

| SCons1 || (::) of z1:int × {z2:int list|e21}
| SCons2 || (::) of

z1:int ×
{z2:sorted_t|

let z2 = ⟨int list⇐ sorted t⟩` z2 in e22}

Although the datatype sorted_t certainly represents sorted
lists, its type definition is different from slist2 given in Section 1.
The difference comes from the fact that the case for (∶∶) has a case
analysis, one of whose branch has a recursive call. While it is
possible to “merge” the argument types for SCons1 and SCons2
to make a two-constructor datatype, it is difficult in general. It is
interesting future work, however, to investigate how to generate
type definitions closer to programmers’ expectation.

4.2 Correctness
We prove that the translation is correct in the sense that the cast
from a refinement type to the datatype obtained by the translation
always succeeds and vice versa. We use a metavariable F to denote
the recursive function used to define the refinement type in the
typing judgment and the evaluation relation. We write ⟨Σ, δ⟩; Γ ⊢
e ∶ T and ⟨Σ, δ⟩ ⊢ e1 Ð→ e2 to make a type definition
environment Σ and a constructor choice function δ explicit in the
typing judgment and the evaluation relation.

First of all, the translation Trans always generates a well-formed
datatype definition:

Lemma 4 (Translation Generates Well-Formed Datatype). Let Σ
be a well-formed type definition environment, Σ;∅ ⊢ F ∶ T →
int list → Bool. Then, the type definition Trans (F) is well formed
under Σ.

The next theorem states that a cast from a refinement type to the
generated datatype always succeeds.

Theorem 2 (From Refinement Types to Datatypes). Let Σ be
a well-formed type definition environment, Σ;∅ ⊢ F ∶ T →
int list → Bool, τ be the name of the datatype Trans (F).
Then, there exists some computable well-formed choice function
δ such that, for any e = ⟨τ⟨e0⟩ ⇐ {x ∶int list ∣F e0 x}⟩` v , if
(Σ,Trans (F));∅ ⊢ e ∶ τ⟨e0⟩, then ⟨(Σ,Trans (F)), δ⟩ ⊢
e Ð→∗ v ′ for some v ′.

It is a bit trickier to prove the converse because the first argu-
ment to a predicate function is always evaluated whereas a param-
eter to a datatype is not. So, the converse holds under the following
termination condition on a datatype.

Definition 6 (Termination). Let Σ be a type definition environment
and δ be a constructor choice function. A closed term e terminates
at a value under Σ and δ, written as ⟨Σ, δ⟩ ⊢ e ↓, if ⟨Σ, δ⟩ ⊢
e Ð→∗ v for some v . We say that argument terms to datatype τ in

v terminate at values under Σ and δ, written as ⟨Σ, δ⟩ ⊢ v ↓τ , if,
for any E , C ∈ CtrsOf (τ), e1 and v2, v = E[C ⟨e1⟩v2] implies
⟨Σ, δ⟩ ⊢ e1 ↓.
Theorem 3 (From Datatypes to Refinement Types). Let Σ
be a well-formed type definition environment, Σ;∅ ⊢ F ∶
T → int list → Bool, τ be the name of the datatype
Trans (F). Then, there exists some computable well-formed choice
function δ such that, for any e = ⟨{x ∶int list ∣F e0 x} ⇐
τ⟨e0⟩⟩` v , if ⟨(Σ,Trans (F)), δ⟩;∅ ⊢ e ∶ {x ∶int list ∣F e x} and
⟨(Σ,Trans (F)), δ⟩ ⊢ v ↓τ , then e terminates at a value under
⟨(Σ,Trans (F)), δ⟩ and δ.

We expect that the termination condition would not be needed if we
change the semantics to evaluate argument terms to datatypes.

4.3 Efficiency Preservation
In addition to correctness of the translation, we are also concerned
with the following question “When I rewrite my program so that it
uses the generated datatype, is it as efficient as the original one?”
To answer this question positively, we consider the asymptotic time
complexity of a cast for successful inputs (which we simply call the
complexity of a cast), and show that the complexity of a cast from
int list to its refinement is the same as that of a cast from int list to
the datatype obtained from its refinement. Here, we consider only
successful inputs because we are mainly interested in programs (or
program runs) that do not raise blame, where checks caused by
casts are successful.4

This efficiency preservation is obtained from Theorem 2 and the
following observation. As stated in Theorem 2, we can construct a
computable choice function. In fact, the algorithm of the choice
function can be read off from the proof of Theorem 2: it returns
constructors of the generated datatype from the execution trace of
the refinement checking. Moreover, the orders of both the execution
time of the algorithm and the size of output constructors from the
algorithm are linear in the size of the input execution trace, which
is proportional to the execution time of the refinement checking.
Thus, the asymptotic time complexities of computation of the con-
structors and constructor replacement are no worse than that of the
refinement checking.

From this observation, we can implement the cast from int list
to the generated datatype by (1) checking the refinement (given to
the translation) and (2) the constructor generation and replacement
described above. Since the complexity of the second step is the
same as that of the refinement checking, the complexities of the
cast from int list to a refinement type and the generated datatype
are the same.

4.4 Extension: Binary Trees
We informally describe how to extend the translation algorithm for
lists to trees, a kind of data structure with a data constructor which
has more than one recursive part. Here, we take binary trees as an
example and show how to obtain a datatype for binary search trees
from a predicate function. Although this section deals with only
binary trees, this extension can be adapted for other data structures.

A datatype for binary trees and a recursive predicate function
which returns whether an argument binary tree is a binary search
tree or not are defined as follows:

type bt = L | N of int * t * t

let rec bst (min ,max:int*int) (t:bt) =
match t with
| L -> true

4 We conjecture that, for inputs that lead to blame, the time complexity is
also preserved by the translation but a proof is left for future work.

| N (x,l,r) -> min <=x and x<=max and
bst (min ,x) l and bst (x,max) r

Let τ be a name for the new datatype.
The translation algorithm first calls GenContracts with the sec-

ond branch of bst. Observing the predicate function bst, we find
that the body calls bst itself recursively for different recursive
parts (l and r) with different auxiliary arguments ((min,x) and
(x,max)). Thus, GenContracts for binary trees looks for the first
argument to each recursive call, unlike GenContracts for lists,
which stops searching for a recursive call after finding one re-
cursive call. For our running example, taking the branch for con-
structor N, GenContracts for binary trees returns the singleton
set {(Some (min, x), Some (x ,max),min ≤ x and x ≤ max)}
(where we use the operator and instead of if expression for brevity),
of which the first two optional terms denote arguments for left and
right subtrees, respectively.

Next, for each element in the output from GenContracts, a
dependent product type will be built. In this case, we obtain T =
x ∶int× l ∶τ⟨(min, x)⟩×{r ∶τ⟨(x ,max)⟩ ∣min ≤ x and x ≤ max}.
As we have seen for lists, casts from τ⟨e⟩ back to bt may have to
be inserted.

Finally, the translation makes a datatype definition by using
these type arguments and the contract. For bst, the corresponding
datatype is given as follows:

type t ⟨min:int ,max:int⟩ =
| SL
| SN of x:int × l:t⟨min ,x⟩ ×

{r:t⟨x,max⟩|min <=x and x<=max}

4.5 Discussion
The translation algorithm works “well” for list-processing func-
tions, in the sense that there is no reference to the input predicate
function in the generated datatype, if their definitions meet the two
requirements: (1) recursive calls are given the tail part of the input
list and occur linearly for each execution path; and (2) free vari-
ables in arguments to recursive calls are only the argument variable
y and the head variable z1. Specifically, translation works as we
expect if given functions are written in the fold_left form, or
more generally, in the primitive recursion form where the result of
a recursive call is used at most once for each execution path. In con-
trast, there can remain recursive calls to an input predicate function
in the generated datatype when the predicate function does not meet
these requirements. This happens when there is a recursive call on
lists other than the tail of the input or, as in the following (admit-
tedly quite artificial) example, when recursive calls which return
true occur twice or more in one execution path:

let rec f () (l:int list) =
match x with
| [] -> true
| x::xs -> f () xs and f () xs

or when e2 includes non-branching constructs as in

let rec f (y:int) (x:int list) =
match x with
| [] -> true
| z1::z2 -> let z = 5 + y in f z z2

In these cases, generation of a datatype itself succeeds but the
obtained datatype is probably not what we expect because f is not
eliminated.

Although our translation works well for many predicates, there
is a lot of room to improve. First, the current translation algorithm
could generate a datatype with too many constructors even if some
of them can be “merged”. For example, we demonstrated that the

translation generated a datatype with three constructors from pred-
icate function sorted, but we can give a datatype with only two
constructors for it as shown in Section 2.1. Second, our translation
algorithm works only for a single recursive Boolean function and
so we cannot obtain a datatype from other forms of refinements,
for example, conjunction of two predicate function calls. This also
means that the translation cannot deal with a predicate function that
returns additional information by using, say, an option type.

Our translation assumes an input refinement to be of a certain
form. We think, however, that it is not so restrictive, because we can
transform refinements before applying our method. For example, a
predicate function of the form

if e1 then (match x with []→ e11 ∣ z1 ∶∶ z2 → e12) else e2

can be transformed to

match x with [] → if e1 then e11 else e2 ∣
z1 ∶∶ z2 → if e1 then e12 else e2.

Even if such transformation cannot be applied, we can always insert
pattern matching on the input list in the beginning of a predicate
refinement. (It may be the case, though, that we do not obtain an
expected type definition.)

5. Related Work
Contracts for datatypes. There has been much work about lambda
calculi with higher-order contracts since the seminal work by Find-
ler and Felleisen [9], but little of them considers algebraic datatypes
in detail and compare the two approaches to datatypes with con-
tracts. In particular, as far as we know there is no work on con-
version between compatible datatypes. One notable exception is
Findler et al. [10], who compare the two approaches to datatypes
and introduce lazy contract checking in an eager language. Lazy
contract checking delays contract checking for arguments to data
constructor until they are used. As they already point out, one draw-
back of lazy contract checking is that it is not suitable for checking,
where relationship between elements in a data structure is impor-
tant. For example, if we take the head of an arbitrary list, which
is subject to sortedness checking, it simply returns its head dis-
carding the tail without verifying the tail is sorted. Chitil [7] also
made a similar observation in the work on lazy contracts in a lazy
language.

Knowles et al. [19] developed Sage, a programming language
based on a manifest contract calculus with first-class types and dy-
namic type. Sage can deal with datatypes with refined constructors
by Church-encoding, but does not formalize them in its core cal-
culus. In particular, Knowles et al. did not clarify how casts be-
tween datatypes work. Dminor [5], proposed by Bierman et al.,
is a first-order functional programming language with refinement
types, type-test and semantic subtyping. The combination of these
features is as powerful as various types such as algebraic datatypes,
intersection types, and union types can be encoded. Unlike our cal-
culus, Dminor does not deal with higher-order functions and dy-
namic checking with type conversion.

Xu [32] developed a hybrid contract checker for OCaml. In the
static checking phase, the checker performs symbolic simplifica-
tion of program components wrapped by contracts, with the help
of context information, to remove blames. If a blame remains in
the simplified programs, the compiler reports errors, or it issues
warnings and leaves contract checking to run time. Although the
checker supports variant types (i.e., datatypes where constructors
have no refinements), it does not take care of relationship between
elements in data structures nicely. For example, it seems that it can-
not prove statically that the tail of a sorted list is also sorted unless
programmers give axioms about sorted lists.

In a different line of work, Miranda [26], a statically typed
functional programming language, provides datatypes with laws,
which are rules to reconstruct data structures according to certain
specifications. For example, we suppose that a datatype integer has
three constructors Zero, Succ integer and Pred integer, and then a
law converts Succ (Pred x) to x . More interestingly, Miranda can
control application of laws by giving them conditional expressions.
Using laws with conditionals, we can define lists which are sorted
automatically. Both Miranda and our calculus provide a mechanism
to convert data structures, but the purposes are different: in our
work, type conversion is used only to check contracts, and so does
not change “structures”.

Systematic derivation of datatype definitions. As mentioned in
Section 1, there is closely related work, in which systematic deriva-
tion of (indexed) datatype definitions is studied.

McBride [20] propose the notion of ornaments, which provide a
mechanism to extend and to refine datatypes in a dependently-typed
programming language. For example, the definition of lists can be
derived from that of natural numbers by adding an element type;
and the definition of lists indexed by their lengths can be derived.
As far as we understand, he does not consider deriving new type
definitions by changing the number of data constructors, as is the
case for our work. Also, it is not clear whether partial refinements
(the case where an index cannot be assigned to some values of
the original datatype) can be dealt with in this framework. Partial
refinements are important in our setting because our refinement
types are for excluding some values in the underlying types.

Atkey et al. [3] developed derivation of inductive types from re-
finement types from a category-theoretic point of view. Moreover,
it can deal with partial refinements. Our translation seems to be
a concrete, syntactic instance of this framework. However, being
abstract, their technique is not concerned about concrete represen-
tations of datatypes, which are significant when efficiency of casts
is taken into account.

A similar idea is found in Kawaguchi et al. [17], who develop a
refinement type system for static verification of programs dealing
with datatypes. They allow programmers to write special terminat-
ing functions called measures, which will be used as hints to the
verifier by indexing a datatype with the measure information.

Dependent and/or refinement type systems. The term “refine-
ment types” seems to have many related but subtly different mean-
ings in the literature. We use this term for types to denote subsets
in some way or another. Refinement types are intensively studied
in the context of static program verification.

In Freeman and Pfenning [12], datatypes can be refined by
giving data constructors appropriate types. For example, one may
give [] a special type null and cons a special type int → null →
singleton list, which means that, if cons takes an element and
the empty list, then it yields a singleton list. Here, null and
singleton list are atomic type names. They did not allow refine-
ment types to take arbitrary contracts to make type checking and
type inference decidable. On the other hand, they combined refine-
ment types with intersection types to express overloaded function-
ality of a single constructor.

Xi and Pfenning [30, 31] have designed and developed practical
programming languages which support a restricted form of depen-
dent types. Kawaguchi et al. [17] and Vazou et al. [27] have devised
type inference algorithms for statically typed lambda calculi with
refinement types and recursive refinements, which provides recur-
sive types with refinements, and have implemented it for OCaml
and Haskell, respectively. The refinements used there are derived
from decidable languages such as (extensions of) Presburger arith-
metic because their main focus is static verification. Our type sys-
tem allows arbitrary Boolean predicates.

Our datatypes resemble inductive datatypes found in interactive
proof assistants such as Coq [2] or Agda [1]. Aside from compat-
ibility relation and casts, our syntax treats a formal argument ⟨x⟩
to a datatype to be parametric (notice that only argument types of
data constructors have to be given). However, since x can appear in
a refinement, conditions on the value of x can be enforced and so
we do not lose much expressiveness.

6. Conclusion
We have proposed datatypes for manifest contracts with the mecha-
nism of casts between different but compatible datatypes, and prove
type soundness of a manifest contract calculus λH

dt with datatypes.
In particular, the property that the value of a term of a refinement
type satisfies the contract in the refinement type is proved for the
first time in a purely syntactic manner. We have also given a formal
translation from a refinement on lists to a datatype definition with
refined constructors and proved the translation is correct. Moreover,
the translation preserves the efficiency of casts.

As a proof of concept, we have implemented our casts us-
ing Camlp4. Our implementation does not support derivation of
datatypes yet and a constructor choice function works by trial and
error with backtracking but we are planning to extend the imple-
mentation with derivation of datatypes and an accompanying con-
structor choice function.

There are many directions of future work. First, we would like
to investigate static contract checking using datatypes. A key the-
oretical property is upcast elimination: a property that removing
upcasts—casts from a type to its supertype—does not change the
behavior of a program in a certain sense, similarly to previous
work [4, 18]. We expect refining constructor argument types is use-
ful also for static checking [17]. Second, a proof that a generalized
version of the translation given in Section 4 is correct remains as
future work (although we do have translation). Third, it is worth in-
vestigating intersection types (or even Boolean operations) in this
setting so that properties on data structures can be easily combined.

Acknowledgments
We thank Kohei Suenaga for valuable comments on an earlier
draft. We are grateful to the anonymous reviewers for their fruitful
comments and to Robby Findler for being our angel. Michael
Greenberg encouraged us during the visit to our laboratory. This
work was supported in part by Grant-in-Aid for Scientific Research
(B) No. 25280024 from MEXT of Japan.

References
[1] The Agda 2 homepage. http://wiki.portal.chalmers.se/

agda/pmwiki.php.

[2] The Coq proof assistant. http://coq.inria.fr/.

[3] R. Atkey, P. Johann, and N. Ghani. Refining inductive types. Logical
Methods in Computer Science, 8(2:9):1–30, 2012.

[4] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic
contracts. In Proc. of ESOP, volume 6602 of LNCS, pages 18–37,
2011.

[5] G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy. Se-
mantic subtyping with an SMT solver. In Proc. of ACM ICFP, pages
105–116, 2010.

[6] M. Blume and D. A. McAllester. Sound and complete models of
contracts. J. Funct. Program., 16(4–5):375–414, July 2006.

[7] O. Chitil. A semantics for lazy assertions. In Proc. of ACM PEPM,
pages 141–150, 2011.

[8] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theor. Comput. Sci., 103(2):235–271,
Sept. 1992.

[9] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In Proc. of ACM ICFP, pages 48–59, 2002.

[10] R. B. Findler, S. Guo, and A. Rogers. Lazy contract checking for
immutable data structures. In Proc. of IFL, volume 5083 of LNCS,
pages 111–128, 2008.

[11] C. Flanagan. Hybrid type checking. In Proc. of ACM POPL, pages
245–256, 2006.

[12] T. Freeman and F. Pfenning. Refinement types for ML. In Proc. of
ACM PLDI, pages 268–277, 1991.

[13] M. Greenberg. Manifest Contracts. PhD thesis, University of Penn-
sylvania, 2013.

[14] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In Proc. of ACM POPL, pages 353–364, 2010.

[15] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and
Functional Programming Workshop, pages 93–104, 2006.

[16] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
In Trends in Functional Prog. (TFP), 2007.

[17] M. Kawaguchi, P. M. Rondon, and R. Jhala. Type-based data structure
verification. In Proc. of ACM PLDI, pages 304–315, 2009.

[18] K. Knowles and C. Flanagan. Hybrid type checking. ACM TOPLAS,
32(2:6):1–34, Feb. 2010.

[19] K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and C. Flanagan.
Sage: Unified hybrid checking for first-class types, general refinement
types, and dynamic (extended report). Technical report, UCSC, 2007.

[20] C. McBride. Ornamental algebras, algebraic ornaments. J. Funct.
Program., 2014. To appear.

[21] B. Meyer. Object-Oriented Software Construction, 1st Edition.
Prentice-Hall, 1988. ISBN 0-13-629031-0.

[22] P. C. Nguyen, S. Tobin-Hochstadt, and D. Van Horn. Soft contract
verification. In ACM ICFP, 2014.

[23] B. C. Pierce. Types and Programming Languages. The MIT Press,
Cambridge, MA, USA, 2002. ISBN 0-262-16209-1.

[24] P. M. Rondon, M. Kawaguchi, , and R. Jhala. Liquid types. In ACM
PLDI, 2008.

[25] J. G. Siek and P. Wadler. Threesomes, with and without blame. In
Proc. of ACM POPL, pages 365–376, 2010.

[26] D. A. Turner. Miranda: A non-strict functional language with poly-
morphic types. In Proc. of ACM FPCA, volume 201 of LNCS, pages
1–16, 1985.

[27] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In
Proc. of ESOP, volume 7792 of LNCS, pages 209–228, 2013.

[28] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton Jones.
Refinement types for Haskell. In ACM ICFP, 2014.

[29] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

[30] H. Xi. Dependent ML: An approach to practical programming with
dependent types. J. Funct. Program., 17(2):215–286, Mar. 2007.

[31] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proc. of ACM POPL, pages 214–227, 1999.

[32] D. N. Xu. Hybrid contract checking via symbolic simplification. In
Proc. of ACM PEPM, pages 107–116, 2012.

[33] D. N. Xu, S. L. Peyton Jones, and K. Claessen. Static contract
checking for Haskell. In Proc. of ACM POPL, pages 41–52, 2009.

