Quantum, Parallelism
& Ownership

MATSUSHITA Yusuke — Igarashi & Suenaga Lab, KyotoU
Joint work with HIRATA Kengo (UEdinburgh) & WAKIZAKA Ryo (KyotoU)

Dec 19, 2024 — PL Joint Seminar @NII, Tokyo

MATSUSHITA Yusuke
e 2

» Solid theories for real-world practice

4 Software scientist

SIGPLAN

/ \stinguished Paper Award

ACM SIGPLAN Conference on

. NSIGPLAN (2022)
_—

Programming Language

| . \ * LOve S & stu d i es R ust

“RustHornBelt: A Semantic Foundation for
Functional Verification of Rust Programs with
Unsafe Code”

» Rustis fun

4 Loves music

» Esp. improvisation
At ACM PLDI 2022

More about Me

Got a Ph.D. in 2024 at
the Dept. of Computer Science,
GS of IST, the University of Tokyo

Supervised by Prof. Naoki Kobayashi

Japan Bach Concours 2022
Gold Prize

Ricercar a 3, the Musical Offering

Lecturer at IPA Security Camp 2024

S 15 Rust Program Verification Seminar

https://x.com/security_camp/status/1823895410362212466

This Talk

4+ Ongoing work: Concurrent quantum separation logic

» Focusing on qubit sharing for fine-grained parallelism
» Joint work with HIRATA Kengo & WAKIZAKA Ryo

» Presenting in TPSA & PLanQC ’25 & Submitting to LICS "25

- Questions & comments are super welcome!

4+ New work: Linear Haskell X Rust-style borrows

» Rough idea, at an early stage

- Looking for collaborators!

#1

Concurrent Quantum
Separation Logic

Ongoing joint work with HIRATA Kengo (UEdinburgh) & WAKIZAKA Ryo (KyotoU)

Quantum Mechanics Has Changed the World

4+ Quantum mechanics is a foundation of modern science

» Enabled computation about submicroscopic things

- Molecules, atoms, photons, etc.

» Key to modern physics, chemistry, biology, medicine, ...

(2,0,0)
(2,1,0)

pattern

wn
[

-

=)

=4

@)

Y

(@)

(@)

/_ &
o
=

© .o

2@ 1) e 1) O

™)
e - _
b e
tapr

Double-slit experiment Hydrogen wave function

Max Planck

https://en.wikipedia.org/wiki/File:Double-slit.svg
https://en.wikipedia.org/wiki/File:Max_Planck_(1858-1947).jpg
https://en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png

Quantum Computing Can Change the World?

+ Computing with quantum superposition

» E.g, Shor’s algorithm for integer factoring

- Quantum polynomial time, whereas classically
only exponential algorithms are known

» Possibly achieve “quantum supremacy”

4+ May be practical in the near future!?

» Challenge: Noise & decoherence

- Tackled by hardware & error correction code
IBM Quantum System One

https://en.wikipedia.org/wiki/File:Peter_Shor_2017_Dirac_Medal_Award_Ceremony.png
https://en.wikipedia.org/wiki/File:IBM_Q_system_(Fraunhofer_2).jpg

What Is Quantum Computing?

4+ Uses quantum superposition of classical states

» Can reason about multiple possibilities at once

- Measurement probabilistically chooses a possibility
Classical State Quantum State
0---00, 0---01, 0---10, l o |0---00) + a1 |0---01) + a5 |0---10) +
0---11, ..., 1---11

o3 [0--11) + -+ + otok_q [1:+-11) Ao, ..., pk_y € C
2k states, separately Quantum superposition of 2k states

2 2 .
Measurement ‘OMOQ |2/ \w(zkl‘ PrObablIlty

0---00) |0---01) .-+ |1---11)

Quantum Logic Gates

4+ Only a unitary matrix (or isometry) is allowed
» Linear map U that does not change the norm: ||U W)” = H W)H

- Invertible, and the inverse is the Hermitian adjoint: uUl=U"

. O
Various Gates H gate H CX gate A
L/
X gate —— Goa L ll 1] 1
0 1 \/5 1 —1 CX £ 1 1
X 2 1
10 H[0) =|+), H[1) = |-)

_ _ C10) + 1) Cjoy—1y CX|00) =1]00), CX|01)
XI0) = 1), X[1) = [0) oy 2 2210y, 0ol ERE 7 O S

01),
10)

Topic: Parallelization of Quantum Programs

4+ Parallelization of quantum programs is vital

» Reduces the depth of quantum circuits for runtime performance

» Statically by quantum compilers or dynamically at runtime

4 Such parallelism is subject to tricky bugs

» Unexpected behaviors may occur only in some execution orders

————————————————

10

Our Work: Concurrent Quantum Separation Logic

4+ Concurrent quantum SL for fine-grained parallelism

» Separation Logic (SL) for modular reasoning

- Separation = Race Freedom, Disentanglement, Probabilistic independence

» Key feature: Flexible sharing of qubits, for fine-grained parallelism

- Allows semantically race-free parallel operations on the same qubits

Zx

- Enjoys a form of completeness

- New notion of ownership over quantum memory @
: : >
» Extension: Classical controls & Measurements

Non-Trivial Example of Fine-Grained Parallelism

Process | CCY|x,z,y|; Ur|z]; Ux|lz]; Us|lz]; CCZ|x,z,y]| |
Process2 atomic {X[x]; CH[X, y]; X[X] }

Control Bit inversion o
| | omic
. T T * 5 D T @ . block
Process | Y —Y L || Process 2y - H
< l U1 Uz U3 l 7z —
* @ _____ T ______ S ! Question Is this race-free?

Clever scheduling y [yl O 7]

-> e e]

l.e., Is the result always the same
regardless of the scheduling?

12

Can We Justify This Parallelism?

4+ Challenge |: Semantic race freedom

» Roughly, Process | & 2 write to y respectively only when xis | / 0

» But quantum superposition: |[0> & |1> can be mixed

4+ Challenge 2: Treatment of atomicity

» Process 2 temporarily writes to x but reverts that in an atomic step

——————————————————————

13

Another Interesting Example

+ Example of integer addition

» The result is unique thanks to the commutativity of the addition

» Insight: Any classical reversible computing can be made quantum

Add[%, ¢]: Add1[x]; Add.[%, ¢
| Addgl7y, c]

Addy : Add a k-bit integer to another k-bit integer
Add1y : Increment a k-bit integer

Addg |

Add1,

Addy T

Addg |

14

Basic Idea of Quantum Separation Logic

4+ Quantum points-to token X — |{/)

» The qubits x € Qubitk currently store the state vector |i/) € (CZ)®k

- Not per single qubit, due to entanglement

» Cf. Classical points-to token £ +—> 0

4+ Separation = Disjoint ownership & Disentanglement

X |Y) x g |¢g) = (5,7) = [Y)[9) g,
Tensor product |()> ‘1) — |()1>
X — |¢) F X are mutually disjoint

15

Basic Rules of Quantum Separation Logic

4+ So far, quite like classical separation logic

(P} e (0] | -
. T Erame x|y Ulx] 1x - U |yY)
(PrR)e(QrR] Tome U WHUEES UM

Uninvolved parts remain unchanged

WPreiQf aPpenQy o 1Phe{Q) {0} {R]
{P=Plelle{QxQ} (P} e {R]

Ownership separation ensures safe parallel execution

Seq

16

Our New ldea: Quantum Matrix Token

+ Quantum matrix token x " U | S

» Witness that the matrix U has been applied to the qubits

» Has the ability to apply matrices in the set S
» jisthelD i =110] i.1
- Given so that multiple matrix tokens can coexist

UedS

{3? HiV|S} Ulx] {3? ! UVIS} e

|7

Borrows for Matrix Tokens

4+ We create matrix tokens by borrows or reborrows
x| Te{xlU| T}
(x> te{x—>UlY)}
Matrix commutativity S < S =2 VA€ S,B€ S’. AB=BA
S0, 51 CS Sy
{3‘(|—>i‘OI\SO x % ol \Sl}e{J'CHi'O Uy | Sy * x "1 U \81}
{x-1V|Ste{x—iUUV|S}

Borrow

Reborrow

18

Promotion by Atomicity

4+ Promote a matrix token into a points-to by atomicity

» Kind of inverse of the frame rule, very subtle

Ownership exclusion
e is atomic P:outx UE€S

V). {x—) « Ple{x—> Uly) = O}
{x-iV|S«Ple{xIUV|S = Q}

1P} e1Q]
{P} atomic {e} {Q}

Promote

Atomic atomic {e} is atomic

19

We Enjoy Completeness!

Completeness Theorem

If the resulting matrix of a program € is uniquely U,
then our separation logic can prove the following:

VIg). {x = [¢¥)}e{x—> Uly)}

Here, we take the program e from the following fragment:
e = Ulx] | ee | el||le | atomic {e}

We also assume the oracles for membership U € S,
inclusion S C S’, and commutativity S < S’

20

Proof of the Completeness

Key Lemma on Parallel Execution

If e || €’ has a unique result, both e and e’ have a unique result,
each AC of e commutes with each AC of € AC = Atomic component

-+ Since all matrices are invertible, uniqueness can be discussed locally

Proof of the Completeness

By proving the following by structural induction over é:

If e has a unique result U, then letting S be the set of €’s ACs,
our logic can prove, for any i : {3? —'] S} e {JZ —' U | S}

21

Discharging Queries on Matrix Sets

. . . o We assume oracles on
4+ Queries are decidable for finite sets § complex number arithmetic

» Our completeness proof uses only a finite set of ACs

4+ We can also consider the vector subspaces for $

» Matrices form a vector space, and commutativity is well-behaved

- If S & &', then that extends to the linear spans: span S <> span S’

» The vector space of matrices is finite-dimensional, we can always
take a finite (bounded) number of bases for S, yay!

- The membership, inclusion,and commutativity queries can be
answered in terms of the bases (thanks linear algebra!)

22

More Efficient Answers to Matrix Set Queries?

4+ Want to have a sophisticated proof system
for answering queries on matrix sets efficiently

» Hopefully, it will be complete over some fragment
» Hopefully, we can even design an efficient decision algorithm

» The following fragment seems to suffice in practice

S =T|CIl| S8 | So S

23

Extension to qalloc / gfree

4+ Allocating a fresh qubit / Deallocate a qubit

» Guaranteed to be initialized / Obliged to initialize to |0>

- Can be naturally reasoned by points-to tokens

Vx. {x — |0) P} e {Q}

————————————— Qadll
{P} let x = qgalloc ine{Q} e

{x —> \O)} qfree x {emp} Qfree

24

Incompleteness under qalloc

4+ Our logic is incomplete in the presence of qalloc

> I|nitialization to |0> makes more programs have a unique result

- Even when matrix commutativity does not hold

Counterexample

let x =qgalloc in lety=qallocin letz=galloc in
Add1s[x,y,z] || Add1s]y, z]

Both order of execution gives (x,y,z) +— |010)
But the matrices Add 13, | ® Add 1, do not commute

25

Related Work

+ Quantum SLs [Zhou+ LICS ’21, Le+ POPL ’22, Su+ *24]

> Separation = No sharing of qubits & Disentanglement

» Supported neither concurrency nor sharing of qubits
- Concurrency might be safely supported, but not discussed well

- But sharing of qubits is fundamentally difficult

26

TODOs & Future Work

+ Explanation, design of reasoning rules, proofs

4 Extension to classical controls & measurements

» Use Outcome Logic [Zilberstein+ *23] to model probabilistic choices
- P EBP Q : P by probability p, Q by probability (1 - p)

4+ Case studies of more practical examples

4+ Automated quantum program parallelization

27

#2

Linear Haskell x
Rust-Style Borrows

New work at an early stage

Linear Haskell & Rust

4+ Linear Haskell [Bernardy+ POPL ’18]
» Linear types [Wadler '90] in GHC Haskell

)x
__
- Can encapsulate destructive updates into pure APIs under linearity

4+ Rust [Matsakis & Klock ’15]
» Systems programming language with strong ownership types

» Key feature: Borrows by lifetimes (&a mut T,&a T, ...)

> Highly useful for achieving performative computation

- No need for direct communications in returning ownership

29

Proposal: Linear Haskell x Rust-Style Borrows

Y

4+ Rust-style borrows in Linear Haskell

» Can be provided as libraries for real-world GHC

» Implementation: Just use unsafePerformlO etc.

- Key challenge: Pure APIs encapsulating destructive updates

» Haskell’s high-level reasoning X Rust-like safe pointer manipulation
- Can enjoy Haskell’s data types, higher-order functions, lazy evaluation, etc.

- Can enjoy flexible, efficient, and safe pointer manipulation, as in Rust

30

ST Monad in Haskell

4+ ST Monad encapsulates destructive updates into purity

Stateful computation Pure value

Conceptually, the state monad over
. - —>
runsT (VS,(ST s a) a a fresh memory region s

Fresh memory region

Example
newSTArray : ST s (STArray s a)

readSTArray : STArray s a —> Int —> ST s a
writeSTArray : STArray s a —> Int —> a —> ST s ()

31

Linear Haskell

4+ Linear arrow type:a -0 b Written as @ %1 —> b in GHC

» A function that consumes the argument exactly once

- More precisely: For f : a —o b,if T X : b is consumed exactly once,
the argument X : a is consumed exactly once

» No need for ST monad
- Easier to write & More chances for parallelism

Unrestricted

Example
P newLArray : (LArray a -o Ur b) -o Ur b
readLArray : LArray a -o Int —> (LArray a, Ur a)

writelLArray : LArray a -o Int —> a —> LArray a

32

Linearity Withesses

4+ Linearity witness L1nearly

» Witness that the result of the current computation is used linearly

- Extensive library linear-witness by ISHIl Hiromi

- Linear Constraints [Spiwack+ ICFP "22] for even better interfaces

newLArray : Linearly -o LArray a

nd Or

newLArray .

(LArray a -o Ur b) -o Ur b newLArray : Linearly =0 LArray a

linearly : (Linearly -o Ur a) -o Ur a

dup : Linearly —-o (Linearly, Linearly) consume : Linearly -o ()

33

https://github.com/konn/linear-extra/blob/main/linear-witness/README.md
https://github.com/tweag/ghc-proposals/blob/linear-constraints/proposals/0621-linear-constraints.rst

Why Purity Matters?

4+ More predictable behaviors by referential transparency

» Under lazy evaluation, concurrency, ...

4+ Enables various optimizations

» Fusion transformation, ...

Example

map g (map f xs) —> map (g . T) Xs
Applications of f and g are swapped

34

Key Observation: Moves vs. Borrows

4 Linear Haskell: Need to move the accessed data around

4+ Rust: Access by borrowing

)X readLArray : LArray a -o Int —> (LArray a, Ur a)
L\ writelArray : LArray a -o Int —> a —> LArray a

fn index<a,T>(v : &x Vec<T>, i : uint) —> &a T
fn index mut<a,T>(v : & mut Vec<T>, i : uint)

—> & mut T

35

Rust’s Borrows

4+ Temporarily borrow ownership

» No direct communications is nheeded when releasing ownership

Lifetime «
Exclusively owns a region : Retrieves ownership
Owner @ :
T :
Automatically .
Mutable Borrow \ returns ownership .
Mutable Reference M Releases . Timing Restriction
& mut T ,ownership ' t(Release) < Lifetime

Can freely update the region

36

Rust’s Operations on Borrows

4+ Various high-level operations on borrows are provided

Sharing % & mut T =—>

Subdivision m samut T —
‘m &o mut T
T

99 &Bmut T

Reborrow

37

Rust’s Borrow Checking

4+ Automatic static checking on borrows

> Esp. the timing restriction t(Release) < Lifetime

4+ Actively evolving over time
» Older (—2018) — Scope-based, lexical lifetimes

- t(Release) is the end of the scope

» Now — Non-lexical lifetimes by Niko Matsakis | | His blog
Niko Matsakis “baby steps”

- t(Release) is inferred by liveness analysis

» o fn new_widget(&self, name: String) -> Widget {
» Future! —“Borrow checker within let name_suffix: 8'name str = Sname(3..);
—=- borrowed from “name

let model_prefix: &’self.model str = &self.modell..2];

- More info in types, self-borrows supported // —— borrowed from “self.model”

38

https://github.com/nikomatsakis
https://smallcultfollowing.com/babysteps/blog/2024/06/02/the-borrow-checker-within/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/
https://smallcultfollowing.com/babysteps/

Simple Approach to Borrows in Linear Haskell

4 Use a state monad over the lender

borrow : Linearly —o0 a —0 d a. Fresh lifetime

(MutBor a a, Lend o, Ur (Lend a -0 a))
Mutable borrower Lender Retrieve the borrowed object

BorST a a = Lend a -0 (Lend a, a) State monad over the lender

swap : MutBor a a -0 a -0 BorST a (a, MutBor a a)
consume : MutBor a a —o0 () Mutable borrowers can be released any time

indexMut : MutBor a (BArray a) -o Int —>
BorST a (MutBor a a)

Mutable borrowers can be subdivided

39

Correctness

+ Memory safety

» By ensuring disjointness of mutable references

- We can think of “logical paths” instead of physical addresses
E.g., Paths x.0,x.1.0, x.1.] are disjoint

4+ Purity

» By modeling Lend a with the store-passing style
- C.f,how ST’s purity is proved [Timany+ POPL ’17, Jacobs+ OOPSLA ’22]

» Prove bisimulation between the non-updating computation mode|

- Similar to the correctness proof of the Linear Haskell paper

40

Challenges & Future Work

4 Reborrows!?

» Reborrowers involve multiple lenders, so APIs are a bit more involved

4+ Smooth reasoning about lifetimes?

» Especially when handling multiple lifetimes

4 Parallel accesses to one lender?

» Somehow share Lend a between processes!?

» Use RustBelt-like APIs with lifetime tokens! How to ensure purity?

4 Abstractions like lenses?

4]

Thank you!

