
Type-Based Verification of Connectivity
Constraints in Lattice Surgery

Ryo Wakizaka1[0000−0001−8762−9335], Yasunari Suzuki2, and Atsushi
Igarashi1[0000−0002−5143−9764]

1 Graduate School of Informatics, Kyoto University, Japan,
wakizaka@fos.kuis.kyoto-u.ac.jp

igarashi@kuis.kyoto-u.ac.jp
2 NTT Computer and Data Science Laboratories, Musashino 180-8585, Japan

yasunari.suzuki@ntt.com

Abstract. Fault-tolerant quantum computation using lattice surgery
can be abstracted as operations on graphs, wherein each logical qubit
corresponds to a vertex of the graph, and multi-qubit measurements are
accomplished by connecting the vertices with paths between them. Oper-
ations attempting to connect vertices without a valid path will result in
abnormal termination. As the permissible paths may evolve during exe-
cution, it is necessary to statically verify that the execution of a quantum
program can be completed.
This paper introduces a type-based method to statically verify that well-
typed programs can be executed without encountering halts induced by
surgery operations. Alongside, we present QLS , a first-order quantum
programming language to formalize the execution model of surgery op-
erations. Furthermore, we provide a type checking algorithm by reducing
the type checking problem to the offline dynamic connectivity problem.

Keywords: fault-tolerant quantum computation · lattice surgery · pro-
gram verification · type systems

1 Introduction

Fault-tolerant quantum computation is a method that enables the large-scale
quantum computation required for applications, for example, in quantum chem-
istry [3,29] and cryptanalysis [34,18,5], by addressing quantum errors that occur
on quantum hardware. In recent years, small-scale fault-tolerant quantum com-
putation has begun to be realized on actual hardware [1,28,14,6,12], leading to an
urgent need to develop quantum software such as quantum compilers to generate
quantum programs executable on fault-tolerant quantum computers.

The primary technology to realize fault-tolerant quantum computation is
quantum error-correcting codes, which build a logical qubit from multiple phys-
ical qubits. However, since physical qubits can only interact (i.e., perform multi-
qubit operations) with neighboring qubits, error-correcting codes can be imple-
mented in a way that satisfies such locality conditions. Numerous quantum error-
correcting codes have been proposed, with topological codes [26] such as surface

2 R. Wakizaka et al.

codes [17] and color codes [7] standing out as promising candidates because they
exhibit robust performance and are relatively straightforward to implement in
quantum computers with locally connected physical qubits.

To achieve fault-tolerant quantum computation, it is imperative not only to
construct logical qubits but also to execute logical operations on them. Several
methods [17,23] have been proposed to realize logical operations on topological
codes, and lattice surgery [23] in particular has attracted attention as a method
that can efficiently implement multi-qubit logical operations. Roughly speak-
ing, lattice surgery involves allocating a logical qubit on a vertex of a graph
determined by a target architecture, with each logical operation depicted as
an operation on the graph. It is established that lattice surgery with several
simple operations can execute a universal gate set, thereby enabling universal
fault-tolerant quantum computation.

An essential operation in lattice surgery is the merge operation, facilitating
logical operations on two or more logical qubits. The merge operation establishes
a connection along a path between the target qubits positioned on the vertices.
The point here is that no other logical qubit must be assigned to any vertex
(except endpoints) included in the merge path. If no path meeting this condition
exists during a merge operation, the execution of a quantum program will halt.
Therefore, the compiler must schedule instructions to prevent situations where
no merge paths exist during execution.

Quantum compilers typically involve multiple optimization passes, and the
improper combination of these passes may lead to compiled programs that no
longer adhere to connectivity constraints. Therefore, it is essential to statically
verify that the compilation result indeed satisfies these constraints. Additionally,
such verification tools should be capable of addressing quantum programs with
high-level features, such as function calls and branches, as fault-tolerant quantum
computation programs often tend to be large, making circuit-based methods
impractical for scaling. However, to the best of our knowledge, there is currently
no formal verification framework specifically tailored for lattice surgery.

To tackle this challenge, we present a type-based verification approach to en-
suring the satisfaction of connectivity constraints between logical qubits in lattice
surgery. Our contributions primarily encompass the following components: (1)
the introduction of QLS , a first-order quantum programming language whose
operational semantics reflects graph operations in lattice surgery, (2) a type
system ensuring that well-typed QLS programs inherently adhere to the connec-
tivity constraints during execution, and (3) a type checking algorithm grounded
in the offline dynamic connectivity problem. Although the details are not cov-
ered in this paper, we have also implemented our approach in Rust and applied
it to several examples.3

This paper is organized as follows: Section 2 explains the background of this
work, including the basics of quantum computing and fault-tolerant quantum
computation by lattice surgery. Section 3 gives a motivating example. Section 4

3 The source code is available at https://github.com/
SoftwareFoundationGroupAtKyotoU/tysurgery.

https://github.com/SoftwareFoundationGroupAtKyotoU/tysurgery
https://github.com/SoftwareFoundationGroupAtKyotoU/tysurgery

Type-Based Verification of Connectivity Constraints in Lattice Surgery 3

introduces QLS to describe lattice surgery’s operations and semantics. Section 5
formalizes a type system for the verification of connectivity constraints. Section 6
discusses how to extend our language. Section 7 provides the related work, and
finally, Section 8 concludes this paper with future directions.

2 Background

2.1 The Basics of Quantum Computation

In quantum computation, a qubit is the unit of information. A quantum state of
a qubit is a normalized vector of the 2-dimensional Hilbert space H ∼= C2. Each
state is represented by α |0⟩+β |1⟩, where α, β ∈ C satisfying |α|2+ |β|2 = 1 and
{|0⟩ , |1⟩} denotes the standard basis vectors of C2. Here, we use Dirac notation,
which encloses integers or variables with | and ⟩, to denote quantum states. The
state of n qubits is a normalized vector of the tensor product

⊗n
i=1 C2 ∼= C2n .

For example, if |ψ⟩ = |0⟩ and |ϕ⟩ = 1√
2
(|0⟩ + |1⟩), then |ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ |ϕ⟩ =

1√
2
(|00⟩ + |01⟩). We call a quantum state |ψ⟩ ∈ C2n a pure state. On the other

hand, when we have one of the quantum states {|ψi⟩} generated randomly with
probabilities pi and do not know which state was generated, we call the state
{(pi, |ψi⟩)} mixed state. A mixed state can be described by a density operator
ρ =

∑
i pi |ψi⟩ ⟨ψi|, where ⟨ψi| is the adjoint of |ψi⟩ and

∑
i pi = 1. We often use

density operators to describe quantum states because they can uniformly express
both pure and mixed states. We write S(H) for the set of density operators.

A quantum state can be manipulated by unitary operators called quantum
gates. For example, the Hadamard gate and the CX (controlled X) gate are
defined by H |x⟩ = 1√

2
(|0⟩ + (−1)x |1⟩), CX |x⟩ |y⟩ = |x⟩ |x⊕ y⟩, where x, y ∈

{0, 1} and ⊕ denotes the Boolean XOR operation. The Pauli operators defined
by Pn = {I,X, Y, Z}⊗n for a n qubits system are also important quantum
operations. The operator on density operators corresponding to U is described
as a super operator U [·]U† : S(H) → S(H), where U† is the adjoint of U .

An instruction set architecture generally provides a universal gate set, a
subset of quantum gates that realizes (approximate) universal quantum compu-
tation. For example, {H,T,CX } is a well-known universal quantum gate set.

To get the result of quantum computation, we have to perform quantum
measurements which consist of measurement operators M1,M2, . . . ,Mn acting
on the state space and satisfying

∑
iM

†
iMi = I. When performing measurements

to a quantum state ρ, we get an outcome corresponding to one of Mi with
probability pi = Tr(M†

iMiρ), and then the quantum state is changed to MiρM
†
i

pi
.

The measurements defined by MP = {(I+(−1)sP)/2}s=0,1 for a Pauli operator
P ∈ Pn is called Pauli measurements, which plays an important role in fault-
tolerant quantum computation.

2.2 Fault-Tolerant Quantum Computation with Lattice Surgery

This section explains fault-tolerant quantum computation employing lattice surgery.
We utilize surface codes as an illustrative example, although analogous principles

4 R. Wakizaka et al.

|q0⟩ |q1⟩

...

· · ·

Fig. 1: (Left) A 2D layout of physical qubits on a quantum computer. (Right)
Two logical qubits constructed with the surface code.

apply to other topological codes. We note that the error correction procedure is
omitted in this paper as it is unnecessary for comprehending this study.

Quantum error-correcting codes serve to protect quantum data against quan-
tum noises by constructing a logical qubit from noisy physical qubits. However,
for these codes to be implemented on real quantum devices, they must satisfy var-
ious architectural constraints, particularly connectivity constraints. These con-
straints dictate that two-qubit gates, such as the CX gate, can only be applied
to pairs of directly connected qubits. Therefore, the error correction process it-
self must also satisfy these locality conditions. For example, the left-hand side
of Figure 1 represents an architecture in which physical qubits (white circles)
are arranged in two dimensions, with only nearest-neighbor interactions allowed,
and such configuration is standard in quantum computers [5,29,10].

The surface code [17] is a topological code that satisfies locality conditions
and holds promise for future implementation. A logical qubit encoded by sur-
face codes is represented by a rectangle of physical qubits, as depicted on the
right-hand side of Figure 1. In Figure 1, there are two logical qubits, q0 and q1,
where filled circles represent physical qubits used to construct a logical qubit. In
this way, multiple logical qubits can be created using some of the regions of the
physical qubits on a quantum computer. Logical qubits can be arranged freely as
long as they do not overlap each other’s proprietary areas, but in practice, it is
customary to arrange them so that their relative positions are simple to facilitate
hardware control and compiler optimization. Additionally, physical qubits rep-
resented by unfilled circles can be used as auxiliary qubits to implement logical
operations on logical qubits, as explained later.

To achieve fault-tolerant quantum computation, logical operations on logi-
cal qubits must also be accomplished. In this paper, we briefly describe logical
operations that can be performed with low latency and, when combined, enable
universal quantum computation. These logical operations will later serve as the
instruction set of QLS . For more details, readers are referred to literatures [16,30].

Qubit allocation/deallocation. The qubit initialization to the logical |0⟩ state can
be achieved by occupying an unused area of the physical qubits and initializing

Type-Based Verification of Connectivity Constraints in Lattice Surgery 5

merge

split

Fig. 2: The merge and split operation for the surface code.

the state. Initialization can also be done to a state |m⟩ = (|0⟩ + eiπ/4 |1⟩)/
√
2,

known as the magic state, which is necessary for implementing the logical T gate
required for universal quantum computation4. In contrast, qubit deallocation is
achieved by making the allocated area unused after performing the single qubit
Pauli measurement described below.

Single qubit operations. The Pauli gates X, Z, the Hadamard gate H and the
phase gate S are logical operations that can be easily realized on topological
codes. Additionally, the logical Pauli measurements MZ and MX for a single
logical qubit can be performed.

Multi-qubit operations. Multi-qubit operations can be realized by lattice surgery
in a manner that satisfies the locality condition of physical qubits. Specifically, in
lattice surgery, Pauli measurements MP are achieved through operations known
as merge and split operations. As shown in Figure 2, the merge operation con-
nects the target logical qubits using auxiliary physical qubits in between, while
the split operation disconnects them via an appropriate physical measurement
operation. It is important to note that sufficient free space between the target
qubits is required to perform the merge operation. Such space is released by the
split operation immediately after the merge operation. Multi-qubit Pauli mea-
surements can be used, for example, to implement the logical CX gate (Figure 3)
and the logical T gate, which enable universal quantum computation.

Remark 1. Strictly speaking, which boundaries of the logical qubits (e.g., the
four sides of each rectangle in Figure 2) can be used for a merge operation de-
pends on the basis of measurement. For simplicity, we will ignore this constraint
in this paper. However, it is straightforward to extend our proposed method to
account for this constraint.

To summarize this section, we provide an example of how surgery operations
on surface codes proceed in Figure 4. In the case of surface codes, the physical
qubits are divided into compartments on the grid, and logical qubits are allocated
so that they just fit into their respective cells. This abstracts the merge operation
to the process of connecting target cells on the graph using free paths between
4 This process is called magic state injection and does not actually initialize the qubit

in the exact |m⟩ state. To generate |m⟩ states with negligible approximation errors,
it is necessary to use a protocol called magic state distillation [27,8].

6 R. Wakizaka et al.

|q0⟩ Z

MZZ

Z

|0⟩
MXX

MX

|q1⟩ X

Fig. 3: The implementation of the CX
gate.

|q1⟩
alloc q2 on (1, 3)

|q1⟩ |q2⟩
merge q1 and q2

|q1⟩ |q2⟩

Fig. 4: The abstracted surgery opera-
tions.

|q1⟩

|q2⟩

|q3⟩

|q4⟩

(a)

|q1⟩ |q3⟩

|q4⟩|q2⟩

(b)

|q1⟩

|q2⟩

|q3⟩

|q4⟩

|0⟩

|0⟩

(c)

Fig. 5: Making attempts to merge qubits in several situations.

them. Note that we can merge two adjacent cells because there is a thin gap
between them as shown in Figure 1. The QLS language is formalized using this
abstracted execution model. From now on, abstracted graphs (e.g., grid graphs)
will be referred to as architecture graphs.

3 Motivating Example

We illustrate instances where a quantum program utilizing surgery operations
gets stuck by presenting examples depicted in Figure 5. In these scenarios, quan-
tum programs attempt to manipulate qubits, represented as squares on a 2D grid
graph. For example, in the first scenario (Figure 5a), the program tries to merge
q1 and q4. This operation succeeds as an accessible path between q1 and q4 exists,
as indicated by the black line.

Conversely, in the remaining examples, their merge operations fail. The sec-
ond example (Figure 5b) attempts to merge q1 and q4 but fails because qubit q2
interrupts their connectivity, unlike the first scenario. The third example (Fig-
ure 5c) is more intricate than the others. In Figure 5c, CX (q1, q4) and CX (q2, q3)
are depicted midway through execution. In reality, a situation akin to Figure 5c
unfolds through the following steps: (1) we express CX (q1, q4) and CX (q2, q3) in
a source language in this sequence, (2) a compiler transpiles them into surgery
operations, decomposing the CX gate (Figure 3), (3) and a transpiler pass er-
roneously reorders the instruction allocating an ancilla |0⟩ for CX (q2, q3) before
completing CX (q1, q4). Ultimately, in both examples, the programs fail to exe-
cute the merge operation, leading to abnormal termination.

Type-Based Verification of Connectivity Constraints in Lattice Surgery 7

Location variables l ∈ Locations

Function declarations d := f 7→ [l](x1, .. , xn)e

Expressions e := x | let x = init (l) in e | let x = minit (l) in e |
free x ; e | let y = MB1, .. ,Bn (x1, .. , xn) in e | U (x) |
let x = mkref e in e | ∗e | x := e | e1; e2 |

if e1 then e2 else e3 | while e1 do e2 | f [l](x1, .. , xn)
Values v := x | l | unit | true | false

Program P := ⟨{d1, .. , dn}, e⟩
Measurement basis B := X | Z

Gates U := X | Z | H | S

Fig. 6: The grammar of QLS .

As discussed above, the execution of a quantum program utilizing lattice
surgery may halt for various reasons, notably inappropriate compiler strategies
in qubit allocation and merge path scheduling. Regrettably, such issues are likely
to persist because the availability of nodes for logical qubits and merge paths
will remain limited even in the future. Hence, we advocate for the necessity
of a framework to statically verify whether a given program can complete its
execution without getting stuck at any point.

4 QLS : Quantum PL for Lattice Surgery

Before presenting our verification methodology, we introduce QLS , an impera-
tive quantum programming language encompassing lattice surgery operations,
mutable references, and first-order functions. QLS is primarily designed to serve
as a target language for quantum compilers.

4.1 Syntax

The grammar of QLS is given in Figure 6. We assume that an architecture
configuration is represented as a graph G = (V,E), where V ⊆ Locations, and a
location variable, denoted by l , signifies a location where qubits can be allocated.
We use l ∈ Locations \V to denote a function parameter that is substituted with
a specific location upon function invocation. We write l for a sequence of location
variables l1, .. , ln . We also use L to denote a set of location variables.

There are four primitives for quantum operations in QLS : qubit allocation,
deallocation, unitary operations, and quantum measurements. Qubit allocating
operations init (l) and minit (l) initialize a location l with a logical state |0⟩
and a magic state |m⟩, respectively. In QLS , all locations of qubits in a program
are statically determined at compile time. A unitary operation U (x) applies a

8 R. Wakizaka et al.

unitary gate U to x , where U must be one ofH,X,Z, and S gate. Note that the T
gate for universal quantum computation can be realized through a combination
of if expressions, basic gates, and measurements with a magic state.

Our language supports quantum measurements with one or two qubits. We
can measure qubits with different bases per each qubit; for example,MX,Z(x1, x2)
measures x1, x2 withX,Z bases, respectively. Although a two-qubit measurement
is implemented through merge and split operations, as explained in Section 2.2,
our language does not explicitly specify a path for a merge operation between
the target qubits. Instead, we leave the pathfinding problem to the runtime. It
is straightforward to extend the language with measurements specifying paths.

A program is represented as a pair ⟨D, e⟩, where D = {d1, ... , dn} constitutes
a set of first-order and non-recursive function definitions, and e denotes the
program entry point. A function declaration d = f 7→ [l](x1, .. , xn)e maps a
function name f to a tuple of location variables l and argument names x1, ... , xn
bound within the function body e. The parameters l in a function declaration
allow us to call a function in various scenarios where the topology of qubits used
within its body varies.

1 [l0,l1,l2]
2 cx(q0:qbit(l0), q1:qbit(l1)) {
3 let aux = init(l2) in
4 let a = meas[X,X](aux, q1) in
5 (if a then Z(q0));
6 let b = meas[Z,Z](q0, aux) in
7 (if b then X(q1));
8 let c = meas[X](aux) in
9 (if c then Z(q0));

10 free(aux)
11 }

Fig. 7: An implementation of CX

For example, an implementation of
the CX gate in QLS is provided in Fig-
ure 7. The function cx features loca-
tion parameters l0, l1, l2 and accepts two
qubits as arguments. The location vari-
able l2 is employed for internal qubit al-
location (see line 3). The ancilla qubit
aux is deallocated at the end of cx (see
line 10), allowing for the reuse of l2 af-
ter the function call. Notably, we use
an if-expression without an else clause,
which is a syntax sugar representing an
if-expression where the else clause is a
unit expression.

4.2 Semantics

We design operational semantics of our language to model the execution of quan-
tum programs with lattice surgery. The complete definition is given in Figure 8.
We define the operational semantics as a transition relation on runtime states
denoted by a triple [H, ρ, e]; H is a partial function from Variables to Values, ρ
is a quantum state, and e is a reducing expression. Then we write the transition
relation as →D,G, where D contains function definitions and G is an architecture
graph. From here, we explain briefly each transition rule.

A qubit allocation let x = init (l) in e allocates a qubit at l and binds a qubit
variable x to l . The semantics of minit (l) is defined similarly. Both expressions
require that the location l is empty. On the other hand, an expression free x
deallocates a qubit x on a location l = H(x) and removes x from a current heap
H. The quantum state after deallocating a qubit at l is the partial trace over the

Type-Based Verification of Connectivity Constraints in Lattice Surgery 9

[H , ρ, e] →D,G [H ′, ρ′, e ′]

x′ ̸∈ dom(H) l ̸∈ cod(H) l ∈ G

[H, ρ, let x = init (l) in e]→D,G

[
H{x′ 7→ l}, ρ⊗ |0⟩l ⟨0| , [x

′/x] e
] (E-Init)

x′ ̸∈ dom(H) l ̸∈ cod(H) l ∈ G

[H, ρ, let x = minit (l) in e]→D,G

[
H{x′ 7→ l}, ρ⊗ |T ⟩l ⟨T | , [x

′/x] e
] (E-MInit)

H(x) = l

[H, ρ, free x ; e]→D,G [H \ x ,Trl(ρ), e]
(E-Free)

H(x) = l

[H, ρ,U (x)]→D,G

[
H,UlρU

†
l , ()

]
(E-Gate)

H(x1) = l1 H(x2) = l2 Ms := (I + (−1)sB1B2)/2 (s = 0, 1)

x ′ ̸∈ dom(H) v ∈ {0, 1} pv := Tr
(
M†

vMvρ
)
̸= 0 G | V (G) \Used(H) ⊨ l1 ∼ l2

[H, ρ, let x = MB1,B2(x1, x2) in e]→D,G

[
H{x′ 7→ v},MvρM

†
v/pv, [x

′/x] e
]

(E-Meas2)

f 7→ [l ′](x ′
1, .. , x

′
n)e

′ ∈ D[
H, ρ, f [l](x1, .. , xn)

]
→D,G

[
H, ρ, [l/l ′] [x1/x

′
1] .. [xn/x

′
n] e

′] (E-Call)

Fig. 8: Operational semantics (excerpt).

qubit corresponding to l . For example, deallocating a qubit at l1, which is one
of the Bell pair |Φ+⟩l1,l2 ⟨Φ+| where |Φ+⟩ = (|00⟩+ |11⟩)/

√
2, produces a mixed

state 1
2 |0⟩l1 ⟨0|+

1
2 |1⟩l1 ⟨1|.

An expression let x = MB1, .. ,Bn
(x1, .. , xn) in e performs quantum measure-

ments to x1, .. , xn with basis B1, .. ,Bn (n = 1 or 2). The variable x is bound to
v ∈ {0, 1}, the result of the measurement, and the quantum state ρ changes to
MvρM

†
v/pv. The point is that two qubit measurements require that there exists

a free path between the target locations l1 and l2. This requirement is formalized
as G | L ⊨ l1 ∼ l2, indicating that there is a path between l1 and l2 on a graph
G, where L represents a set of locations where any qubits are allocated. If such
a path does not exist, the program gets stuck. On the other hand, single-qubit
measurements always succeed.

We omit other expressions in this paper, as their semantics are similar to
those in common programming languages.

5 Typing

This section presents the definition of a type system for QLS . The aim of our
type system is to ensure that well-typed programs do not halt execution due to
surgery operations. We proved this property as type soundness.

10 R. Wakizaka et al.

Types τ := qbit(l) | unit | bool | ref τ | . . .

Function Types θ := Π l . ⟨x1 : τ1, .. , xn : τn⟩
C−→ ⟨Γ |τ⟩

Typing Environment Γ := • | Γ, x : τ | Γ, l
Function Type Environment Θ := • | Θ, f : θ

Commands C := l1 ∼ l2 | alloc (l) | free (l) | C1
∗ | C1 ∨ C2

Fig. 9: Types, environments and commands

5.1 Types, Environments and Commands

The syntax of types, environments, and commands is provided in Figure 9. The
type qbit(l) denotes the type of a qubit, where l represents the location of
the qubit. Our type system distinguishes each qubit from others to analyze how
qubits are manipulated within a given graph. The qubit type can be considered a
kind of singleton type [19]. The other types are consistent with those commonly
used in many programming languages: unit, bool and ref τ denote the type of
the unit value, Boolean values, and references to a value of type τ , respectively.

A type environment Γ maps variables to types and also manages a set of
qubit locations. The symbol • denotes the empty environment. We use Γ, x : τ
to denote the extension of environment Γ with a type binding x : τ , and Γ, l to
represent the extension of Γ with a location l . If l ∈ Γ , it means that no qubit is
allocated at l . We assume that all variable names and locations in Γ are distinct.
A function type environment Θ maps function names f to function types θ.

A command C denotes an operation on locations, which can be perceived
as a form of computational effects. We write C for a sequence of commands
and ϵ for the empty command sequence, indicating that an expression does
not manipulate any locations. The concatenation of command sequences C1

and C2 is denoted by C1 ++ C2. Commands alloc (l) and free (l) signify qubit
allocation and deallocation, respectively, which are generated by expressions
init (l) and free (l). A merge command l1 ∼ l2 signifies an occurrence of a merge
operation between l1 and l2, which is generated by measurements. Additionally,
our language supports loops and branches, thus commands have constructors
for them. A command C

∗
represents zero or more repetitions of C, and C1 ∨C2

denotes a branch that chooses either C1 or C2 at runtime.

We denote function types as Π l . ⟨x1 : τ1, .. , xn : τn⟩ C−→ ⟨Γ |τ⟩, where l rep-
resents a sequence of location parameters, x1 : τ1, .. , xn : τn denote the types
of arguments, Γ represents a new typing environment, τ signifies the type of a
return value, and C is a command sequence generated upon function invocation.
Here, the environment Γ is utilized to monitor which locations and variables
remain valid after the function call. The parameter l enables function invocation
in diverse contexts wherein the locations of qubits passed as arguments vary.

Type-Based Verification of Connectivity Constraints in Lattice Surgery 11

Θ | Γ, x : qbit(l) ⊢ e : τ ⇒ Γ ′ | C
Θ | Γ, l ⊢ let x = init (l) in e : τ ⇒ Γ ′ | alloc (l) ++ C

(T-Init)

Θ | Γ, l ⊢ e : τ ⇒ Γ ′ | C
Θ | Γ, x : qbit(l) ⊢ free x ; e : τ ⇒ Γ ′ | free (l) ++ C

(T-Free)

y : qbit(l) ∈ Γ Θ | Γ, x : bool ⊢ e : τ ⇒ Γ ′ | C
Θ | Γ ⊢ let x = MB(y) in e : τ ⇒ Γ ′ | C

(T-Meas1)

x1 : qbit(l1), x2 : qbit(l2) ∈ Γ Θ | Γ, x : bool ⊢ e : τ ⇒ Γ ′ | C
Θ | Γ ⊢ let x = MB1,B2(x1, x2) in e : τ ⇒ Γ ′ | l1 ∼ l2 ++ C

(T-Meas2)

x : qbit(l) ∈ Γ

Θ | Γ ⊢ U (x) : unit ⇒ Γ | ϵ
(T-Gate)

Fig. 10: Typing rules for quantum expressions.

5.2 Type System

The typing rules are provided in Figures 10 and 11. A typing judgment has the
form Θ | Γ ⊢ e : τ ⇒ Γ ′ | C, indicating that e is well-typed under a function
type environment Θ and typing environment Γ , evaluates to a value of type τ ,
leading to a change in the type environment to Γ ′, and generating a command
sequence C. Throughout the description of our type system, we use flv(Γ) and
flv(τ) to denote all free location variables in Γ and τ , respectively.

The typing rules for quantum expressions, which may generate several com-
mands, are provided in Figure 10. In T-Init and T-MInit for qubit allocation,
a location l ∈ Γ removed to create a type qbit(l). Conversely, the rule T-Free
removes a qubit variable x from the typing environment and returns the loca-
tion variable l associated with the type of x , allowing it to be reused for another
qubit allocation. These two rules ensure that at most only one variable can have
ownership over a location, and in this sense they are related to linear types [38].
The rule T-Meas2 requires that the arguments are qubits and adds a command
l1 ∼ l2. It is noteworthy that it does not validate whether l1 and l2 are connected
at this time. The T-Gate and T-Meas1 rules do not generate any commands
because single qubit measurements and applications of basic gates do not entail
changes to qubit locations or connections between qubits.

The typing rules for classical expressions are outlined in Figure 11. The rules
for creating references, dereferencing, and assigning a value to reference cells
closely resemble those of ordinary ML-like languages and are thus omitted here
due to space constraints.

The rule T-Seq checks the type of e1 and then proceeds to the subsequent
expression e2 with Γ1, which is obtained from e1, and concatenates two command
sequences C1 and C2, which are obtained from e1 and e2, respectively.

In rule T-If, we ensure that each subexpression returns the same type en-
vironment Γ ′. This stipulation ensures that regardless of which expression is

12 R. Wakizaka et al.

x : τ ∈ Γ

Θ | Γ ⊢ x : τ ⇒ Γ | ϵ
(T-Var)

Θ | Γ ⊢ e1 : unit ⇒ Γ1 | C1 Θ | Γ1 ⊢ e2 : τ ⇒ Γ2 | C2

Θ | Γ ⊢ e1; e2 : τ ⇒ Γ2 | C1 ++ C2

(T-Seq)

Θ | Γ ⊢ e1 : bool ⇒ Γ ′ | C1

Θ | Γ ′ ⊢ e2 : τ ⇒ Γ ′′ | C2 Θ | Γ ′ ⊢ e3 : τ ⇒ Γ ′′ | C3

Θ | Γ ⊢ if e1 then e2 else e3 : τ ⇒ Γ ′′ | C1 ++ (C2 ∨ C3)
(T-If)

Θ | Γ ⊢ e1 : bool ⇒ Γ | C1 Θ | Γ ⊢ e2 : unit ⇒ Γ | C2

Θ | Γ ⊢ while e1 do e2 : unit ⇒ Γ | (C1 ++ C2)
∗ ++ C1

(T-While)

Θ(f) = Π l ′. ⟨x1 : τ1, .. , xn : τn⟩
C−→ ⟨Γ ′|τ⟩ σl = [l/l ′] l ′′ = l \

(⋃n
i=1 flv(σl τi)

)
Θ | Γ, l ′′, x1 : σl τ1, .. , xn : σl τn ⊢ f [l](x1, .. , xn) : σl τ ⇒ Γ, σl Γ

′ | σl C
(T-Call)

Θ ⊢ D Θ | l ′, x1 : τ1, .. , xn : τn ⊢ e : τ ⇒ Γ | C l = l ′ ⊎
(⋃n

i=1 flv(τi)
)

Θ, f : Π l . ⟨x1 : τ1, .. , xn : τn⟩
C−→ ⟨Γ |τ⟩ ⊢ D, f 7→ [l](x1, .. , xn)e

(T-FunDecl)

Θ ⊢ D Θ | V (G) ⊢ e : τ ⇒ Γ | C G | V (G) ⊢ C ⇒ L

G ⊢ ⟨D, e⟩
(T-Prog)

Fig. 11: Typing rules for classical expressions (excerpt).

chosen, the allocation state of the qubits after the if expression is the same. This
property facilitates the implementation of an efficient type-checking algorithm,
as explained in Section 5.3.

In rule T-While, we guarantee that the guard expression e1 and the body
expression e2 return the typing environment Γ unchanged. This is imperative
because the sequential execution of e1 and e2 must not alter the allocation state
of qubits before and after the loop, as the number of loop iterations is unknown.

In rule T-Call, we use a substitution map σl to instantiate occurrences of
location variables l in the argument type τ1, . . . , τn , return type τ , command
sequence C, and typing environment Γ ′. Prior to calling a function, the caller
must ensure that all locations l ′′ are free, where qubits will be allocated in the
function body. After the function call, the portion of the typing environment
used within the function transitions to σl Γ ′. Consequently, the rule returns this
modified environment along with the unused environment Γ . Additionally, it
returns a command sequence σl C generated by the function call.

In rule T-FunDecl, akin to let-polymorphism in ML, all free location vari-
ables are universally quantified. This enables us to call functions in diverse con-
texts. Here, location variables l ′, which directly appear in the typing environment
within the assumption, will be used to allocate new qubits during the execution
of the function body. Subsequently, we append the function type, along with the

Type-Based Verification of Connectivity Constraints in Lattice Surgery 13

l ∈ L

G | L ⊢ alloc (l) ⇒ L \ l
(C-Alloc) G | L ⊢ free (l) ⇒ L, l (C-Free)

G | L ⊨ l1 ∼ l2

G | L ⊢ l1 ∼ l2 ⇒ L
(C-Merge)

G | L ⊢ C1 ⇒ L′ G | L ⊢ C2 ⇒ L′

G | L ⊢ C1 ∨ C2 ⇒ L′ (C-If)

G | L ⊢ C ⇒ L

G | L ⊢ C
∗ ⇒ L

(C-Loop)
G | L ⊢ C1 ⇒ L′ G | L′ ⊢ C2 ⇒ L′′

G | L ⊢ C1 ++ C2 ⇒ L′′ (C-Concat)

Fig. 12: The rules for connectivity checking.

resulting typing environment and command sequence, to a function type envi-
ronment Θ. We remark that the type of a function is not included in Θ in the
current type checking, as QLS does not support recursive function calls.

The T-Prog rule requires that the function definitions in Θ are well-typed
and that the main expression e is also well-typed under Θ and an initial typing
environment V (G), where G represents an architecture graph since all locations
are initially unused.

In T-Prog, we also check whether C obtained through the type checking
of the main expression is valid under the architecture graph G. The judgment
form for the validity of a command sequence is G | L ⊢ C ⇒ L′, indicating that
the process specified by C can be safely completed, starting with free locations
L under a graph G, and that L′ are free after executing C. Formally, we define
the rules for the validity of command sequences in Figure 12.

We prove that any well-typed program under our type system will never
encounter a halt in its execution. This assertion is formalized as type soundness,
as shown in the following theorem.

Theorem 1. (Soundness) If G ⊢ ⟨D, e⟩, then [∅, 1, e] does not get stuck.

5.3 Type Checking Algorithm

Assuming that C is derived from a well-typed expression by type inference, the
remaining task involves connectivity checking G | V (G) ⊢ C ⇒ L for some L. In
this section, we first give a naive algorithm for solving it and then speed it up
by reducing the problem to the offline dynamic connectivity problem.

Basically, the problem can be solved by simulating the command sequence
from the front to the back. In the simulation, we use the constraints imposed on
command sequences in the type system to process the loop and branching com-
mands. In the case of loops, we can straightforwardly consider C

∗
as C because

the T-While rule requires that the locations where qubits are allocated remain
unchanged after C. In other words, the state of locations remains consistent
regardless of the number of iterations.

In the case of branches, while we can indeed check both C1 ++ C and C2 ++
C for (C1 ∨ C2) ++ C naively, this approach leads to an exponential increase
in verification costs for the number of occurrences of non-nested branches. To

14 R. Wakizaka et al.

address this issue, we leverage the fact that the allocation states immediately
following C1 and C2 are identical due to the T-If rule. Consequently, it suffices
to check C1 and C2 ++ C for (C1 ∨ C2) ++ C, as shown in Lemma 1.

Lemma 1. Suppose that (C1∨C2)++C is obtained from a well-typed expression.
G | L ⊢ (C1∨C2)++C ⇒ L′ if and only if G | L ⊢ C1 ⇒ L′′ and G | L ⊢ C2++C ⇒
L′ for some L′′.

The discussion so far gives a type checking algorithm that processes a com-
mand sequence in order from the front in a depth-first manner while managing
the current allocation state (Algorithm 1 in Appendix A.3). The time complex-
ity of this approach is O(E + V) for finding a path in a merge command, so the
overall operation takes O(|C|(E + V)) time.

This algorithm, however, does not scale for large architecture graphs. To
address this issue, we reduce the type checking problem to the offline dynamic
connectivity problem described as follows:

Definition 1. (Offline dynamic connectivity) Given a set of vertices V and Q
queries q1, . . . , qQ. Each query is one of the following:

– add(u, v) : Add an edge {u, v} to G.
– remove(u, v) : Remove the edge {u, v} from G.
– connected(u, v) : Answer whether u and v are connected in G.

Dynamic connectivity is known to be efficiently solved [20,22,37], particularly
for offline dynamic connectivity, where each query can be processed in O(log V)
time with a link-cut tree [35] maintaining a maximum spanning forest. The rest
of this section concentrates on showing how to reduce our connectivity checking
problem to the offline dynamic connectivity problem.

The reduction to offline dynamic connectivity is accomplished by converting
a command sequence into a single command sequence without branches. Specif-
ically, we transform C1 ∨ C2 to C1 ++ (C1)

−1 ++ C2, where C1
−1

is the inverse
of C1, an operation that undoes the change in the allocation state made by C1.
Roughly speaking, C

−1
can be obtained by reversing the meaning of alloc (l)

and free (l) in C and then reversing the order of C. We can verify C1 and C2

simultaneously by verifying the single command sequence obtained through this
conversion. We define this process as the serialization of a command sequence.

Definition 2. For a command sequence C, the serialized command sequence
ser(C) is defined by:

ser(ϵ) = ϵ ser(l1 ∼ l2 ++ C) = l1 ∼ l2 ++ ser(C)

ser(alloc (l) ++ C) = alloc (l) ++ ser(C) ++ free (l)

ser(free (l) ++ C) = free (l) ++ ser(C) ++ alloc (l)

ser((C1 ∨ C2) ++ C3) = ser(C1) ++ ser(C2 ++ C3) ser(C
∗
++ C

′
) = ser(C ++ C

′
)

Type-Based Verification of Connectivity Constraints in Lattice Surgery 15

Example 1. Consider the following program and C obtained from the program:

let q1 = init(l1) in
let w = mkref

if true then
let q2 = init(l2) in
H(q2);
let w = meas[Z](q2) in w

else
let q2 = init(l2) in
let w = meas[X, X](q1, q2) in w

in ()

C = alloc (l1),

alloc (l2) ∨ (alloc (l2), l1 ∼ l2)

ser(C) = alloc (l1),

alloc (l2), free (l2),

alloc (l2), l1 ∼ l2, free (l2),

free (l1)

The branch command in C is serialized as follows:

1. The then clause: free (l2) is inserted after alloc (l2) to restore the allocation
state to one immediately before entering the then clause. As a result, we
obtain alloc (l2), free (l2).

2. The else clause and the subsequent commands: free (l2) is inserted after
these commands because the subsequent expression does not change the
allocation state. The merge command l1 ∼ l2 is ignored during inversion. As
a result, we obtain alloc (l2), l1 ∼ l2, free (l2).

3. Concatenate the results of steps 1 and 2.

Finally, the underlined commands in ser(C) are inserted as an inverse operation.

Indeed, we can employ ser(C) for connectivity checking in place of C. More-
over, the length of ser(C) is less than twice the length of C, namely O(|C|). We
show these properties in the following propositions.

Proposition 1. Suppose that C is obtained from a well-typed expression. Then
G | L ⊢ ser(C) ⇒ L if and only if G | L ⊢ C ⇒ L′ for some L′.

Proposition 2. For any C, |ser(C)| ≤ 2|C|.

The final task is to convert alloc (l) and free (l), which are operations on
vertices, into edge operations in the dynamic connectivity problem. This can be
done as follows: when encountering alloc (l), we remove all edges incident to ver-
tex l , and conversely, when encountering free (l), we restore them. Subsequently,
we can determine whether l1 ∼ l2 is valid by checking if they are adjacent to each
other or there exist l ′1 ∈ adj(l1) and l ′2 ∈ adj(l2) such that l ′1 and l ′2 are connected.
Here, adj(l) denotes the set of adjacent vertices of l in the initial graph. In fact,
if such a path exists, we can use the path l1 → l ′1 → l ′2 → l2 to merge l1 and l2.

Example 2. Consider a path graph G where V (G) = {l1, l2, l3, l4} and E(G) =
{{l1, l2}, {l2, l3}, {l3, l4}}. If alloc (l1), alloc (l3), l1 ∼ l3 are obtained, then it is
converted into the following queries: remove(l1, l2), remove(l2, l3), remove(l3, l4),
connected(l2, l2), connected(l2, l4). This sequence is safe if either underlined
query is true. In this case, connected(l2, l2) returns true and thus it is safe.

16 R. Wakizaka et al.

The computational complexity of our type checking algorithm for general
architecture graphs is O(|C|V 2 log V). This is because the length of ser(C) is
O(|C|), as indicated by proposition 2. Additionally, up to |adj(l)|2 = O(V 2)
queries are generated for each command5. However, in practice, architecture
graphs are often sparse, meaning the size of adj(l) remains at most constant
(e.g., 4 in a grid graph). In such cases, the algorithm works in O(|C| log V).

It is important to note that the size of C can grow exponentially with respect
to the size of a given program, as command sequences are copied in function
calls. However, this problem does not occur with loops. Roughly speaking, the
size of C corresponds to the number of surgery operations performed at runtime,
assuming that all loops are expanded exactly once.

6 Extensions

6.1 Recursive Functions

Currently, QLS lacks support for recursive functions. However, we can introduce
support for recursive functions while disregarding the cost of type checking. This
section outlines the extension of QLS with recursive functions.

We introduce command variables α, β, . . . into C and assign them to functions
for type inference. Through type inference, we derive production rules on com-
mand sequences denoted as α→ Cα, where Cα may recursively include α itself.
For instance, if a function f has e1; f [l](x1, .. , xn); e2 as its body and e1, e2 gen-
erate command sequences C1, C2 respectively, then we obtain α→ C1++α++C2.
Consequently, we establish a language L where each word C ∈ L corresponds
to a potential execution trace of a given program. Our objective is to ascertain
whether L is safe, meaning ∀C ∈ L. ∃L. G | V (G) ⊢ C ⇒ L.

We can address this decision problem by constructing the safe language
Lsafe = L(A) from an architecture graph, where A is a nondeterministic finite
automaton created by the following steps:

1. Prepare 2|V (G)| vertices with empty edges. Each state represents a graph
state with cells allocated in different patterns. All states are accepting states.

2. For each state u, v ∈ A, add an edge u → v if a transition from u to v can
occur via alloc (l) or free (l) for some l .

3. Add self-loops u → u labeled with l1 ∼ l2 if there is a path from l1 to l2 in
the state u.

The language Lsafe = L(A) contains all safe command sequences, and thus
we can reduce the decision problem to the model checking problem: L∩Lsafe =
∅? However, two primary issues arise. Firstly, efficiently solving this emptiness
problem is challenging because L is generally a context-free language. Secondly,
the number of states of A grows exponentially concerning the number of cells n.

5 There is an implementation trick to improve the complexity to O(|C|V log V).

Type-Based Verification of Connectivity Constraints in Lattice Surgery 17

One solution to tackle the first issue is constraining recursive function calls.
For example, this can be achieved by restricting recursive calls so that the pro-
duction rules are left-normal or right-normal form and the language L is normal.

As for the second issue, we currently need a fundamental solution. However, if
|V (G)| is not excessively large, this may not present a problem in practice. In fact,
it is challenging to increase the number of logical qubits per core significantly.

6.2 Multi-qubit Quantum Measurements

The merge operation in lattice surgery can accept three or more qubits, enabling
the implementation of multi-body measurements MB1,...,Bn for n > 2. Extend-
ing QLS with multi-qubit measurements is straightforward by generalizing the
binary relation l1 ∼ l2 in our system to an n-ary relation c(l1, .. , ln). In this sce-
nario, c(l1, .. , ln) indicates that a program aims to merge l1, .. , ln on a Steiner
tree with l1, .. , ln as endpoints, rather than on a path.

Supporting multi-qubit measurements does incur higher costs in type check-
ing due to the increased complexity of the Steiner tree problem compared to
pathfinding. For instance, the Dreyfus–Wagner algorithm [13], a widely-known
method for finding a minimum Steiner tree, operates in exponential time. How-
ever, the Steiner tree for merging qubits does not necessarily need to be mini-
mum, and thus we can employ simpler algorithms to address this task.

7 Related Work

Verified Quantum Compilation One of the most widely studied verifica-
tions of quantum compilers is the equivalence checking of quantum circuits,
which ensures that the compiler preserves the semantics of the program. Amy
developed a framework for reasoning about quantum circuits based on Feynman
path integral formalism [2]. Additionally, several approaches based on decision
diagrams have been proposed [31,39,9]. Another technique is ZX-calculus [11],
a graphical language with a small set of rewrite rules on string diagrams called
ZX diagrams. The completeness of the ZX-calculus [24] allows for the trans-
formation of a ZX diagram into any equivalent diagram, making it useful for
equivalence checking [33] and verified optimization [15,25] of quantum circuits.
While these studies aim to verify the equivalence of quantum programs before
and after compilation, our study focuses on verifying whether quantum programs
can be executed without runtime errors on quantum devices, considering various
hardware constraints.

Our work is not the only framework aimed at verifying if a quantum program
satisfies hardware constraints. Smith and Thornton [36] provided a software tool
based on Quantum Multiple Decision Diagrams (QMDDs), which synthesizes a
logical quantum circuit and maps it to a physical one on a specified architecture.
Hietala et al. [21] developed voqc, a verified optimizer for quantum circuits
implemented using the Coq proof assistant, which can verify the correctness of
their mapping algorithm that maps qubit variables to physical qubits to handle

18 R. Wakizaka et al.

connectivity constraints. In contrast to these studies, our work is the first to
address the connectivity problem between logical qubits in lattice surgery.

Quantum Compilers for Lattice Surgery OpenSurgery [32], presented by
Paler and Fowler, compiles Clifford+T circuits naively using the Solovay–Kitaev
algorithm. Watkins [40] has recently extended this work, developing a toolchain
targeting surface codes and lattice surgery. This extension allows large quantum
programs to be compiled efficiently, addressing scalability and performance in
fault-tolerant quantum computation. Litinski [30] presented a Pauli-based ap-
proach, which translates a quantum circuit to a sequence of Pauli product mea-
surements of π/8 and π/4 rotations and results in removing all Clifford gates
from the circuit. Beverland et al. [4] developed an efficient algorithm called Edge-
Disjoint Paths Compilation (EDPC) to optimize the depth of quantum circuits
by parallelizing merge operations. Since our method does not rely on a spe-
cific compilation algorithm, we can readily apply our framework to verify the
programs produced by these advanced compilers.

8 Conclusion

We presented a type-based verification method based on QLS , which formalizes
the execution model of surgery operations. The type system of QLS allows us
to extract a command sequence representing the graph operations performed by
tracking the positions of individual qubits at the type level. We proved the type
soundness by stating that if the resulting command sequence on the architecture
graph is safe, the target program will not terminate illegally during execution.
Furthermore, we developed an algorithm in this study that efficiently inspects
whether the resulting command sequence is safe. Our algorithm achieves this by
reducing the type checking problem to the offline dynamic connectivity problem.

Several future challenges remain in this research. Firstly, we intend to ex-
tend the methodology of this study to concurrent programs. Optimizing high-
level quantum programs and transforming them into QLS programs is also an
important task.

Acknowledgments. This work was supported by JST SPRING, Grant Number JP-
MJSP2110. This work is also supported by JST CREST Grant Number JPMJCR23I4,
JST Moonshot R&D Grant Number JPMJMS2061, MEXT Q-LEAP Grant No. JP-
MXS0120319794, and No. JPMXS0118068682.

References

1. Acharya, R., Aleiner, I., Allen, R., Andersen, T.I., Ansmann, M., Arute, F., Arya,
K., Asfaw, A., Atalaya, J., Babbush, R., Bacon, D., Bardin, J.C., Basso, J., Bengts-
son, A., Boixo, S., Bortoli, G., Bourassa, A., Bovaird, J., Brill, L., Broughton,
M., Buckley, B.B., Buell, D.A., Burger, T., Burkett, B., Bushnell, N., Chen, Y.,

Type-Based Verification of Connectivity Constraints in Lattice Surgery 19

Chen, Z., Chiaro, B., Cogan, J., Collins, R., Conner, P., Courtney, W., Crook,
A.L., Curtin, B., Debroy, D.M., Del Toro Barba, A., Demura, S., Dunsworth, A.,
Eppens, D., Erickson, C., Faoro, L., Farhi, E., Fatemi, R., Flores Burgos, L., Fo-
rati, E., Fowler, A.G., Foxen, B., Giang, W., Gidney, C., Gilboa, D., Giustina, M.,
Grajales Dau, A., Gross, J.A., Habegger, S., Hamilton, M.C., Harrigan, M.P., Har-
rington, S.D., Higgott, O., Hilton, J., Hoffmann, M., Hong, S., Huang, T., Huff, A.,
Huggins, W.J., Ioffe, L.B., Isakov, S.V., Iveland, J., Jeffrey, E., Jiang, Z., Jones, C.,
Juhas, P., Kafri, D., Kechedzhi, K., Kelly, J., Khattar, T., Khezri, M., Kieferová,
M., Kim, S., Kitaev, A., Klimov, P.V., Klots, A.R., Korotkov, A.N., Kostritsa,
F., Kreikebaum, J.M., Landhuis, D., Laptev, P., Lau, K.M., Laws, L., Lee, J.,
Lee, K., Lester, B.J., Lill, A., Liu, W., Locharla, A., Lucero, E., Malone, F.D.,
Marshall, J., Martin, O., McClean, J.R., McCourt, T., McEwen, M., Megrant, A.,
Meurer Costa, B., Mi, X., Miao, K.C., Mohseni, M., Montazeri, S., Morvan, A.,
Mount, E., Mruczkiewicz, W., Naaman, O., Neeley, M., Neill, C., Nersisyan, A.,
Neven, H., Newman, M., Ng, J.H., Nguyen, A., Nguyen, M., Niu, M.Y., O’Brien,
T.E., Opremcak, A., Platt, J., Petukhov, A., Potter, R., Pryadko, L.P., Quintana,
C., Roushan, P., Rubin, N.C., Saei, N., Sank, D., Sankaragomathi, K., Satzinger,
K.J., Schurkus, H.F., Schuster, C., Shearn, M.J., Shorter, A., Shvarts, V., Skruzny,
J., Smelyanskiy, V., Smith, W.C., Sterling, G., Strain, D., Szalay, M., Torres, A.,
Vidal, G., Villalonga, B., Vollgraff Heidweiller, C., White, T., Xing, C., Yao, Z.J.,
Yeh, P., Yoo, J., Young, G., Zalcman, A., Zhang, Y., Zhu, N., Google Quantum
AI: Suppressing quantum errors by scaling a surface code logical qubit. Nature
614(7949), 676–681 (Feb 2023). https://doi.org/10.1038/s41586-022-05434-1

2. Amy, M.: Towards Large-scale Functional Verification of Universal Quantum Cir-
cuits. Electronic Proceedings in Theoretical Computer Science 287, 1–21 (Jan
2019). https://doi.org/10.4204/EPTCS.287.1

3. Babbush, R., Gidney, C., Berry, D.W., Wiebe, N., McClean, J., Paler, A., Fowler,
A., Neven, H.: Encoding Electronic Spectra in Quantum Circuits with Linear T
Complexity. Physical Review X 8(4), 041015 (Oct 2018). https://doi.org/10.1103/
PhysRevX.8.041015

4. Beverland, M., Kliuchnikov, V., Schoute, E.: Surface code compilation via edge-
disjoint paths. PRX Quantum 3(2), 020342 (May 2022). https://doi.org/10.1103/
PRXQuantum.3.020342

5. Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov,
V., Low, G.H., Soeken, M., Sundaram, A., Vaschillo, A.: Assessing requirements to
scale to practical quantum advantage (Nov 2022). https://doi.org/10.48550/arXiv.
2211.07629

6. Bluvstein, D., Evered, S.J., Geim, A.A., Li, S.H., Zhou, H., Manovitz, T., Ebadi,
S., Cain, M., Kalinowski, M., Hangleiter, D., Bonilla Ataides, J.P., Maskara, N.,
Cong, I., Gao, X., Sales Rodriguez, P., Karolyshyn, T., Semeghini, G., Gullans,
M.J., Greiner, M., Vuletić, V., Lukin, M.D.: Logical quantum processor based on
reconfigurable atom arrays. Nature 626(7997), 58–65 (Feb 2024). https://doi.org/
10.1038/s41586-023-06927-3

7. Bombin, H., Martin-Delgado, M.A.: Topological Quantum Distillation. Physical
Review Letters 97(18), 180501 (Oct 2006). https://doi.org/10.1103/PhysRevLett.
97.180501

8. Bravyi, S., Kitaev, A.: Universal Quantum Computation with ideal Clifford gates
and noisy ancillas. Physical Review A 71(2), 022316 (Feb 2005). https://doi.org/
10.1103/PhysRevA.71.022316

https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.1103/PRXQuantum.3.020342
https://doi.org/10.48550/arXiv.2211.07629
https://doi.org/10.48550/arXiv.2211.07629
https://doi.org/10.48550/arXiv.2211.07629
https://doi.org/10.48550/arXiv.2211.07629
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316

20 R. Wakizaka et al.

9. Burgholzer, L., Wille, R.: Improved DD-based Equivalence Checking of Quantum
Circuits. In: 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC). pp. 127–132 (Jan 2020). https://doi.org/10.1109/ASP-DAC47756.
2020.9045153

10. Chamberland, C., Campbell, E.T.: Universal quantum computing with twist-free
and temporally encoded lattice surgery. arXiv:2109.02746 [quant-ph] (Sep 2021)

11. Coecke, B., Duncan, R.: Interacting Quantum Observables. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) Automata, Languages and Programming. pp. 298–310. Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3_25

12. da Silva, M.P., Ryan-Anderson, C., Bello-Rivas, J.M., Chernoguzov, A., Dreiling,
J.M., Foltz, C., Frachon, F., Gaebler, J.P., Gatterman, T.M., Grans-Samuelsson,
L., Hayes, D., Hewitt, N., Johansen, J., Lucchetti, D., Mills, M., Moses, S.A.,
Neyenhuis, B., Paz, A., Pino, J., Siegfried, P., Strabley, J., Sundaram, A., Tom,
D., Wernli, S.J., Zanner, M., Stutz, R.P., Svore, K.M.: Demonstration of logical
qubits and repeated error correction with better-than-physical error rates (Apr
2024). https://doi.org/10.48550/arXiv.2404.02280

13. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–
207 (Jan 1971). https://doi.org/10.1002/net.3230010302

14. Erhard, A., Poulsen Nautrup, H., Meth, M., Postler, L., Stricker, R., Stadler, M.,
Negnevitsky, V., Ringbauer, M., Schindler, P., Briegel, H.J., Blatt, R., Friis, N.,
Monz, T.: Entangling logical qubits with lattice surgery. Nature 589(7841), 220–
224 (Jan 2021). https://doi.org/10.1038/s41586-020-03079-6

15. Fagan, A., Duncan, R.: Optimising Clifford Circuits with Quantomatic.
https://arxiv.org/abs/1901.10114v1 (Jan 2019). https://doi.org/10.4204/EPTCS.
287.5

16. Fowler, A.G., Gidney, C.: Low overhead quantum computation using lattice
surgery. arXiv:1808.06709 [quant-ph] (Aug 2019)

17. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
Towards practical large-scale quantum computation. Physical Review A 86(3),
032324 (Sep 2012). https://doi.org/10.1103/PhysRevA.86.032324

18. Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using
20 million noisy qubits. Quantum 5, 433 (Apr 2021). https://doi.org/10.22331/
q-2021-04-15-433

19. Hayashi, S.: Singleton, Union and Intersection Types for Program Extraction. In:
Proceedings of the International Conference on Theoretical Aspects of Computer
Software. pp. 701–730. TACS ’91, Springer-Verlag, Berlin, Heidelberg (Sep 1991)

20. Henzinger, M.R., King, V.: Maintaining minimum spanning trees in dynamic
graphs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) Automata,
Languages and Programming. pp. 594–604. Springer, Berlin, Heidelberg (1997).
https://doi.org/10.1007/3-540-63165-8_214

21. Hietala, K., Rand, R., Hung, S.H., Wu, X., Hicks, M.: A Verified Optimizer for
Quantum Circuits. Proceedings of the ACM on Programming Languages 5(POPL),
37:1–37:29 (Jan 2021). https://doi.org/10.1145/3434318

22. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing. pp. 79–89. STOC ’98, Association for Computing Machinery, New
York, NY, USA (May 1998). https://doi.org/10.1145/276698.276715

https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.48550/arXiv.2404.02280
https://doi.org/10.48550/arXiv.2404.02280
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1038/s41586-020-03079-6
https://doi.org/10.1038/s41586-020-03079-6
https://doi.org/10.4204/EPTCS.287.5
https://doi.org/10.4204/EPTCS.287.5
https://doi.org/10.4204/EPTCS.287.5
https://doi.org/10.4204/EPTCS.287.5
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1007/3-540-63165-8_214
https://doi.org/10.1007/3-540-63165-8_214
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/276698.276715

Type-Based Verification of Connectivity Constraints in Lattice Surgery 21

23. Horsman, C., Fowler, A.G., Devitt, S., Meter, R.V.: Surface code quantum com-
puting by lattice surgery. New Journal of Physics 14(12), 123011 (Dec 2012).
https://doi.org/10.1088/1367-2630/14/12/123011

24. Jeandel, E., Perdrix, S., Vilmart, R.: A Complete Axiomatisation of the ZX-
Calculus for Clifford+T Quantum Mechanics. In: Proceedings of the 33rd An-
nual ACM/IEEE Symposium on Logic in Computer Science. pp. 559–568. LICS
’18, Association for Computing Machinery, New York, NY, USA (Jul 2018).
https://doi.org/10.1145/3209108.3209131

25. Kissinger, A., van de Wetering, J.: PyZX: Large Scale Automated Diagrammatic
Reasoning. Electronic Proceedings in Theoretical Computer Science 318, 229–241
(May 2020). https://doi.org/10.4204/EPTCS.318.14

26. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Annals of Physics
303(1), 2–30 (Jan 2003). https://doi.org/10.1016/S0003-4916(02)00018-0

27. Knill, E.: Fault-Tolerant Postselected Quantum Computation: Schemes.
arXiv:quant-ph/0402171 (Feb 2004)

28. Krinner, S., Lacroix, N., Remm, A., Di Paolo, A., Genois, E., Leroux, C., Hellings,
C., Lazar, S., Swiadek, F., Herrmann, J., Norris, G.J., Andersen, C.K., Müller, M.,
Blais, A., Eichler, C., Wallraff, A.: Realizing repeated quantum error correction
in a distance-three surface code. Nature 605(7911), 669–674 (May 2022). https:
//doi.org/10.1038/s41586-022-04566-8

29. Lee, J., Berry, D.W., Gidney, C., Huggins, W.J., McClean, J.R., Wiebe, N., Bab-
bush, R.: Even More Efficient Quantum Computations of Chemistry Through Ten-
sor Hypercontraction. PRX Quantum 2(3), 030305 (Jul 2021). https://doi.org/10.
1103/PRXQuantum.2.030305

30. Litinski, D.: A Game of Surface Codes: Large-Scale Quantum Computing
with Lattice Surgery. Quantum 3, 128 (Mar 2019). https://doi.org/10.22331/
q-2019-03-05-128

31. Miller, D., Thornton, M.: QMDD: A Decision Diagram Structure for Reversible and
Quantum Circuits. In: 36th International Symposium on Multiple-Valued Logic
(ISMVL’06). pp. 30–30 (May 2006). https://doi.org/10.1109/ISMVL.2006.35

32. Paler, A., Fowler, A.G.: OpenSurgery for Topological Assemblies. arXiv:1906.07994
[quant-ph] (Aug 2020)

33. Peham, T., Burgholzer, L., Wille, R.: Equivalence Checking of Quantum Circuits
with the ZX-Calculus. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 12(3), 662–675 (Sep 2022). https://doi.org/10.1109/JETCAS.2022.
3202204

34. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26(5), 1484–
1509 (Oct 1997). https://doi.org/10.1137/S0097539795293172

35. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing. pp. 114–
122. STOC ’81, Association for Computing Machinery, New York, NY, USA (May
1981). https://doi.org/10.1145/800076.802464

36. Smith, K.N., Thornton, M.A.: A quantum computational compiler and design tool
for technology-specific targets. In: Proceedings of the 46th International Sympo-
sium on Computer Architecture. pp. 579–588. ISCA ’19, Association for Comput-
ing Machinery, New York, NY, USA (Jun 2019). https://doi.org/10.1145/3307650.
3322262

37. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing. pp. 343–

https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1109/ISMVL.2006.35
https://doi.org/10.1109/ISMVL.2006.35
https://doi.org/10.1109/JETCAS.2022.3202204
https://doi.org/10.1109/JETCAS.2022.3202204
https://doi.org/10.1109/JETCAS.2022.3202204
https://doi.org/10.1109/JETCAS.2022.3202204
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/800076.802464
https://doi.org/10.1145/800076.802464
https://doi.org/10.1145/3307650.3322262
https://doi.org/10.1145/3307650.3322262
https://doi.org/10.1145/3307650.3322262
https://doi.org/10.1145/3307650.3322262

22 R. Wakizaka et al.

350. STOC ’00, Association for Computing Machinery, New York, NY, USA (May
2000). https://doi.org/10.1145/335305.335345

38. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Proceedings of the Sev-
enth International Conference on Functional Programming Languages and Com-
puter Architecture. pp. 1–11. FPCA ’95, Association for Computing Machinery,
New York, NY, USA (Oct 1995). https://doi.org/10.1145/224164.224168

39. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-Based Verification
Method for Quantum Circuits. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences E91-A(2), 584–594 (Feb 2008).
https://doi.org/10.1093/ietfec/e91-a.2.584

40. Watkins, G., Nguyen, H.M., Watkins, K., Pearce, S., Lau, H.K., Paler, A.: A High
Performance Compiler for Very Large Scale Surface Code Computations (May
2024). https://doi.org/10.48550/arXiv.2302.02459

A Appendix

A.1 Complete Definition of the Semantics and Type System

This section provides several definitions, evaluation rules and typing rules omit-
ted in the paper. Evaluation rules and typing rules are given in Figure 13 and
Figure 14, respectively.

[H, ρ, e1]→D,G [H ′, ρ′, e ′
1]

[H, ρ, let x = mkref e1 in e2]→D,G [H ′, ρ′, let x = mkref e ′
1 in e2]

x ′ ̸∈ dom(H)

[H, ρ, let x = mkref v in e]→D,G [H{x′ 7→ v}, ρ, [x ′/x] e]

x ∈ dom(H)

[H, ρ, ∗x]→D,G [H, ρ,H(x)]

[H, ρ, e1]→D,G [H ′, ρ′, e ′
1]

[H, ρ, e1; e2]→D,G [H ′, ρ′, e ′
1; e2]

[H, ρ, (); e]→D,G [H, ρ, e]

[H, ρ, e1]→D,G [H, ρ, e ′
1]

[H, ρ, if e1 then e2 else e3]→D,G [H, ρ, if e ′
1 then e2 else e3]

[H, ρ, if true then e1 else e2]→D,G [H, ρ, e1]

[H, ρ, if false then e1 else e2]→D,G [H, ρ, e2]

[H , ρ,while e1 do e2] →D,G [H , ρ, if e1 then e2; (while e1 do e2) else ()]

Fig. 13: Operational semantics.

We also define a typing rule for runtime states in Figure 15 to prove our
typing preservation lemma.

https://doi.org/10.1145/335305.335345
https://doi.org/10.1145/335305.335345
https://doi.org/10.1145/224164.224168
https://doi.org/10.1145/224164.224168
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.48550/arXiv.2302.02459
https://doi.org/10.48550/arXiv.2302.02459

Type-Based Verification of Connectivity Constraints in Lattice Surgery 23

Θ | Γ ⊢ e1 : τ1 ⇒ Γ ′ | C1 flv(τ1) = ∅
Θ | Γ ′, x : ref τ1 ⊢ e2 : τ2 ⇒ Γ ′′ | C2 x ̸∈ dom(Γ ′′)

Θ | Γ ⊢ let x = mkref e1 in e2 : τ2 ⇒ Γ ′′ | C1 ++ C2

(T-MkRef)

Θ | Γ ⊢ e : ref τ ⇒ Γ ′ | C
Θ | Γ ⊢ ∗e : τ ⇒ Γ ′ | C

(T-Deref)

x : ref τ ∈ Γ Θ | Γ ⊢ e : τ ⇒ Γ ′ | C
Θ | Γ ⊢ x := e : unit ⇒ Γ ′ | C

(T-Assign)

{l ∈ Γ} = {l ∈ Γ ′} Γ ′ ⊆ Γ

Γ ≤ Γ ′

(S-TyEnv)

Γ ′ ≤ Γ ′′ Θ | Γ ⊢ e : τ ⇒ Γ ′ | C
Θ | Γ ⊢ e : τ ⇒ Γ ′′ | C

(T-Sub)

Fig. 14: The typing rules omitted in the main text.

dom(Γ) ⊆ dom(H) Used(Γ) ⊆ Used(H) flv(Γ) ⊆ V (G)

Θ ⊢ D Θ | Γ ⊢ e : τ ⇒ Γ ′ | C G | V (G) \Used(H) ⊢ C ⇒ L

Θ | Γ | D | G ⊢ [H , ρ, e] ⇒ Γ ′ | L
(T-RState)

Used(Γ) := {l | ∃x : τ ∈ Γ. l ∈ flv(τ)}
Used(H) := {l | ∃x ∈ dom(H). H(x) = l}

Fig. 15: The typing rule for runtime states.

Definition 3. For a command sequence C, |C| denotes the size of C which are
defined by:

|ϵ| = 0

|alloc (l) ++ C| = |free (l) ++ C| = |l1 ∼ l2 ++ C| = 1 + |C|
|C1 ∨ C2 ++ C| = 1 + |C1|+ |C2|+ |C|

|C∗
++ C ′| = 1 + |C|+ |C ′|

A.2 Proofs

This sections provides the proofs of lemmas for type soundness. The main lemma
is the progress lemma (Lemma 3) and the type preservation lemma (Lemma 13).

Lemma 2. If G ⊢ ⟨D, e⟩, then Θ | V (G) | D | G ⊢ [∅, 1, e].

Proof. By inversion on T-Prog, we have Θ ⊢ D , Θ | V (G) ⊢ e : τ ⇒ Γ | C
and G | V (G) ⊢ C ⇒ L. Now Used(Γ) = Used(H) = ∅ so Used(Γ) ⊆ Used(H).
Moreover, flv(Γ) = V (G) and thus flv(Γ) ⊆ V (G). Consequently we have Θ |
V (G) | D | G ⊢ [∅, 1, e].

24 R. Wakizaka et al.

Lemma 3. (Progress) If Θ | Γ | D | G ⊢ [H , ρ, e] ⇒ Γ ′ | L, then e is a value or
there exists [H ′, ρ′, e ′] such that [H , ρ, e] →D,G [H ′, ρ′, e ′].

Proof. Prove by case analysis of e.
Case: e = x

x is a value an thus the statement follows immediately.
Case: e = let x = init (l) in e ′

By T-RState, we have l ∈ flv(Γ) ⊆ G and l ̸∈ cod(H). Then the state can step
by E-Init.
Case: e = let x = minit (l) in e ′

Similar to the init (l) case above.
Case: e = free x ; e ′

By inversion on Θ | Γ ⊢ free x ; e ′ : τ ⇒ Γ ′′ | C, we have Γ = Γ ′, l and
τ = qbit(l) for some Γ ′, Γ ′′. Then l ∈ Γ ⊆ cod(H) by T-RState and thus the
state can step by E-Free.
Case: e = let x =MB1,B2(x1, x2) in e ′

By inversion on Θ | Γ ⊢ let x = MB1,B2
(x1, x2) in e ′ : τ ⇒ Γ ′ | C, we have

xi : qbit(li) for 1 ≤ i ≤ 2 and C = l1 ∼ l2++C ′. Then l1, l2 ∈ Used(Γ) ⊆ cod(H)
and thus the state can step by E-Meas2.

The other cases are trivial.

Lemma 4. If Θ | Γ, x : τ ′ ⊢ e : τ ⇒ Γ ′ | C and x ′ ̸∈ dom(Γ), then Θ | Γ, x ′ :
τ ′ ⊢ [x ′/x] e : τ ⇒ [x ′/x]Γ ′ | C.

Proof. Prove by straightforward induction on the typing derivation.

Lemma 5. Suppose that Θ | Γ ⊢ e : τ ⇒ Γ ′ | C ′ and l contains distinct location
variables, and flv(Γ) ∩ l = ∅. Then Θ | σl Γ ⊢ σl e : σl τ ⇒ σl Γ

′ | σl C ′, where
σl = [l/l ′].

Proof. Straightforward induction on the typing derivation.

Lemma 6. If G | L ⊢ C1
∗
++ C2 ⇒ L′, then G | L ⊢ C2 ⇒ L′.

Proof. By inversion on C-Concat, we have

G | L ⊢ C1
∗ ⇒ L′′ G | L′′ ⊢ C2 ⇒ L′

for some L′′. Here, by C-Loop, L′′ = L. Therefore G | L ⊢ C2 ⇒ L′.

Lemma 7. If G | L ⊢ C1
∗ ⇒ L, then G | L ⊢ C1 ++ C1

∗ ⇒ L.

Proof. Straightforward.

Lemma 8. G | L ⊢ C ⇒ L′ if and only if G | L ⊢ C1 ⇒ L′′ and G | L′′ ⊢ C2 ⇒ L
for all C1, C2 such that C = C1 ++ C2.

Type-Based Verification of Connectivity Constraints in Lattice Surgery 25

Proof. Straightforward induction on the derivation of G | L ⊢ C ⇒ L′.

Lemma 9. G | L ⊢ C1 ++ (C2 ∨ C3) ⇒ L′ if and only if G | L ⊢ C1 ++ C2 ⇒ L′

and G | L ⊢ C1 ++ C3 ⇒ L′.

Proof. (⇒) By Lemma 8, we have G | L ⊢ C1 ⇒ L′′ and G | L′′ ⊢ C2 ∨ C3 ⇒ L′

for some L′′. By inversion on C-If, we have G | L′′ ⊢ C2 ⇒ L′ and G | L′′ ⊢
C3 ⇒ L′. Therefore, we have G | L ⊢ C1 ++ C2 ⇒ L′ and G | L ⊢ C1 ++ C3 ⇒ L′

by C-Concat.
(⇐) By Lemma 8, we have

G | L ⊢ C1 ⇒ L′′ G | L′′ ⊢ C2 ⇒ L′ G | L′′ ⊢ C3 ⇒ L′.

By C-If, we have G | L′′ ⊢ C2 ∨ C3 ⇒ L′. Finally we have G | L ⊢ C1 ++ (C2 ∨
C3) ⇒ L′ by C-Concat.

Lemma 10. (Weakening) If Θ | Γ ⊢ e : τ ⇒ Γ ′ | C and Γ ′′ ∩ Γ = ∅, then
Θ | Γ, Γ ′′ ⊢ e : τ ⇒ Γ ′, Γ ′′ | C.

Proof. Straightforward induction on the typing derivation.

Lemma 11. (Weakening2) If Θ | Γ ⊢ e : τ ⇒ Γ ′ | C and Θ ⊆ Θ′, then
Θ′ | Γ ⊢ e : τ ⇒ Γ ′ | C.

Proof. Straightforward induction on the typing derivation.

Lemma 12. If Θ ⊢ D and Θ(f) = Π l . ⟨x1 : τn , .. , xn : τn⟩ C−→ ⟨Γ |τ⟩ ∈ Θ, then
there exists Θ′ ⊂ Θ and D ′ ⊂ D and L such that Θ′ ⊢ D ′ and Θ′ | L, x1 :
τ1, .. , xn : τn ⊢ e : τ ⇒ Γ | C and l = L ⊎ (

⋃n
i=1 flv(τi)).

Proof. Straightforward induction on Θ ⊢ D .

Lemma 13. (Type preservation) If Θ | Γ | D | G ⊢ [H , ρ, e] ⇒ Γ ′ | L and
[H , ρ, e] →D,G [H ′, ρ′, e ′], then there exist Γ ′ such that Θ | Γ ′′ | D | G ⊢
[H ′, ρ′, e ′] ⇒ Γ ′ | L.

Proof. We prove by the induction on [H, ρ, e]→D,G [H ′, ρ′, e′].
Case E-Init:

Θ | Γ | D | G ⊢ [H , ρ, let x = init (l) in e] ⇒ Γ ′ | L
[H , ρ, let x = init (l) in e]→D,G [H{x′ 7→ l}, ρ⊗ |0⟩l ⟨0| , [x ′/x] e]

l ̸∈ cod(H) x ′ ̸∈ dom(H) l ∈ G

By inversion on T-RState, we have

dom(Γ, l) ⊆ dom(H) Used(Γ, l) ⊆ Used(H) flv(Γ) ⊆ V (G)

Θ ⊢ D Θ | Γ, l ⊢ let x = init (l) in e : τ ⇒ Γ ′ | alloc (l) ++ C

G | V (G) \Used(H) ⊢ alloc (l) ++ C ⇒ L

26 R. Wakizaka et al.

By inversion on T-Init, we have

Θ | Γ, x : qbit(l) ⊢ e : τ ⇒ Γ ′ | C x ̸∈ dom(Γ ′)

for some Γ ′. Now x ′ ̸∈ dom(Γ) because x ′ ̸∈ dom(H) and dom(Γ, l) ⊆ dom(H).
Therefore we have Θ | Γ, x ′ : qbit(l) ⊢ [x ′/x] e : τ ⇒ [x ′/x]Γ ′ | C by Lemma 4.
Also dom(Γ, x ′ : qbit(l)) ⊆ dom(H{x′ 7→ l}) because dom(Γ) ⊆ dom(H).
Similarly we can show Used(Γ, x ′ : qbit(l)) ⊆ Used(H {x ′ 7→ l}).

Next we will show G | V (G) \ Used(H {x ′ 7→ l}) ⊢ C ⇒ L. By inversion
on C-Alloc, we have G | L′ ⊢ C ⇒ L. Now V (G) \ Used(H) = L′, l implies
V (G)\Used(H {x ′ 7→ l}) = L′, and thus G | V (G)\Used(H {x ′ 7→ l}) ⊢ C ⇒ L.
Therefore, we have Θ | Γ, x ′ : qbit(l) | D | G ⊢ [H{x′ 7→ l}, ρ⊗ |0⟩l ⟨0| , [x ′/x] e].
Case T-Free:
Similar to the case of T-Init.
Case E-While:

Θ | Γ | D | G ⊢ [H , ρ,while e1 do e2] ⇒ Γ | L
[H , ρ,while e1 do e2]

→D,G [H , ρ, if e1 then e2; (while e1 do e2) else ()]

By inversion on T-RState, we have

Θ | Γ ⊢ while e1 do e2 : unit ⇒ Γ | (C1 ++ C2)
∗ ++ C1

G | V (G) \Used(H) ⊢ (C1 ++ C2)
∗ ++ C1 ⇒ L.

By inversion on T-While, we have

Θ | Γ ⊢ e1 : bool ⇒ Γ | C1 Θ | Γ ⊢ e2 : unit ⇒ Γ | C2.

By T-Seq, we have Θ | Γ ⊢ e2;while e1 do e2 : unit ⇒ Γ | C2 ++ (C1 ++
C2)

∗ ++ C1. Also Θ | Γ ⊢ () : unit ⇒ Γ | ϵ. Therefore, we have Θ | Γ ⊢
if e1 then e2; (while e1 do e2) else () : unit ⇒ Γ | C1++((C2++(C1++C2)

∗++C1)∨
ϵ). As there are no changes to the environment or the heap, our remaining task is
to show G | V (G)\Used(H) ⊢ C1++((C2++(C1++C2)

∗++C1)∨ϵ) ⇒ L for some L′.
We prove this by showing G | V (G)\Used(H) ⊢ C1++C2++(C1++C2)

∗++C1 ⇒ L
and G | V (G) \Used(H) ⊢ C1 ⇒ L because of Lemma 9.

By applying Lemma 6 to G | V (G) \ Used(H) ⊢ (C1 ++ C2)
∗ ++ C1 ⇒ L,

we have G | V (G) \ Used(H) ⊢ C1 ⇒ L. Next, by Lemma 7, we can prove
G | V (G) \ Used(H) ⊢ C1 ++ C2 ++ (C1 ++ C2)

∗ ⇒ L. Therefore we have G |
V (G) \ Used(H) ⊢ C1 ++ C2 ++ (C1 ++ C2)

∗ ++ C1 ⇒ L by C-Concat. Now we
showed both statements and thus we have G | V (G) \ Used(H) ⊢ C1 ++ ((C2 ++
(C1 ++ C2)

∗ ++ C1) ∨ ϵ) ⇒ L by Lemma 9.
Case E-Seq1:

Θ | Γ | D | G ⊢ [H , ρ, e1; e2] ⇒ Γ ′ | L
[H , ρ, e1; e2]→D,G [H ′, ρ′, e ′1; e2]

[H , ρ, e1]→D,G [H ′, ρ′, e ′1]

Type-Based Verification of Connectivity Constraints in Lattice Surgery 27

By inversion on T-RState, we have

Θ | Γ ⊢ e1; e2 : τ ⇒ Γ ′ | C G | V (G) \Used(H) ⊢ C ⇒ L

dom(Γ) ⊆ dom(H) Used(Γ) ⊆ Used(H).

By inversion on T-Seq, there exists Γ1, C1 and C2 such that

Θ | Γ ⊢ e1 : unit ⇒ Γ1 | C1 Θ | Γ1 ⊢ e2 : τ ⇒ Γ ′ | C2 C = C1 ++ C2.

By Lemma 8, we have

G | V (G) \Used(H) ⊢ C1 ⇒ L1 G | L1 ⊢ C2 ⇒ L

for some L1. By the induction hypothesis, we have Θ | Γ ′′ | D | G ⊢ [H , ρ, e ′1] ⇒
Γ1 | L1 for some Γ ′′. Thus, by inversion on T-RState, we have

Θ | Γ ′′ ⊢ e ′1 : unit ⇒ Γ1 | C ′
1 G | V (G) \Used(H ′) ⊢ C ′

1 ⇒ L1

dom(Γ ′′) ⊆ dom(H ′) Used(Γ ′′) ⊆ Used(H ′)

for some C ′
1. By C-Concat, we have G | V (G) \Used(H ′) ⊢ C ′

1 ++C2 ⇒ L. We
also have Θ | Γ ′′ ⊢ e ′1; e2 : τ ⇒ Γ ′ | C ′

1 ++ C2 by T-Seq. Therefore Θ | Γ ′′ | D |
G ⊢ [H ′, ρ′, e ′1; e2] ⇒ Γ ′ | L.
Case E-Call:

Θ | Γ | D | G ⊢
[
H , ρ, f [l](x1, .. , xn)

]
⇒ Γ ′ | L′

f 7→ [l ′](x ′
1, .. , x

′
n)e ∈ D[

H , ρ, f [l](x1, .. , xn)
]
→D,G [H , ρ, σl σx e]

σl = [l/l ′] σx = [x1/x
′
1] .. [xn/x

′
n]

By inversion on T-RState and T-Call, we have

Θ(f) = Π l ′. ⟨x ′
1 : τ1, .. , x

′
n : τn⟩ C−→ ⟨Γ ′′|τ⟩ Γ ′ = Γ ′′′, σl σx Γ

′′

Θ | Γ ⊢ f [l](x1, .. , xn) : σl τ ⇒ Γ ′ | σl C
Γ = Γ ′′′,L, x1 : σl τ1, .. , xn : σl τn L = l \ (∪n

i=1flv(σl τi))

dom(Γ) ⊆ dom(H) Used(Γ) ⊆ Used(H) G | Used(H) ⊢ σl C ⇒ L′.

Moreover, by Lemma 12, we have

Θ′ ⊆ Θ l ′ = L′′ ⊎ (

n⋃
i=1

flv(τi))

Θ′ | L′′, x ′
1 : τ1, .. , x

′
n : τn ⊢ e : τ ⇒ Γ ′′ | C.

By Lemma 4 and 11, we have Θ | L′′, x1 : τ1, .. , xn : τn ⊢ σx e : τ ⇒
σx Γ

′′ | C. Location variables in l are distinct and thus σl l ′ = l = σl L
′′ ⊎

28 R. Wakizaka et al.

(∪n
i=1flv(σl τi)). This and L = l \ (∪n

i=1flv(σl τi)) imply σl L
′′ = L. Therefore

Θ | L, x1 : σl τ1, .. , xn : σl τn ⊢ σl σx e : σl τ ⇒ σl σx Γ
′′ | σl C by Lemma 5.

Then we have Θ | Γ ⊢ σl σx e : σl τ ⇒ Γ ′ | σl C by Lemma 10. Finally we
can have Θ | Γ | D | G ⊢ [H , ρ, σl σx e] ⇒ Γ ′ | L′′ because other premises of
T-RState hold obviously.

Other cases can be shown in the same way as in the previous cases.

Now we can prove the type soundness of QLS (theorem 1) by the progress
and type preservation lemmas.

Proof (Theorem 1). By standard progress (Lemma 3) and subject reduction
lemma (Lemma 13).

To conclude this section, we will prove propositions 1 and 2 about serialized
command sequences, which are mentioned in the paper.

Proof (Proposition 1). Prove by induction on the size of C.

Case: C = ϵ

Trivial.

Case: C = l1 ∼ l2 ++ C ′

By the definition, we have ser(C) = l1 ∼ l2 ++ ser(C ′). If G | L ⊢ l1 ∼ l2 ++
ser(C ′) ⇒ L, then we have G | L ⊢ l1 ∼ l2 ⇒ L and G | L ⊢ ser(C ′) ⇒ L by the
inversion on C-Concat. By the induction hypothesis, G | L ⊢ ser(C ′) ⇒ L ⇔
G | L ⊢ C ′ ⇒ L′ for some L′. Therefore we have G | L ⊢ l1 ∼ l2 ++ C ′ ⇒ L′ by
applying C-Concat. Similarly we can prove G | L ⊢ l1 ∼ l2 ++ C ′ ⇒ L′ ⇒ G |
L ⊢ l1 ∼ l2 ++ ser(C ′) ⇒ ∅.
Case: C = alloc (l ′′) ++ C ′

By the definition, ser(C) = alloc (l ′′)++ser(C ′)++free (l ′′). IfG | L ⊢ alloc (l ′′)++
ser(C ′)++ free (l ′′) ⇒ L, then we have G | L ⊢ alloc (l) ⇒ L \ l ′′ and G | L \ l ′′ ⊢
ser(C ′) ⇒ L \ l ′′ by the inversion on C-Concat, C-Alloc. Then we have
G | L \ l ′′ ⊢ C ′ ⇒ L′′′ for some L′′′ by the induction hypothesis. Therefore, we
have G | L ⊢ alloc (l) ++ C ′ ⇒ L′′′ by using C-Concat.

Next we assume that G | L ⊢ alloc (l ′′) ++ C ′ ⇒ L′. By the inversion on
C-Concat, we have G | L ⊢ alloc (l) ⇒ L \ l ′′ and G | L \ l ′′ ⊢ C ′ ⇒ L′. Thus
we have G | L \ l ′′ ⊢ ser(C ′) ⇒ L \ l ′′ by the induction hypothesis. Then we can
obtain G | L \ l ′′ ⊢ free (l ′′) ⇒ L by just using C-Free. Finally by T-Concat,
we have G | L ⊢ alloc (l ′′) ++ ser(C ′) ++ free (l ′′) ⇒ L.

Case: C = free (l ′′) ++ C ′

Almost the same as the case of allocation.

Case: C = C1
∗
++ C2

Type-Based Verification of Connectivity Constraints in Lattice Surgery 29

By the definition, we have ser(C) = ser(C1 ++ C2).

G | L ⊢ ser(C1 ++ C2) ⇒ L

⇔ G | L ⊢ C1 ++ C2 ⇒ L′′ (by the induction hypothesis)

⇔ G | L ⊢ C1 ⇒ L ∧G | L ⊢ C2 ⇒ L′′ (by the inversion on C-Concat)

⇔ G | L ⊢ C1
∗ ⇒ L ∧G | L ⊢ C2 ⇒ L′′ (by C-Loop)

⇔ G | L ⊢ C1
∗
++ C2 ⇒ L′′ (by C-Concat)

Case: C = (C1 ∨ C2) ++ C3

By the definition, ser(C) = ser(C1) ++ ser(C2 ++C3). If G | L ⊢ ser(C) ⇒ ∅, then
we have G | L ⊢ ser(C1) ⇒ ∅ and G | L ⊢ ser(C2 ++ C3) ⇒ ∅. Thus we have
G | L ⊢ C1 ⇒ L′ and G | L ⊢ C2++C3 ⇒ L′′ for some L′ and L′′ by the induction
hypothesis. Therefore, by Lemma 1, we have G | L ⊢ (C1 ∨ C2) ++ C3 ⇒ L′′.

Next we suppose G | L ⊢ (C1 ∨ C2) ++ C3 ⇒ L′. By Lemma 1, we have
G | L ⊢ C1 ⇒ L′′ and G | L ⊢ C2 ++ C3 ⇒ L′ for some L′′. Thus we have
G | L ⊢ ser(C1) ⇒ L and G | L ⊢ ser(C2++C3) ⇒ L by the induction hypothesis.
Finally we get G | L ⊢ ser(C1) ++ ser(C3 ++ C3) ⇒ L by using C-Concat.

Proof (Proposition 2). We can prove by straightforward induction on the size of
of ser(C).

A.3 Type Checking Algorithm

Algorithm 1 Type checking algorithm based on depth-first search.

Input: G is an architecture graph. C is a command sequence. L is a set of free loca-
tions.

1: function CheckNaive(C,L)
2: if C = ϵ then
3: return true
4: else if C = alloc (l) ++ C′ then
5: return l ∈ L && CheckNaive(C′, L \ {l})
6: else if C = free (l) ++ C′ then
7: return CheckNaive(C′, L ∪ {l})
8: else if C = l1 ∼ l2 ++ C′ then
9: return FindPath(G, l1, l2, L) && CheckNaive(C′, L)

10: else if C = (C1 ∨ C2) ++ C′ then
11: return CheckNaive(C1, L) ∧ CheckNaive(C2 ++ C′, L)
12: else if C = C1

∗
++ C2 then

13: return CheckNaive(C1 ++ C2, L)

	Type-Based Verification of Connectivity Constraints in Lattice Surgery

